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ABSTRACT
Modeling and simulation (M&S) is a critical step throughout the systems engineering process 
for developing and fielding a combat system. Verification and, more specifically, validation are 
essential to determining whether a simulation is credible and reliable. Although policy and guid-
ance increasingly emphasizes the importance of rigorous validation founded in the application 
of strong statistical analysis, implementation continues to be challenging. As a result, test orga-
nizations and statisticians have been interested in developing a robust approach for measuring 
the performance of the validation methods used to assess model accuracy. The Johns Hopkins 
University Applied Physics Laboratory (APL) developed a flexible and extensible framework to 
evaluate the performance of the validation methods. The framework provides the modularity to 
evaluate multiple validation methods and is sufficiently generic to support assessment of multiple 
simulation models. This article details the framework design and the analysis of multiple statisti-
cal validation methods, including an exemplar assessment of the methods applied for a recently 
accredited missile system simulation.

represent the developer’s conceptual description and 
specifications.”2

2.	 Validation—“Did I build the right thing?”1

	 “The process of determining the degree to which a 
model and its associated data provide an accurate 
representation of the real world from the perspective 
of the intended uses of the model.”2

3.	 Accreditation—“Is it believable enough to be used?”1

	 “The official certification that a model or simulation 
and its associated data are acceptable for use for a 
specific purpose.”2

INTRODUCTION

The Department of Defense (DOD) and the armed 
forces have recognized the growing significance of mod-
eling and simulation (M&S) for many aspects of their 
operations. They have prepared directives and guidelines 
to provide general instructions on how, when, and under 
what circumstances formal verification, validation, and 
accreditation (VV&A) procedures should be employed. 
These three processes are defined as follows:

1.	 Verification—“Did I build the thing right?”1

	 “The process of determining that a model imple-
mentation and its associated data accurately 
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APL supports the systems engineering life cycle for 
multiple combat systems. Of increasing importance 
is the application of high-fidelity, system-of-systems 
(SoS) distributed simulations. These SoS simulations 
consist of a mixture of both tactical code-based models 
and physics-based environmental models to represent 
combat system performance.

As part of the VV&A effort, models are tested, and 
data, such as telemetry data from tests events, are col-
lected. These data are then compared with the SoS 
simulation results to assess the simulation’s ability to 
accurately represent the actual behavior and perfor-
mance of the combat system. It is challenging to select 
the most efficient and effective validation methods to 
apply in a given situation. To aid in overcoming this 
challenge, APL developed a modular, flexible, and 
transferable evaluation framework that expands vali-
dation methods for time-series data and enables better 
assessment of the validation methods to be applied.

VALIDATION METHOD PERFORMANCE
Validation methods seek to determine whether data 

derived from a physical test are consistent with data 
output by a simulation of that same test. This can be 
done by comparing the data from the test (test data set) 
with one or more data sets generated by the simulation 
(comparison data sets). The fundamental question then 
becomes how accurately the validation method classifies 
a given test data set as either in-family (consistent with 

the comparison data) or out-of-family (inconsistent with 
the comparison data)?

To evaluate the accuracy of the validation methods 
used to assess a simulation, we can compare simula-
tion data with other simulation data. Because the true 
family of the simulation data is always known, it is 
straightforward to verify whether the classification of 
the validation method was correct or not. The result 
may then be classified as either a true positive (TP) or 
true negative (TN) (the test data set was correctly clas-
sified as in-family or out-of-family) or false positive (FP) 
or false negative (FN) (the test data set was incorrectly 
classified as in-family or out-of-family). For classifica-
tion problems, these four measurements are combined 
to produce a contingency matrix, an example of which 
is shown in Figure 1. It is desirable to maximize the 
true positive (sensitivity) and true negative (specificity) 
rates. We define the validation method performance in 
Eq. 1.3 This matrix can be used to assess the validation 
method’s performance across various metrics in simula-
tion models.

