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Maximum Likelihood Reliability Estimation from 
Subsystem and Full-System Tests: Method Overview 
and Illustrative Examples

Coire J. Maranzano and James C. Spall

ABSTRACT
This article provides an overview and examples of a novel and practical method for estimating the 
reliability of a complex system, with confidence regions, based on a combination of full-system and 
subsystem (and/or component or other) tests. It is assumed that the system is composed of multiple 
processes, where the subsystems may be arranged in series, parallel, combination series/parallel, or 
other mode. Maximum likelihood estimation (MLE) is used to estimate the overall system reliabil-
ity based on the fusion of system and subsystem test data. The method is illustrated on two real-
world systems: an aircraft-missile system and a highly reliable low-pressure coolant injection system 
in a commercial nuclear-power reactor. The examples demonstrate the following properties of the 
method: (1) Increasing the number of full-system tests improves the confidence in the full-system reli-
ability estimate. (2) Increasing the number of tests of one subsystem stabilizes the subsystem reliability 
estimate. (3) The likelihood function and optimization constraints can readily be modified to handle 
systems consisting of repeated components in a mixed series/parallel configuration. (4) A normal 
distribution approximation for computing confidence intervals is not always appropriate, especially 
for highly reliable systems. (5) Performing a mixture of full-system and subsystem tests is important 
when the model that relates the subsystem reliability to the full-system reliability is uncertain.

information obtained from full-system tests, we will 
generally refer to only subsystem tests; subsystem tests in 
this context should be considered a proxy for all pos-
sible test information short of that obtained from full-
system tests.) Using a combination of full-system and 
subsystem test data to evaluate the reliability of a com-

INTRODUCTION
System, subsystem, component, interface, and other 

tests are often carried out on complex systems to ensure 
that an operational reliability requirement is satisfied. 
(Note: To avoid the need to repeatedly refer to tests on 
subsystems, components, processes, and other aspects of 
the system as the key source of information other than 

Note: This work is an updated version of an earlier work (Ref. 1): C. J. Maranzano and J. C. Spall, “Implementation and application of maxi-
mum likelihood reliability estimation from subsystem and full system tests,” in PerMIS’10, Proc. Performance Metrics for Intelligent Systems 
Workshop, Baltimore, MD, 2010, pp. 146–153, http://doi.acm.org/10.1145/2377576.2377604. © ACM, 2010.
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plex system is desirable when full-system testing can be 
costly or dangerous or when it requires destruction of the 
system itself. Additionally, it is desirable to include full-
system testing in an overall reliability assessment to help 
guard against possible mis-modeling of the relationships 
between the subsystems and the full system in calculat-
ing overall system reliability.

One method of combining full-system and subsys-
tem reliability test data to form a full-system estimate 
of reliability is the method of maximum likelihood 
(Ref.  2). This general maximum likelihood formula-
tion for the combination of reliability test data applies 
across all system configurations (series, parallel, etc.); 
only the optimization constraints change, leading to 
an appropriate maximum likelihood estimate (MLE). 
The method of maximum likelihood provides a char-
acterization of the estimation uncertainty—statistical 
uncertainty about the model parameters—through the 
Fisher information on the parameters of the system reli-
ability model.

The general maximum likelihood method of reliabil-
ity estimation combines data from subsystem tests and 
full-system tests via a model that reflects the constraints 
associated with the operation of the full system. If the 
reliability of the system must be known within a speci-
fied confidence interval or if the test plan is limited by 
cost, there is an inherent trade-off between performing 
full-system tests or subsystem tests. However, the model 
is often subject to error, leading to an inaccurate system 
reliability estimate when subsystem tests alone are per-
formed. Performing full-system tests guards against error 
in the system reliability estimate due to an imperfect 
model. The general method is extended in Ref.  3 to 
include a robust test planning capability to simultane-
ously minimize estimation uncertainty and the effect 
of modeling error on the full-system reliability estimate 
for a series system. The capability enables a planner to 
determine the optimal number of system and subsystem 
tests to include in an experiment.

Certainly, other approaches exist for estimating 
system reliability when the subsystems are independent 
(see Ref. 2 for a complete review). Of note is the Bayesian 
approach, developed in Ref. 4, to combining subsystem 
and full-system test data for estimating reliability. While 
prior information may be useful and appropriate in some 
situations, the MLE approach offers a prior-free alterna-
tive to the Bayesian approach that is parsimonious in 
the model construction (no priors or hyperpriors) and 
in the subjective input (no prior parameters or hyper-
parameters). Also, the Bayesian estimation approach 
described in Ref. 4 is ultimately one of numerical inte-
gration, where MLE is ultimately a problem of function 
maximization, which is typically less computationally 
demanding. Another approach, which allows for statisti-
cally dependent data, is the inequality-based reliability 
approach described in Ref. 5; this approach is based on 

probability inequalities and provides a conservative con-
fidence interval for reliability.

