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ABSTRACT
For complex artificially intelligent systems to be incorporated into applications where safety is criti-
cal, the systems must be safe and reliable. This article describes work a Johns Hopkins University 
Applied Physics Laboratory (APL) team is doing toward verifying safety in artificial intelligence and 
reinforcement learning systems.

Broad groups of researchers at APL are 
studying and developing the next genera-
tion of autonomous systems. Advances in 
machine learning and artificial intelligence 
(AI) enable the autonomous operation of 
ground vehicles, planes, drones, submarines, 
and much more. However, to successfully 
incorporate such complex AI systems into 
military and safety-critical applications, we 
must advance our means for ensuring their 
safe and reliable operation.

The problem is that many of these AI sys-
tems learn by optimizing a reward function. 
The unconstrained maximization of statisti-
cal rewards leads to a variety of issues such as 
reward hacking, unintended consequences, 
and, for continually-learning systems, cata-
strophic forgetting. In safety-critical systems, 
we must be able to guarantee or verify that the 
system will behave according to the expecta-
tions of users as well as others who could be 
affected by the system. Much attention is 
being paid to the existence of, and security 
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vulnerabilities posed by, adversarial examples—one 
consequence of not being able to verify the performance 
of a machine learning system. However, there are ample 
examples of unexpected and tragic consequences where 
autonomous systems have resulted in loss of life without 
malicious manipulation.1–3

To develop a means for guaranteeing the safe opera-
tion of AI-enabled systems, APL researchers have been 
using formal methods. Formal methods describe a wide 
array of tools and techniques that encompass the formal 
definition of logical requirements and system descrip-
tions. Tools from formal methods, such as those built on 
satisfiability modulo theory (SMT), can be used to prove 
that a given formally described system satisfies a set of 
desired properties and constraints.4

A 2019 independent research and development 
project, called A ModelPlex Approach to a Verified 
Robotics Code Kit (MAVeRiCK), extended research for 
verifying aircraft collision avoidance to create a correct-
by-construction fallback controller design that ensures 
collision-free path planning.5 The fallback controller 
ensures safety by taking over from the primary control-
ler whenever a critical state is reached and a particular 
action must be taken to avoid an imminent collision. 
This project resulted in a research paper detailing how 
formally verified safety predicates are used to create a 
fallback controller with safety guarantees.6 Furthermore, 
the work contributed to a library for formal verification 
of timing computations for turn to bearing maneuvers.7 
This approach to verifying the safety of vehicle navi-
gation is being applied in a larger Air Force Research 
Laboratory (AFRL)-funded effort for the subtask of cre-
ating a verified runtime assurance watchdog controller 
to ensure the safe testing of autonomous aircraft systems; 
for example, through guaranteeing the watchdog predic-
tively enforce a vehicles stays within the planned test 
range geofence.8

However, the team recognized that in a number of 
situations the fallback control architecture may lead to 
problematic performance of mission objectives. Imagine 
cases in which the fallback and primary controller inter-
fere with each other so that progress toward the goal is 
impeded. As a result, APL began an effort called Veri-
fied Safe Reinforcement Learning (VSRL) to study alter-
native approaches for ensuring the safe performance of 
continually adaptive deep learning systems. The project 
sought to provide direct guarantees on the performance 
of a neural network controller trained to avoid collisions 
with other aircraft while minimizing deviations from the 
goal. In general, providing guarantees on the outputs of 
neural networks over the continuous space of potential 
inputs is too difficult, due to the complex mapping from 
input to outputs that neural networks embody. The 
team found promise in a methodology for the encoding 
of affine networks that may be verified with SMT tools.9 
In 2020, VSRL aimed to demonstrate this approach in 

the training and verification of small rectified linear 
unit networks trained to perform path planning or con-
trol tasks; creating a library for automatic encoding of 
pytorch networks into SMT constraints.10 In addition, 
the team discovered a method for adjusting the weights 
of a neural network using an SMT solver to guarantee 
certain input-output relationships. The approach was 
published in the 2020 Formal Methods for ML-Enabled 
Autonomous Systems (FoMLAS) workshop.11 The effort 
culminated in a demonstration of the verification of a 
reinforcement learning network trained to avoid air-
craft collisions12 through the use of safeability concepts 
to reduce the domain of inputs that must be checked 
to verify the safety of a neural network controller. This 
research will enable the design of future systems that can 
take advantage of machine learning advances as well as 
formal approaches to guaranteeing safe performance.
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