Performance accuracy = 
𝑁𝑁𝑁𝑁TP  + 𝑁𝑁𝑁𝑁TN

𝑁𝑁𝑁𝑁TP + 𝑁𝑁𝑁𝑁TN + 𝑁𝑁𝑁𝑁FP + 𝑁𝑁𝑁𝑁FN
	 (1)

To test the performance of the validation methods, 
time-series data were generated for several scenarios 
using a 6-degree-of-freedom (DoF) missile system sim-
ulation. For each scenario, N (270–300) trial data sets 
were generated, and each scenario tracks the values 
of four metrics (ground range, ground range veloc-
ity, height, and height velocity) over time. Compar-
ing trials from a given data set with other trials from 
the same data set produces the true positive and false 
negative rates in the left column of the contingency 
matrix. Comparing the data from a given trial with the 
trials in a different data set produces the true nega-
tive and false positive rates in the right side of the 
contingency matrix.

To perform the within-scenario comparison, a trial 
from one scenario data set is selected and treated as the 
test data, while the remaining N – 1 trials are treated as 
the comparison data set. A validation method is then 
used to compare the “test data” with the comparison 
data and classify it as either in-family or out-of-family. 
This process is repeated for each trial in the scenario 
data set to acquire the true positive and false negative 
rates. To perform the between-scenario comparison, a 
trial from a scenario data set is used as test data and 
compared with the trials from a different scenario data 
set as the comparison data. Here, no trials are excluded 
from the comparison data since the test data trial is not 
a part of it. This process is performed for each metric. 
This analysis approach enables the identification of 
how different two curves are, given a metric to evaluate, 
which can help in sensitivity analysis.
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Figure 1.  A contingency matrix for evaluating a method’s per-
formance. The sensitivity (true positive) and specificity (true 
negative) are representative of the correctness of methods 
implemented.
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STATISTICAL METHODS FOR VALIDATION
The missile system model is a physics-based simula-

tion that emulates the behavior of missile system flyouts. 
The missile system model used a two-sided one-sample 
hypothesis test4 on four metrics (ground range, ground 
range velocity, height, and height velocity) to perform 
validation. To compare the performance of the selected 
validation methods, they were applied to data from two 
different scenarios for all four of the previously employed 
metrics. The scenarios were selected because they 
exhibit similar metric data distributions. A good statisti-
cal method should be able to distinguish between differ-
ent scenarios that have similar behavior. In the analysis 
of the 6-DoF missile system model, for the test data to 
be considered in-family, all metrics must meet the in-
family criteria. We evaluated four validation methods: 

two-sided hypothesis, area-outside-threshold hypothe-
sis, extrema hypothesis, and extrema p-value hypothesis.

Two-Sided Hypothesis
The two-sided hypothesis is the current approved 

validation method. This method takes all the trials 
in the comparison data set and calculates the mean 
and standard deviation for each time sample. Then, 
a region is defined bounded by n ± 2.5n, where n 
and n are the mean and the standard deviation for nth 
time sample, respectively. A test data metric is classi-
fied as in-family if more than 90% of its time samples 
are within this region. Figure 2 shows an example of 
test data (black line) compared with an out-of-family 
comparison data set (blue) and failing the two-sided 
hypothesis test.

The two-sided hypothesis test has some potential 
limitations. If there are few time samples, even a small 
number of samples going out of threshold can cause test 
data to be rejected as out-of-family. Additionally, test 
data that runs along the edge of the threshold, such 
as that depicted in Figure 3a, can result in many time 
samples going out of threshold. Both these scenarios can 
potentially produce false negatives.

Area-Outside-Threshold Hypothesis
The area-outside-threshold hypothesis attempts to 

improve performance of the two-sided hypothesis by 
considering instead the area between time samples that 
are out of threshold and the threshold. This “area out-
side” is depicted for an out-of-family comparison case in 
Figure 3b. Test data are judged by calculating the total 
area outside of threshold and scaling it by the time range 
over which the data are defined. To judge this value, the 
comparison data are compared with themselves. The 
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Figure 2.  An example of a comparison of test data with an out-
of-family comparison data set.