This article provides an overview and examples of a 
novel and practical method for estimating the reliability 
of a complex system, with confidence regions, based 
on a combination of full-system and subsystem tests. 
It is assumed that the system is composed of multiple 
processes, where the subsystems may be arranged in 
series, parallel (i.e., redundant), combination series/
parallel, or other mode. The general MLE method 
described in Ref. 2 is used to estimate the overall system 
reliability. The MLE approach provides asymptotic or 
finite-sample confidence bounds through the use of 
Fisher information or Monte Carlo sampling (bootstrap). 
The examples demonstrate the need for developing a 
robust test plan that includes a mixture of full-system 
and subsystem tests to reduce the influence of model 
error on the system reliability estimate and to minimize 
testing costs.

The method is illustrated on three systems. First, a 
hypothetical system is used to demonstrate the value 
of combining full-system and subsystem test data for 
reducing the uncertainty in the full-system reliabil-
ity estimate even with model error. Second, the MLE 
method is used to form estimates of system and sub-
system reliability on the series aircraft-missile system 
described in Ref.  6. The example demonstrates that 
increasing the number of full-system tests improves the 
confidence in the full-system reliability estimate and 
that increasing the sample size of one of the subsys-
tems stabilizes the subsystem reliability estimate but 
only slightly improves confidence in the full-system 
reliability estimate. The asymptotic and Monte Carlo 
(bootstrap) confidence intervals are computed and 
compared. The system reliability MLE and 90% confi-
dence interval is also compared with the Bayesian pos-
terior distribution on the system reliability computed 
in Ref.  6. The comparison shows that prior informa-
tion significantly influences the full-system reliability 
estimate. Also, prior information on the subsystem 
reliabilities is used to determine a minimum cost test 
program for achieving a specified mean square error 
(MSE) given that the system reliability model is in 
error. Third, the MLE method is used to form estimates 
of system and subsystem reliability on a highly reliable 
low-pressure coolant injection (LPCI) system in a com-
mercial nuclear-power reactor described in Ref. 7. The 
example shows that likelihood function and optimi-
zation constraints can readily be modified to handle 
systems consisting of repeated components in a mixed 
series/parallel configuration. Through the presentation 
of the empirical distribution of the bootstrap sample 
used to determine the confidence interval, the exam-
ple also shows that the asymptotic normal assumption 
for computing confidence intervals is not always appro-
priate, especially for highly reliable systems.
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MLE APPROACH
Background

Consider a system composed of p subsystems. The general estimation formulation 
involves a parameter vector , representing the parameters to be estimated. Let  and 
j represent the reliabilities (success probabilities) for the full system and for subsystem 
j, respectively, j = 1, 2,...,p. The vector  =  [1, 2,...,p]

T, where superscript T represents 
matrix or vector transpose. Let  represent the feasible region for the elements of . To 
ensure that relevant logarithms are defined and that the appropriate derivatives exist, it is 
assumed, at a minimum, that the feasible region  includes the restriction that 0 < j < 1 
for all j. The system reliability  is not included in  because it is uniquely determined (or 
bounded) by the subsystem reliabilities j for j = 1, 2,...,p and possibly other information via 
relevant constraints. Herein, the relation is restricted such that  is uniquely determined 
by a function h(), i.e.,  = h(). The mapping, h, between  and  dictates the arrange-
ment of the system, which may be configured in series h ii

p
1= = =` ^ h j%� � � , parallel 

h 1 1– – ii
p

1= = =` ^ ^h hj%� � � , combination series/parallel, or some other configuration, 
and it is analogous to a model of system reliability in terms of its subsystems. To mirror the 
lexicon commonly used in the literature, h will be referred to as the model for the system 
reliability. Thus, an estimate of the system reliability �t  is found by evaluating h(·) at the 
estimate �t .

MLE Formulation
Let us now describe the relationship between the reliability MLE and the data. Let Y be 

the number of successes in n independent identically distributed tests of the system, and let 
Xj be the number of successes in nj independent identically distributed tests of the jth sub-
system, for j = 1,...,p. Let �t  = �t (Z) be a function that produces an estimate of , where Z is 
the complete set of test data on the full system and its subsystems {Y, X1,...,Xp}. Let p(Z|, ) 
be the probability mass function for the vector Z conditional on specified values for  and 
. Consider the following general maximum likelihood estimator of the parameter vector ,

	
argmaxZ L/= ^ ^h h�t �t �

� ��

h^ h� �=subject to
	

(1)

where ()  log(p(Z|, )) and the argmax operator returns the vector  that maximizes 
the likelihood function () (Ref. 2). Given both system and subsystem test data, Z, the 
estimate of  is derived from the MLE for  through the model for the system, h. In particu-
lar, the MLE for  is �t  = h(�t ). (Note that a more general formulation of the MLE expres-
sion above, allowing for a non-discrete distribution for Y and/or Xj, is given in Refs. 8–10.)

