The New Horizons Spacecraft: Past Performance, Future Potential
Abstract
On July 14, 2015, the New Horizons mission accomplished the first flyby of Pluto–Charon, achieving full mission success during its primary mission. Less than 4 years later, during its first extended mission, New Horizons flew by Arrokoth, a 36-km contact binary trans-Neptunian object in the Kuiper Belt, on January 1, 2019. Along the way, New Horizons imaged numerous distant Kuiper Belt objects, performed important heliophysics science including complex Lyman-α radiation scans, and measured the dust and zodiacal light from regions never before explored. This article provides an overview of the New Horizons spacecraft and its engineering performance, as well as potential strategies for extending the mission far beyond its original design lifetime. Details on the mass and power budgets, as well as descriptions of key innovations to meet the challenges posed by the mission, offer insight into the engineering accomplishments that led to mission success. Trended data on the power, thermal, and propulsion systems substantiate projections of the mission’s potential to continue its exploration beyond the heliopause until ~2050.