0 0.2 0.4 0.6 0.8 1.0

(a) (b)

1.2

Test data
Comparison data
2.5σ region

10

20

30

40

50

60

0

M
et

ri
c 

va
lu

e

Sampling value

4.0

–8 –6 –4 –2 0 2 4 6

3.5

3.0

2.5

Test data
Comparison data
2.5σ region
Area outside

2.0

1.5

1.0

0.5

0

M
et

ri
c 

va
lu

e

Sampling value

Figure 3.  Area-outside-threshold hypothesis. (a) Sometimes test data may run along the edge of the two-sided threshold region. This 
can result in too many time samples being out of threshold. (b) A depiction of the area-outside-threshold test. The red region represents 
the area outside of the two-sided threshold.
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area outside of threshold is calculated for each trial of a 
data set relative to the other trials. The results from each 
trial then form a distribution from which the xth per-
centile is calculated for use as a threshold. Any test data 
with a total time-scaled area outside the threshold less 
than the xth percentile value are classified as in-family. 
Otherwise, they are rejected as out-of-family.

Extrema Hypothesis
The extrema hypothesis is a simplified form of the 

Rosenblatt process modified to accommodate the missile 
system time-series data.5 It breaks up the N trials into g 
groups of size Ng = N / g trials per group. Time samples 
in the test data are then compared with the comparison 
data in each group individually. For a given time sample, 
if the test data are higher than the maximum or lower 
than the minimum compared with any of the trials in a 
group, the test data are an extrema. For each group, the 
total number of extrema (Nex) in the test data relative 
to the group in question is counted and scaled by the 
number of time samples (Ns). This fraction, Nex / Ns, is 
then compared with a threshold of 2 / (Ng + 1). If the 
scaled number of extrema for any group exceeds this 
threshold, the test data are rejected as out-of-family. 
Otherwise, they are considered in-family. Figure 4 shows 
an example of the extrema hypothesis applied for an out-
of-family comparison. The red dots indicate test data 
time samples that are extrema.

Extrema p-Value Hypothesis
The extrema p-value test was developed as an 

attempt to implement portions of the extrema 
hypothesis but “soften” the in-family threshold. 
Assume that a trial is composed of data with a 

Gaussian distribution around some truth function in 
a statistically independent fashion. If this is true, then 
the likelihood of a given test data time sample being an 
extremum is given by p = 2 / (N + 1), where N is the 
number of trials. This is derived from the fact that for 
any given collection of time samples, there will be one 
maximum and one minimum. It then follows that the 
number of observed extrema in the test data will follow 
a binomial distribution with a “probability of success” 
equal to p and a “number of trials” equal to the number 
of time samples.

To determine whether test data are in-family, a simi-
lar process to the extrema hypothesis is performed. The 
minimum and maximum of each time sample are calcu-
lated, and if the test data are greater than the maximum 
or less than the minimum, they become extrema. The 
total number of extrema Nex is then calculated.

Now, consider the null hypothesis ℋ0 that the test 
data are in-family and the alternative hypothesis ℋ1 
that the test data are out-of-family. These hypotheses 
can be differentiated by defining a test metric  = Nex. 
Since this value follows a binomial distribution, it is 
possible to calculate the p-value for likelihood of seeing 
Nex extrema or more. If the p-value is below the standard 
threshold of  = 0.05, then the test data are rejected as 
out-of-family. Otherwise, they are accepted as in-family.

VALIDATION METHOD ASSESSMENT 
FRAMEWORK

To evaluate the performance of the statistical meth-
ods proposed to validate the simulation model, we 
created the validation method assessment framework 
(VMAF). VMAF is a flexible, extensible code base for 
implementing and running validation methods written 
in MATLAB. It is designed to standardize as much of 
the validation process as possible and render it easy to 
run without any underlying knowledge of the methods 
or code that make up the framework. Additionally, it 
is designed to be portable to enable easy sharing across 
organizations. The VMAF is split into three parts: data 
preprocessing, analysis preprocessing, and finally the 
validation method itself.