The model dictates how the subsystems are arranged in the full system (() is the same 
regardless of whether the subsystems are in series, parallel, or some other arrangement). For 
a given parameter vector , the definition of () does not depend on the model for the 
system. However, the MLE does change as a function of the model for the system. This is 
a consequence of the system model being used as a constraint in the optimization problem 
that is solved to produce the MLE. Given that the test data are independent, the probabil-
ity mass function is:
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leading to the log-likelihood function:

	 log log log logY n Y n1 1– – – – constantL j j j j j
j

p
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=
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,
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where the constant does not depend on . The MLE for 
 is determined by finding a root of the score equation 
∂()/∂ = 0. The solution to ∂()/∂ = 0 must gener-
ally be found by numerical search methods.

Theoretical Properties
Except in trivial cases, the analytic expression for 

the variance of the general MLE for system reliability is 
not easily found. However, Ref. 2 showed that the Fisher 
information, F(), is easily obtained for the general max-
imum likelihood estimator of the parameter vector . 
Further, Ref. 11 showed that the general MLE of system 
and subsystem reliability has a strong convergence prop-
erty and that the rate of convergence for the system reli-
ability estimate to the true reliability * is

	
loglog

O n n
n n

s

s
+

+e ^ h o,	 (4)

where s is the index of the slowest increasing subsystem 
sample size, and O(·) is the standard order notation. 
Invoking the Cramér–Rao inequality (Ref. 12, p. 357), 
the inverse of the Fisher information is a lower bound 
on the variance of the MLE (for an unbiased estima-
tor). The general theory supporting that the MLE is 
asymptotically normal is given in Ref. 8. Therefore, the 
variance of the general MLE, �t, is approximated with 
the inverse Fisher information, and the variance of the 
general MLE of the full-system reliability, �t , is approxi-
mated by

	 h()TF()–1h(),	 (5)

where h() is the p × 1 gradient vector of h() and super-
script T denotes transpose.

Aside from being used to form approximate con-
fidence regions for the MLE when the sample size is 
sufficiently large, the Fisher information is helpful in 
determining when the estimation problem in the sec-
tion on MLE formulation is well posed (i.e., when  and/
or  is identifiable) through an evaluation of the condi-
tions ensuring that the information matrix is positive 
definite (e.g., Ref. 13, pp. 104 and 139; and Refs. 14 and 
15). Further, the Fisher information matrix (FIM) is used 
in determining the optimal combination of subsystem 
and full-system tests for estimating reliability when per-
forming test design (Ref. 3).

Confidence Bounds
There are two general methods for constructing confi-

dence bounds for the estimate �t , a large-sample approach 
based on an asymptotic normal distribution (and accom-
panying inverse FIM for variance calculation) and a 
finite-sample approach based on Monte Carlo (bootstrap 
sampling) methods. The discussion below summarizes 
key aspects of both of these general methods.

For the large-sample approach, the asymptotic distri-
bution provides an approximate probability distribution 
for �t  for use in finite-sample (practical) analysis. Herein, 
the inverse average information matrix for  (or infor-
mation number for ) is used as the covariance matrix 
(or variance) appearing in the asymptotic distribution of 
the appropriately normalized MLE (see the section on 
theoretical properties).

There are, however, potential problems in the use 
of the asymptotic approach in practical reliability set-
tings. The problem is especially acute when sample sizes 
are too small to justify the asymptotic normality and/or 
when confidence intervals from the asymptotic normal-
ity fall outside of the interval [0, 1] as a consequence of 
the need to approximate the true asymmetric distribu-
tion with the symmetric normal distribution. The latter 
factor is exacerbated by the fact that practical reliability 
estimates are often very near unity. Therefore, we sum-
marize a bootstrap (Monte Carlo)–based method below. 
Bootstrap methods are well-known Monte Carlo pro-
cedures for approximating important statistical quanti-
ties of interest when analytical methods are infeasible 
(e.g., Ref. 16; Ref. 17, pp. 304 and 334; and Ref. 18). The 
bootstrap-based method for constructing confidence 
intervals for the full-system reliability estimate �t  relies 
on the assumption that �t  is uniquely determined from 
�t. References 1 and 8 present sufficient conditions for 
such a function via the implicit function theorem.

The steps below describe a parametric bootstrap 
approach to constructing confidence intervals for �t . Para-
metric bootstrap methods rely on many Monte Carlo 
samples from the distribution associated with the likeli-
hood function, where the unknown parameters in the 
distribution are replaced by their estimated values (in 
contrast, a standard bootstrap method uses Monte Carlo 
samples from the raw data, typically from a histogram of 
the raw data). The bootstrap approach performance is 
compared with the asymptotic approach in example 2 
below (see the section describing example 2).

Bootstrap Method for Computing Confidence Intervals for �t :
Step 0.	 Treat the MLE �t , and associated �t  = h(�t ), as 

the true value of  and .
Step 1.	 Generate (by Monte Carlo) a set of boot-

strap data of the same collective sample size 
{n,  n1,  n2,...,np} as the real data Z using the 
assumed probability mass function in Eq. 2 and 
the value of  and  from step 0.

Step 2.	 Calculate the MLE of , say �t boot, from the 
bootstrap data Z in step 1, and then calculate the 
corresponding full-system reliability MLE, �t boot.

