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ABSTRACT
Because of their low power requirement and fast switching, Van der Waals layered chalcogenide 
superlattices have performed well in dynamic resistive memories in what is known as interfacial 
phase change memory devices.

Traditionally, PCMs are grown in thin film form; 
however, the APL team is studying a new class of related 
materials known as interfacial PCMs (iPCMs). iPCMs 

Electromagnetic manipulation is a focus area for 
research in APL’s Research and Exploratory Develop-
ment Department. The ability to dynamically recon-
figure the properties of optical materials is of immense 
importance to this area. Optical memory storage, namely 
compact disks (CDs) and digital video disks (DVDs), is 
just one of the wide range of applications of chalcogen-
ide phase change materials (PCMs).

Typically, a chalcogenide PCM has two or more 
discrete states (phases). When the PCM transitions 
between these states, it undergoes significant changes 
in the optical, electronic, or other material properties. 
Since it is possible to reversibly switch the material’s 
phase via laser or electrical pulses of controlled inten-
sity and duration, chalcogenide PCMs can be used to 
store digital information. In the case of optical memory 
storage, the discrete states consist of an amorphous, low 
reflective state and a crystalline, high reflective state.

Examples of chalcogenide PCMs include germanium 
telluride (GeTe), antimony telluride (Sb2Te3), alloys such 
as germanium antimony telluride (Ge2Sb2Te5 or GST), 
and other compounds alloyed with bismuth and sele-
nium. Depending on the application of interest, the 
alloy composition can be varied to achieve the desired 
switching properties. For example, GeTe lends itself 
to microwave switching because of its resistive state, 
whereas Ge2Sb2Te5 is the material of choice for memory 
devices because of its high stability.

Figure 1.  An APL-grown superlattice structure. Superlattice of 
10 nm Sb2Te3 and GeTe grown on gallium arsenide (GaAs) (100) 
observed via transmission electron microscopy. Atomic makeup 
of the layers is visible, as are the single layers of Sb2Te3.
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are composed of stacks of nanometer-thick chalcogen-
ide PCMs referred to as superlattices. An example of an 
APL-grown superlattice structure is shown in Figure 1, 
illustrating the extremely thin layers and atomically 
abrupt interfaces. iPCM superlattices behave simi-
larly to traditional PCMs. Rather than undergoing an 
amorphous-crystalline phase transition, however, these 
materials undergo an interfacial reorientation in the 
bond alignment at the nanometer-scale interfaces. The 
amount of energy and time required to undergo this 
interfacial transition decreases significantly relative to 
the amorphous-crystalline phase transition, thereby 
allowing for faster switching with less energy use as com-
pared to traditional PCMs.

The key method the team used to create these super-
lattice structures is molecular beam epitaxy (MBE) 
growth. MBE allows for atomic level deposition of ele-
ments. The technique uses ultra-high vacuum, con-
trolled evaporation, cryogenically cooled walls, and 
substrate heating to control defect density, thickness, 
and atomic stoichiometry of grown films with great pre-
cision. The available deposition materials—tellurium, 
bismuth, antimony, germanium, and selenium—allow 
for the growth of a wide range of potential compounds 
and alloys.

Currently, APL investigators are studying the phase 
change transition in iPCM superlattices consisting of 
alternating thin layers of GeTe and Sb2Te3. This includes 
research on the integration of novel iPCMs into novel 
optoelectronic devices capable of transitioning the 
iPCM and thereby acting as a reconfigurable optical/
electronic switch. These novel iPCMs will enable new 
capabilities and device technologies that operate in the 
infrared spectrum. Possible applications for these devices 
include covert optical communication (such as tagging, 
tracking, and locating), spectral sensing, sensor protec-
tion, and thermal management. This novel capability 
may help advance research into the growth of topologi-
cal insulator materials and thermoelectrics with appli-
cations in quantum information and sensing as well as 

power and energy, respectively. To date, the team’s work 
has resulted in two peer-reviewed publications, with 
more experimentation underway.1,2
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Figure 2.  Molecular beam epitaxy (MBE) deposition chamber at 
APL. An APL team used MBE to create superlattice structures.
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