Data Preprocessing
The data preprocessing step collates the raw data 

files. The preprocessor allows for only the specific metric 
data needed to be drawn into the framework, where the 
data from across all trials are compiled in a standard-
ized way for all scenarios and then saved to disk to allow 
for faster subsequent processing. The resultant output, a 
compiled data object, can serve as an input to any vali-
dation method. Additionally, the data preprocessor can 
perform limited transformations of metric data during 
the collation process.
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Figure 4.  An example of the extrema hypothesis for an out-of-
family comparison. Each red dot represents a time sample in the 
test data that is either a maximum or minimum relative to the 
comparison data set.
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Analysis Preprocessing
From the compiled data object, an analysis prepro-

cessor generates the data the corresponding validation 
method needs to compare against the test data. Since 
it is impossible to know what an arbitrary validation 
method may need a priori, an analysis preprocessor is 
defined for each validation method. In pursuit of the 
goal of standardizing the process as much as possible, all 
the background machinery, such as extracting data from 
the compiled data object and creating self-comparison 
data (the “test data” trial), was carried out before the 
analysis preprocessing. The only step that must be spe-
cifically defined for a given validation method is what 
data to generate. Again, a standardized object is gener-
ated and output.

Validation Method
Lastly, the validation method is defined. It takes as 

input test data, comparison data, and the analysis pre-
processing output for the comparison data. From this, it 
will classify the trials present in the test data as in-family 
or out-of-family. As with the analysis preprocessing step, 
only the actual classification logic needs to be defined 
when implementing new methods. All the other back-
end steps are automated and consistent across all valida-
tion methods.

Control Scripts
Each stage of the VMAF is run via a control script. 

A control script is a basic script that has fields for the 
user to define the required input (such as which files to 
collate and which metric data to load for the data pre-
processor or the size of the thresholds for the two-sided 
test). It includes significant documentation to describe 
what is needed and examples to assist the user. Once 
provided with the necessary input, it can simply be run, 
and the rest of the process is handled automatically.

RESULTS AND DISCUSSION
The VMAF was employed to test two scenarios of 

6-DoF missile system data using the two-sided, area-out-
side-threshold, extrema hypothesis, and extrema p-value 
hypothesis tests for the four metrics described previ-
ously. The values defining the contingency matrix for all 
metrics are given in Figures 5–8, respectively, for each 
validation method. The ground range and ground range 
velocity metrics exhibited very similar forms between the 
two scenarios and proved difficult to differentiate. The 
height and height velocity metrics presented sufficiently 
distinctive forms, so they were reliably differentiable.

Two-Sided Hypothesis
The two-sided hypothesis test performed well. As 

shown in Figure 5, it reliably produced near-100% true 

positive rates as well as 100% true negative rates for 
height and height velocity, resulting in near-100% per-
formance accuracy for these areas. True negative rates 
for the ground range and ground range velocity were 
poorer, yielding an overall averaged accuracy of 76.1% 
across all metrics. However, since rejecting one metric 
rejects the entire test data, this method is still able to 
consistently separate the test data from the out-of-family 
comparison data.

Area-Outside-Threshold Hypothesis
Figure 6 shows the performance of the area-outside-

threshold hypothesis with 90th percentile and 50th 
percentile thresholds. Using the loose 90th percentile 
threshold, the area-outside-threshold hypothesis test 
was able to improve on the true positive rate compared 
with the two-sided threshold hypothesis test. However, 
it was considerably less effective at identifying true nega-
tives. The method presented a metric-averaged accuracy 
of 62.9%. Using a stricter 50th percentile threshold, the 
area-outside-threshold test was able to achieve similar 
true positive and true negative rates to the two-sided 
threshold test, but no percentile resulted in improve-
ment. Additionally, the need to calculate the percentile 
threshold uniquely for each comparison data set is not 
ideal. However, the tested implementation was fairly 
simple, so while it presently offers no benefit over the 
two-sided hypothesis and thus is not preferred in its 
current form, there may be room to improve the area-
outside-threshold hypothesis in the future.