Step 3.	 Repeat steps 1 and 2 a large number of times (per-
haps 1,000) and rank order the resulting values; 
one- or two-sided confidence intervals are avail-
able by determining the appropriate quantiles 
from the ranked sample of �t boot values.
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Estimator Uncertainty with Mis-Modeling in the Reliability Model
The system reliability model, h, is a function that relates the subsystem reliabilities to the 

system reliability based on the layout of the subsystems. As h is a mathematical representa-
tion of the true relation among reliabilities, it is imperfect. For example, a subsystem may 
be neglected and not included in the model, or two subsystems assumed to be stochastically 
independent in the model may have a subtle dependence. An imperfect mathematical 
model results in a true system reliability that is inaccurate. Reference 3 develops a method 
for test planning that minimizes the MSE of the MLE using a local design for a series system 
assuming that the system reliability is uniquely determined from the subsystem reliability 
and the model error (); that is,

	  = h() + ().	 (6)

The expression for the MSE is formed to explicitly include a contribution from the model-
ing error. The result is summarized next for completeness.

Given the relation in Eq. 6, the estimator of system reliability, �t  = h(�t ) no longer satis-
fies the conditions for convergence to * as described in Refs. 11 or 8, and the optimal test 
plan depends on , h, and . However, a test planner does not know  or  before testing the 
system (and determining  may be intractable). To cope with the optimal test plan’s depen-
dence on , test planners might assume a nominal value of  and develop an optimal test 
plan based on this fixed value. For a fixed value of , the function  becomes a constant, 
and only a single value of the model error needs to be determined. Hence, to cope with the 
optimal test plan’s dependence on , test planners can also assume a maximum value for 
the model error, u , and develop a test plan based on the fixed maximum value. Using this 
approach, a test planner can avoid explicitly determining the function () (analogous to a 
local design; see Ref. 12, section 17.4) and develop a test plan so that the estimate of system 
reliability is robust to modeling errors (i.e., worst-case analysis).

The MLE of  with a fixed model error, u , is assessed by modifying the constraint in 
Eq. 1 such that it is  = h

u
(, u)  h() + u . The addition of the modeling error to the 

constraint does not change the log-likelihood function of the general MLE. However, the 
relationship between  and the j differs, and so the MLE of  differs from what it would 
be if there were no modeling error. The MSE of the general maximum likelihood estimator 
is composed of the asymptotic variance of the estimate from Eq. 5 and the approximate 
expected bias of the estimate. The expression for the MSE is

	 E h h h EF– –T2 1 2–. +l l u^ ^ ^ ^ ^h h h h h6 6@ @�� �t �t� � � ^ h .	 (7)

Practically, the outcome of the tests is unknown before a testing regime must be devel-
oped. Thus, the expectation of the quantity �t

u  –  �t , where �t
u  is the MLE of  given the 

deterministic error u , is useful for test sizing and evaluating estimator accuracy.
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where the function gMLE(, u) is the first derivative of the likelihood function with the 
function h replaced with h

u
 (Ref. 19). Note that for implementing a local design,  and E[�t ] 

are replaced with a nominal estimate of the parameter vector. Equation 8 is an approxima-
tion for the bias in the MLE, for a specific test plan n, n1,...np, given h, a nominal estimate of 
, and the maximum model error, u . When only full-system tests are planned, model error 
does not contribute any bias to the full-system reliability MLE. When full-system tests are not 
planned, E uu�t �t– = uand 2[ ]  is the bias squared term of the MSE for the MLE.

EXAMPLE 1: UNCERTAINTY REDUCTION FROM COMBINING TEST DATA
For an asymptotically efficient MLE, increasing the estimation sample size reduces the 

asymptotic uncertainty (increases the statistical information) about the variate being esti-
mated. This example was designed to demonstrate that the general MLE method, described 
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in the section on MLE formulation and Ref. 2, decreases 
the asymptotic uncertainty about the system reliability 
estimate when subsystem reliability test data are added 
to full-system reliability test data. A variation on this 
example demonstrates that the benefit, in terms of 
decreased uncertainty in the full-system reliability esti-
mate, can still be realized if there is error in the model 
that relates the subsystem reliabilities to the full-system 
reliability.

Consider the system with four independent subsys-
tems in series depicted in Figure  1. Assume that each 
subsystem is tested 22 times. Further assume that the 
true reliability of each subsystem is 0.987. This implies a 
full-system reliability of 0.9874 = 0.95. This formulation 
assumes no uncertainty about the model specification 
[i.e.,  = h() =  1  2  3 4 and u  = 0 in the section on 
estimator uncertainty with mis-modeling].

