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ABSTRACT
Holographic metasurfaces, tailored to exhibit a precise electromagnetic response from a low pro-
file, are a powerful platform for wavefront manipulation and present the possibility to substan-
tially simplify the architecture of increasingly popular (and increasingly complex) digital phased 
arrays. This article describes the work a Johns Hopkins University Applied Physics Laboratory (APL) 
team is doing in this area.

optimization routines, and a fabrication process flow 
toward this goal.

The multifunctional metasurface aperture under 
development has a form factor based on simple printed 
circuit board (PCB) processing and, therefore, is low 
profile and inexpensive. A waveguide structure is baked 
into the PCB layers and distributes energy to a collec-
tion of resonant metamaterial elements embedded in 
the top layer. Signals can be injected directly into this 
waveguide at a series of locations along the back of the 
PCB, and each feed excites the entire collection of ele-
ments. In this way, the various feeds can share the entire 
aperture and each will enjoy the benefits necessary to 
create a highly directive beam. For example, if a collec-
tion of eight distinct radiation patterns is required for 
the application, only eight feeds must be used. This is 
in contrast to phased arrays where the most common 
approach is to provide enough independent antennas, 
phase shifters, and amplifiers to fill the entire aperture 
at the Nyquist limit. The high cost and complexity asso-
ciated with the components of digital arrays makes the 
metasurface aperture an enticing alternative.

Electromagnetic manipulation is a focus area for APL’s 
Research and Exploratory Development Department. A 
natural contribution to this area is the development of a 
novel antenna platform. A key asset in the electromag-
netic manipulation toolbox, metasurfaces have proven 
to be of interest for antenna design because of their abil-
ity to shape wavefronts.1 Large-array antennas with high 
directivity and a steerable beam are a particularly ripe 
target for the application of metasurfaces.

Most often, highly directive and steerable anten-
nas are implemented through phased arrays and digi-
tal beamforming because of the flexibility of these 
techniques; however, these technologies are complex, 
power hungry, and expensive. These unfavorable cost, 
size, weight, and power characteristics are acceptable 
in some applications, but these traditional approaches 
are often overengineered solutions and may not always 
be necessary. A dexterous platform based on a metasur-
face antenna may be able to perform comparably with a 
reduced cost and form factor, thereby enabling enhanced 
capabilities in previously unforeseen use cases. Our APL 
team has targeted the development of a design model, 
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When targeting the synthesis of multiple patterns 
produced from a shared aperture, a multi-objective 
optimization problem must be addressed. With a vast 
design space (including the many degrees of freedom 
made available by the usage of metamaterial elements 
and the aperture) and a series of metrics (sidelobe 
level, gain, etc.), an intensive optimization procedure 
must be completed. A central focus has therefore been 
to generate a high-fidelity analytic model to estimate 
the behavior of the aperture. Implementing a coupled 
dipole model allows for simulations to be run on the 
order of seconds, enabling a rigorous optimization pro-
cess that can be completed in minutes or hours.2 This is 
in contrast to the more common approach of full-wave 
simulations, which would be prohibitively expensive for 
such an optimization problem. Figure 1 shows the mod-
eling, optimization, and targeted behavior of our design 
flow where a metasurface can generate three distinct 
beams from the same aperture when fed at three differ-
ent locations.

To validate the proposed analytic model and design 
procedure, a circularly polarized antenna was fabricated 
and characterized. Circularly polarized patterns, being 
composed of two linear polarizations, can effectively 
be considered two beams pointed at the same direction 

with a phase shift of 90°. In this sense, we applied the 
multi-objective optimization procedure to design the 
two functional patterns. As shown in Figure 2, a full-
wave simulation was completed to confirm the analytic 
model, and a metasurface antenna was subsequently 
fabricated and characterized. Anechoic chamber mea-
surements confirmed the entire design procedure and 
showed promising performance for navigating the com-
plex multifunctional optimization space.

The results to date have shown that the complex 
infrastructure of a digital array can be reproduced from 
significantly simpler metasurface apertures, where the 
complexity has been shifted to the modeling/design 
procedure rather than allowed to burden the hardware 
development. While the robust flexibility of the phased 
array is not likely to be entirely captured by such a mul-
tifunctional metasurface, the vast cost, size, weight, and 
power advantages make our platform preferable in many 
application spaces. Satellite communications and the 
highly anticipated 5G framework can both take advan-
tage of the multifunctional metasurface platform. Mul-
tifunctional metasurface apertures are poised to play a 
tremendous role in a host of antenna applications and 
may find broad use in the continuing challenge to estab-
lish electromagnetic spectrum dominance.
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Figure 1.  The modeling, optimization, and targeted behavior of our design flow. The backbone of the design process is the analytic 
model that represents the resonating elements and allows for fast/efficient optimization. A rapid analytic model allows for a vast design 
space to be explored to achieve the synthesis metrics—mean directivity and mean worst side lobe level (SLL)—across numerous com-
plex patterns.
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Figure 2.  Confirmation of the analytic model. A complete design flow involves optimization through a rapid analytic model, validation 
through a computationally intensive full-wave simulation, and ultimately an experimental demonstration. As a first study, we designed 
a circularly polarized beam from a single feed and validated excellent agreement throughout the design process.
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