Extrema Hypothesis
The extrema hypothesis test was performed splitting 

a total of 300 trials into Ng = 10 and Ng = 30 groups, 
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Figure 5.  The results of the two-sided hypothesis test. True posi-
tive rates are extremely good, and at least some true negative 
rates are extremely reliable.
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representing 30 and 10 trials per group, respectively. The 
method’s metric-averaged accuracies were 74.5% and 
55.2%. The strict threshold on the number of extrema 
resulted in a very good true negative rate. However, this 
came at the cost of rejecting a large percentage of in-
family comparisons and thus producing a notably lower 
true positive rate. Figure 7 shows the results for each 
number of groups.

The performance of the extrema hypothesis test fairly 
strongly correlates with the number of trials in groups 
and time samples. Increasing the number of trials will 
generally increase the comparison data minimum and 

maximum, and thus reduce the likelihood of seeing an 
extremum in the test data. This effect can be observed 
by the improved performance of the smaller grouping 
size—fewer groups means more trials per group. This 
could additionally be improved by simply including 
more trials overall. Meanwhile, including more samples 
increases the likelihood of seeing more extrema. Con-
versely, it also reduces the “cost” of each extremum 
observed, since the total is scaled by the total number of 
time samples. Balancing these properties could improve 
the performance of the extrema hypothesis, but in gen-
eral it is not suitable for the missile system simulation.
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Figure 7.  The results of the extrema hypothesis test. (a) The results for 10 groups. The true negative rate is very good, but it comes at 
the cost of a low true positive rate. (b) The results for 30 groups. The true negative rate is further improved, but the true positive rate is 
further reduced.
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Figure 6.  The results of the area-outside-threshold hypothesis test. (a) The results with a 90th percentile threshold. The true positive 
rate is improved over the two-sided hypothesis, but at the cost of worse true negative rates. (b) The results with a 50th percentile thresh-
old. The true negative rates are now in line with the two-sided hypothesis, but so are the true positive rates.
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Extrema p-Value Hypothesis
The extrema p-value test performed exceptionally 

well. In terms of true positive rate, it matched the two-
sided threshold hypothesis, and in terms of true negative 
rate, it matched or exceeded the two-sided threshold 
hypothesis. This is notable in the ground range velocity 
true negative rate, which is 30% higher for the extrema 
p-value hypothesis.

Since it is able to match or exceed the two-sided 
threshold hypothesis across all metrics, the extrema 
p-value test is a viable contender for the preferred vali-
dation method for the 6-DoF missile system model.

FUTURE PROSPECTS
The VMAF provides the capability to consistently 

evaluate the performance of validation methods for 
many different data sources. Further, it can help allevi-
ate the difficulty of sharing evaluation methodologies 
across organizations by providing a single unclassified, 
portable, and easy-to-use code base for implement-
ing and running said methods. Each organization can 
test and improve the validation methods with their 
own models.

The two-sided threshold, area-outside-threshold, 
and extrema validation methods have been presented 
by the authors to external organizations. The authors 
will continue forward to present the validation method 
performance results from VMAF. Additionally, exter-
nal organizations have shown interest in applying the 
VMAF to a time-series sensor model to determine 
whether the framework is extensible. Through this anal-
ysis and potentially others, the authors aim to address 

the need for strong statistical validation methods for all 
combat system models.
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Figure 8.  The results for the extrema p-value hypothesis test. It 
performs on par with the two-sided threshold hypothesis in most 
areas but actually outperforms it in others (such as the ground 
range velocity true negative rate).
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