The system reliability and the asymptotic 90% lower 
confidence limit about the true system reliability are 
plotted as a function of the number of full-system tests 
in Figure 2. The lower confidence limit is computed 
using two different samples of data. First, the lower con-
fidence limit is computed using only full-system test 
data. Second, the lower confidence limit is computed 
using full-system test data and all available subsystem 
test data (22 tests for each subsystem). As expected, the 

lower confidence limit computed from full-system test 
data alone is below the lower confidence limit from the 
combined full-system and subsystem data samples. This 
indicates that the estimation uncertainty about the full-
system reliability estimate is decreased by adding the 
available subsystem test data to the full-system test data. 
Also, the difference between the two confidence inter-
vals depicted in Figure 2 is greatest when the number 
of full-system tests is small. Thus, in this example, the 
greatest potential for decreasing the estimation uncer-
tainty exists when adding the subsystem test data to a 
few tests of the full system. The example also illustrates 
that by combining the system and subsystem test data 
via MLE, test planners require fewer full-system tests 
to meet evaluation objectives in terms of statistical 
confidence.

As discussed in the section on estimator uncertainty 
with mis-modeling, the model that relates the subsys-
tem reliabilities to the system reliability may be in error. 
Because the subsystem test data are combined with full-
system test data that are not subject to model error, the 
addition of a deterministic model error to the model 
does not uniformly increase the uncertainty in the full-
system reliability estimate as the number of full-system 
tests is increased. To illustrate this property, the 90% 
lower confidence limit about the true system reliability 
is modified. Specifically, the asymptotic variance used 
in the confidence bound computation is replaced with 
the MSE, computed via Eq. 7 with a maximum model 
error of u   =  0.050. The resulting bound is plotted in 
Figure  3 and represents the uncertainty in the full-
system reliability estimate assuming a maximum model 
error of u  = 0.050. The resulting bound is not a simple 
translation of the bound in Figure  2. In addition, the 
figure shows that, even under assumption of modest 
model error, there is advantage, in terms of reducing the 
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Figure 1.  A simple series system with four independent 
subsystems.

http://www.jhuapl.edu/techdigest


C. J. Maranzano and J. C. Spall

Johns Hopkins APL Technical Digest, Volume 36, Number 1 (2022), www.jhuapl.edu/techdigest8

estimate uncertainty, to combining the subsystem and 
full-system reliability test data using the MLE method, 
especially when there are few full-system tests available.

EXAMPLE 2: AIRCRAFT-MISSILE SERIES SYSTEM
The second example consists of three parts. First, the 

MLE method described in the section on MLE formu-
lation and Ref. 2 is applied to test data from a certain 
series air-to-air heat-seeking missile system described in 
Ref.  6. Second, the test data from Ref.  6 are modified 
to illustrate the effect on the MLE of increasing system 
and subsystem sample sizes. Third, the prior information 
from Ref. 6 is used as the basis for designing a hypotheti-
cal robust test program for the example system using the 
method described in the section on estimator uncer-
tainty with mis-modeling and Ref. 3. In particular, com-
parisons are drawn between the reliability estimates from 
the general MLE method here and the naive maximum 
likelihood system and subsystem reliability estimates of 
the form (number of successes/total number of tests). To 
avoid confusion, these estimates of the individual subsys-
tems or full system are referred to as ratio estimates.

Aircraft-Missile System Reliability
For simplicity, the aircraft-missile system example in 

Ref. 6 is restricted to the aircraft and aircraft-to-missile 
interface, which consists of nine subsystems in series. 
The subsystems, the binomial test data, and the ratio 
estimates for the aircraft system and its subsystems are 
listed in Table 1. The product of the subsystem ratio esti-
mates is 0.954, which is larger than the full-system ratio 
estimate. The aircraft system and subsystem MLEs are 
also listed in Table 1. The subsystem MLEs are slightly 
smaller than the ratio estimates, and the aircraft system 
MLE is larger than the system-level ratio estimate. The 
MLEs represent a compromise between the ratio esti-
mates from subsystem and system test data. The MLEs 
reflect increased information about the subsystem and 

system reliability as a result of combining the test data; 
the degree of change in the estimates depends on the 
statistical information in the data samples used for esti-
mation (represented by the Fisher information; see the 
section on theoretical properties).

The two-sided 90% confidence interval on the air-
craft system reliability is computed using the large-
sample approach (the inverse Fisher information in 
Ref. 8, Corollary 4.1, is used as the asymptotic variance) 
and using the bootstrap method described in the section 
on confidence bounds. The asymptotic 90% confidence 
interval on the MLE of system reliability is (0.921, 0,962), 
and the 90% bootstrap confidence interval from 500 
Monte Carlo trials is (0.920, 0.961). In this case, the two 
confidence intervals are very similar. The MLE of air-
craft system reliability and 90% confidence interval are 
much different from the aircraft system reliability esti-
mate and 90% credible interval derived from the poste-
rior distribution presented in Ref. 6. The posterior mean 
and 90% credible interval derived from the posterior dis-
tribution are 0.927, (0.925, 0.928). The Bayesian aircraft 
system reliability estimate is significantly lower than the 
MLE and ratio estimate because the Bayesian reliabil-
ity estimate is heavily influenced by the prior distribu-
tions selected for the subsystem and system reliabilities 
(prior means are listed in Table 4). The total number of 
prior parameters needed to form the Bayesian estimate is 
20. The Bayesian estimate also provides a 90% credible 
interval on the system reliability estimate that is much 
smaller than the 90% confidence interval provided by 
the MLE approach because the additional prior informa-
tion narrows the distribution about the posterior mean 
(i.e., reduces the estimate uncertainty).

