News
NASA Extends Johns Hopkins APL-Led Solar and Space Physics Research Center
Two years ago, scientists at the Johns Hopkins Applied Physics Laboratory (APL) in Laurel, Maryland, joined researchers from across the country to establish a NASA science center that would foster new collaborations and create models and simulations that would transform our ability to understand and predict potentially harmful events in the space surrounding Earth.
Now, after the tremendous initial progress and success of the Center for Geospace Storms (CGS), NASA recently announced that it will expand the center for an additional five years, citing the center’s significant potential for transformative impact on the fields of space weather and space physics. CGS is one of three selected to enter Phase II of NASA’s Diversity, Realize, Integrate, Venture, Educate (DRIVE) Science Center initiative.
“This selection is a testament to the groundbreaking advancements and continued scientific potential of the Center for Geospace Storms for the space physics and space weather communities,” said Jason Kalirai, APL’s mission area executive for Civil Space. “APL is proud to continue supporting this incredible team and looks forward with excitement to watching it bring significant scientific capabilities to these fields over the next five years.”
From the outset, the CGS team aimed to untangle the complex web of interactions that occur in geospace — the roughly one million miles of space that surrounds Earth — during solar storms. The maze of small-to-large-scale interactions that occur among Earth’s magnetosphere, ionosphere and upper and lower atmosphere have been overwhelmingly challenging to simulate. Scientists know, however, that these interactions are critical to predicting space weather events that can disrupt satellite communications, damage or even terminate spacecraft, endanger astronauts and cause blackouts on the ground.
To address that challenge, the CGS team has been developing a beyond state-of-the-art computer model that can simulate and predict the effects of solar storms on geospace with unprecedented completeness. Called the Multiscale Atmosphere-Geospace Environment, or MAGE, model, the new computationally hefty system knits together several high-resolution physics-based models for Earth’s magnetosphere, ionosphere, upper atmosphere and — for the first time in a global model of geospace — lower atmosphere. It then injects the newly stitched model with real data from ground stations and spacecraft to simulate storms with higher accuracy and detail than any modeling system before it.
“MAGE is bringing a capability that we haven’t seen in the community before: the ability to get down to smaller-scale features and help place them in a global context,” said Mike Wiltberger, a space physicist at the National Center for Atmospheric Research (NCAR) and the deputy director of CGS. “MAGE really pushes the boundaries of being able to do that.”
Slava Merkin, a space physicist at APL and CGS’s principal investigator and director, echoed that sentiment. “We’ve achieved breakthrough results on the development of the MAGE model, and it’s already redefined the state of the art in space weather modeling,” he said.