MLE Estimate Sensitivity to Sample Size
The aircraft-missile system example described above 

is modified to illustrate the effect of (1) increased full-
system testing and (2)  increased subsystem testing on 
the MLEs of system and subsystem reliability.

Table 1.  Subsystem and system test data and MLE reliability estimates for the aircraft system

Subsystem No. of Testsa
No. of 

Successesa
No. of Successes

No. of Tests MLE

1. Flight structure 130 129 0.992 0.990
2. Avionics 130 130 1.000 1.000
3. Power 130 129 0.992 0.990
4. Flight control 130 129 0.992 0.990
5. Environmental 130 130 1.000 1.000
6. Acquisition/fire control 250 247 0.988 0.986
7. Launching 130 129 0.992 0.990
8. Missile interface 250 249 0.996 0.995
9. Human intervention 130 130 1.000 1.000
Aircraft system 205 191 0.932 0.941
a Data are from Ref. 6.
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To demonstrate the  sensitivity of the MLEs to full-
system testing, the number of full-system tests is increased 
to 1,000 and the total number of successful tests is 
increased such that the system reliability ratio estimate 
remains 0.932 (the same as in the original example). The 
resulting MLEs of the aircraft system and its subsystems 
are in Table 2 (four of nine subsystems shown to save 
space). The 90% confidence interval on the system esti-
mate is (0.923, 0.947). The aircraft system MLE is much 
closer to the system reliability ratio estimate; it reflects 
the additional information from increased full-system 
testing. The system reliability confidence interval width 
is significantly decreased from the original example (the 
confidence interval shrinks from 0.041 to 0.024 as the 
full-system sample size increases from 205 to 1,000), 
representing more certainty about the system reliability 
estimate. The additional information from increased 
system testing also decreases the MLEs of the subsystem 
reliabilities. They are smaller than the subsystem ratio 
estimates and MLE estimates in the original example 
(see Table 1).

To demonstrate the MLEs’ sensitivity to subsys-
tem testing, the number of subsystem tests about the 
acquisition/fire control subsystem is increased to 1,000 
and the total number of successful tests is increased 
such that the subsystem reliability ratio estimate remains 
0.988 (the same as in the original example). The result-
ing MLEs of the aircraft system and its subsystems are in 
Table 3 (four of nine subsystems shown to save space). 
The 90% confidence interval on the system estimate is 

(0.922, 0.962). The aircraft system MLE is slightly larger 
(but virtually unchanged) from the original example; it 
reflects the additional information from increased sub-
system testing. The increased subsystem testing results 
in a very stable estimate of the acquisition/fire control 
subsystem. It is identical to the subsystem ratio estimate, 
and the MLE-derived 90% confidence interval about 
the acquisition/fire control subsystem is (0.982, 0.993) 
versus (0.975, 1.004) for the flight structures subsystem. 
The MLE system reliability confidence interval width 
is virtually unchanged from the original example (it 
shrinks from 0.041 to 0.040 as the subsystem sample size 
increases from 205 to 1,000), indicating that increas-
ing the testing about one subsystem does not greatly 
improve confidence in the system reliability estimate. 
The subsystem MLEs are slightly increased to reflect the 
additional information about the acquisition/fire control 
subsystem (compare Tables 1 and 3).

Optimum Test Planning
In this section, the optimal combination of system 

and sets of subsystem tests, in terms of total test plan 
cost, is determined for the aircraft series system using 
the methodology described in the section on estimator 
uncertainty with mis-modeling. (The robust test plan-
ning method of Ref.  3 is not restricted to optimizing 
the number of sets of subsystem tests for test sizing. The 
number of sets of subsystem tests are optimized herein to 
simplify the presentation of the approach.) Let the pre-

Table 3.  Modified subsystem and system test data and MLE reliability estimates for the aircraft system 
demonstrating the effect of increased subsystem testing

Subsystema No. of Tests No. of Successes
No. of Successes

No. of Tests MLE

1. Flight structure 130 129 0.992 0.989
2. Avionics 130 130 1.000 1.000
4. Flight control 130 129 0.992 0.989
6. Acquisition/fire control 1,000 988 0.988 0.988
Aircraft system 205 191 0.932 0.942
a Four of nine shown.

Bold denotes the change in the data for the purpose of example. See the associated text for details.

Table 2.  Modified subsystem and system test data and MLE reliability estimates for the aircraft system 
demonstrating the effect of increased system testing

Subsystema No. of Tests No. of Successes
No. Successes

No. Tests MLE

1. Flight structure 130 129 0.992 0.988
2. Avionics 130 130 1.000 1.000
4. Flight control 130 129 0.992 0.988
6. Acquisition/fire control 250 247 0.988 0.985
Aircraft system 1,000 932 0.932 0.935
a Four of nine shown.

Bold denotes the change in the data for the purpose of example. See the associated text for details.
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sumed reliabilities of the nine subsystems be equal to the 
prior means (see Table 4). These estimates represent the 
best knowledge, information, and experience about the 
system before testing has begun. Among other reasons, 
model error may arise because some of the subsystems 
are dependent or because a subsystem is left out of the 
subsystem definitions or test plan. The methodology 
described in the section on estimator uncertainty with 
mis-modeling and Ref. 3 allows a test planner to assume 
that the system reliability model may be incorrect and 
to supply a maximum model error, u . The model error 
contributes a bias to the MSE of the general maximum 
likelihood estimator based on the number of full-system/
subsystems tests planned. Loosely, full-system tests con-
tribute unbiased information to the general maximum 
likelihood estimator. Thus, as the number of full-system 
tests increases relative to the number of sets of subsystem 
tests, the model error contributes less to the bias term of 
the MSE.

To achieve an MSE of 0.003 or less (root mean 
squared error 0.050 or less), many different test plans can 
be devised. Thus, the design of a test plan should also 
account for the cost of the tests. To illustrate the effect 
of cost on the test plan design, assume that a set of sub-
system tests costs one fourth as much as one full-system 
test. The cost benefit, relative to only performing full-

system tests, is depicted in Figure 4. Four test plans are 
listed, each having an MSE of 0.003, given u  = –0.050. 
The baseline test plan consists of performing only full-
system tests. The other three test plans consist of a mix-
ture of full-system and subsystem tests. The potential 
cost reduction from performing one of these three test 
plans instead of performing only full-system tests is plot-
ted as a percentage. For u  = –0.050, the least costly test 
plan of the three consists of 21 sets of subsystem tests 
and 22 full-system tests. If several other test plans have 
the same total cost, it is optimal to perform the maxi-
mum number of full-system tests that can be performed 
while achieving the desired MSE for the least cost.

EXAMPLE 3: LPCI SYSTEM
A third example is carried out on a highly reliable 

LPCI system in a commercial nuclear-power reactor. 
The system provides coolant to the reactor vessel during 

Table 4.  Initial reliability estimates for aircraft subsystems 
derived from subsystem prior distributions in Ref. 6

Subsystem Initial Reliability Estimate

1. Flight structure 0.989
2. Avionics 0.984
3. Power 0.992
4. Flight control 0.989
5. Environmental 0.994
6. Acquisition/fire control 0.992
7. Launching 0.996
8. Missile interface 0.996
9. Human intervention 0.971
Aircraft systema 0.907
a Product of subsystem reliabilities.

Table 5.  Subsystem and system test data and MLE reliability estimates for the LPCI system

Subsystem No. of Tests No. of Successes
No. of Successes

No. of Tests MLE

1. Pump 1 240 236 0.98333 0.98341

2. Pump 2 240 238 0.99167 0.99168

3. Pump 3 190 189 0.99474 0.99478

4. Check valve (CV) 1 14,232 14,231 0.99993 0.99993

5. CV 2 240 240 1.00000 1.00000

6. Motor-operated valve (MOV) 470 469 0.99787 0.99790

LPCI system 200 200 1.00000 1.00000
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Figure 4.  The potential cost reduction from performing a mix-
ture of full-system and subsystem tests instead of performing only 
full-system tests; numerical values in the labels are the number of 
sets of subsystem tests and number of full-system tests.
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accidents in which the vessel pressure is low. The system 
consists of six subsystems (listed in Table  5), some of 
which are repeated in a mixed series/parallel system con-
figuration (see Figure  5). The system is designed with 
redundancy to achieve extremely high reliability, as the 
system is critical to avoiding catastrophic failure in the 
event of an emergency (because the system reliability is 
so close to 1.0, to aid interpretation, some reliability esti-
mates are also given in terms of the probability of fail-
ure). The system was used in Ref. 7 to illustrate Bayesian 
reliability estimation methods.

The LPCI system reliability estimate from subsystem 
data alone is 1.0 to five decimal places. With 200 suc-
cessful tests of the full system, the system reliability MLE 
is virtually unchanged. However, the subsystem reliabil-
ity MLEs increase slightly with information from the 
200 successful system-level tests.

To illustrate the properties of the MLE method, con-
sider the following modification to the example. Let the 
test data on CV  2 and the test data about the LPCI 
system be modified so that the reliability estimates 
from system and subsystem data alone disagree signifi-
cantly (see Table 6). In this case, the system reliability 
estimate from subsystem testing alone is 0.99985  (or 
the probability of failure is 1.47 × 10−4). However, the 
LPCI system reliability MLE is significantly smaller at 
0.99580 (or the probability of failure is more than one 
order of magnitude greater at 4.19 × 10−3). Again, the 
MLEs represent a compromise between the ratio esti-

mates from subsystem and system test data; the degree 
of change in the estimates depends on the statistical 
information in the data sample used for estimation. In 
this case, the CV  2 subsystem MLE differs the most 
from its ratio estimate because it has the largest statisti-
cal variance of any subsystem estimate and, based on 
the system configuration (see Figure 5), it has the larg-
est potential of any subsystem to affect the system-level 
reliability estimate.

We now compute the confidence interval for the 
MLE of the LPCI system in Table  6 using the boot-
strap method. The confidence interval for the estimate 
is computed using 500 Monte Carlo bootstrap samples 
from the method described in the section on confi-
dence bounds. The 90% bootstrap confidence interval 
on the LPCI system is (0.99196, 0.99864). [The confi-
dence interval on the probability of failure is (0.00804, 
0.00136).] Because the system reliability is so close to 

Table 6.  Modified subsystem and system test data and MLE reliability estimates for the LPCI system

Subsystem No. of Tests No. of Successes
No. of Successes

No. of Tests MLE Estimate

1. Pump 1 240 236 0.98333 0.98333

2. Pump 2 240 238 0.99167 0.99167

3. Pump 3 190 189 0.99474 0.99474

4. CV 1 14,232 14,231 0.99993 0.99993

5. CV 2 100 99 0.99000 0.93760

6. MOV 470 469 0.99787 0.99741

LPCI system 500 495 0.99000 0.99580

Bold denotes the change in the data for the purpose of example. See the associated text for details.
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Figure 6.  Histogram of the bootstrap MLE reliability estimates, 
the Fisher information–derived asymptotic density function 
about the MLE (FIM derived), and the normal density function esti-
mated from the sample of bootstrap MLEs (bootstrap derived); 
the Fisher information–derived asymptotic density function and 
the bootstrap-derived normal density function incorrectly dis-
tribute a significant portion of the probability density above 1.0.
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Figure 5.  LPCI system block diagram. (Modified from Ref. 7.)
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unity, the interval is not symmetric about the MLE esti-
mate. In fact, the normality of the uncertainty about 
the estimate is questionable given the proximity of the 
estimate to 1.0. A histogram of the estimates from the 
bootstrap Monte Carlo procedure is plotted in Figure 6 
alongside the Fisher information–derived asymptotic 
density function about the MLE. For comparison, the 
bootstrap MLEs in the sample were pooled to estimate 
the parameters of a normal density function, which is 
also plotted in Figure 6. The FIM- and bootstrap-derived 
normal density functions agree well, but these approxi-
mations incorrectly distribute a portion of the probabil-
ity density above 1.0. Note that the bootstrap-derived 
density is only for purposes of illustrating the closeness of 
the bootstrap- and FIM-based distributions; actual con-
fidence interval calculations with the bootstrap would 
only use the data generating the histogram (all  1.0).

CLOSURE AND FUTURE WORK
This article discusses a general method for reliability 

analysis that combines information from the testing of 
subsystems and the full system. It also discusses three 
examples of the general MLE method for reliability. 
The examples illustrate a few of the important proper-
ties of the method. Namely, the method appropriately 
combines data from subsystem and full-system reliability 
tests based on the statistical information in the respec-
tive samples. In addition, an extension of the method 
enables robust test plans to be developed for system reli-
ability estimation involving trade-offs among the MSE 
(estimation accuracy), the degree of modeling error, and 
the cost of doing full-system and subsystem tests.

The general maximum likelihood method of reli-
ability estimation combines static success/failure data 
from subsystem tests and full-system tests. Test data for 
each subsystem and the full system are assumed to be 
independent and identically distributed. However, reli-
ability test data can be dependent on dynamic external 
performance predictors such as age, temperature, manu-
facturing lot, etc. (for example see Ref. 20). This leads to 
system and subsystem test data that are independent but 
not identically distributed. Future work includes extend-
ing the general method of Ref. 2 so that the model for 
the system also reflects dynamic subsystems reliabilities. 
To this point, a framework for MLE of system reliability 
from full-system and subsystem tests with dependence 
on dynamic inputs is established in Ref.  21. However, 
significant theoretical work remains for the dynamic 
case to establish the conditions for convergence, conver-
gence rate, and the asymptotic distribution covariance.

The ability to rigorously integrate data from subsys-
tems and full systems has proven to be a flexible and 
widely applicable capability, including in problems that 
are not formally presented as reliability. For example, 
Refs.  22–24 use the formulation to model urban trans-

portation networks, where the full system is the complete 
network and the subsystems are individual links in the 
network. References 25 and 26 consider an application 
in sensor networks, where the full system is a wide-area 
sensor covering a full region of interest and the subsystems 
are localized sensors covering only subsets of the region 
of interest. The method provides for an optimal integra-
tion of sensor measurements for area-wide understanding. 
Reference 9 shows how the method can be extended to 
estimate structural integrity of shear walls in structures, 
where the full system is the wall itself and the subsys-
tems are connections between panels forming the wall. 
The necessary methodological extension for the shear 
wall application is to the case where the subsystem data 
are no longer binary, but rather are assumed to be Gauss-
ian distributed. (Another methodological extension is 
in Ref. 10, where the full-system parameters may include 
multiple parameters appearing in an exponential family 
distribution; in particular, the extension goes beyond the 
scalar mean parameter used above.) Overall, the method 
provides the analyst a rigorous and practical approach to 
achieve cost savings and more accurate estimates in test 
and evaluation through use of all available data.
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