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ABSTRACT
After establishing the four principles of Trustworthy Synthetic Biology—safety, assuredness, effi-
ciency, and robustness—a team of researchers at the Johns Hopkins University Applied Physics 
Laboratory (APL) generated trustworthy plant sensor and reporter systems. Their work, initially 
funded as an APL independent research and development project, has since transitioned to a 
sponsor-funded project.

under operationally relevant conditions. These charac-
teristics are reminiscent of the principles of Trustworthy 
Computing that were established nearly 20 years ago by 
Microsoft and include reliability, security, privacy, and 
business integrity. Parallels are often drawn between the 
genetic programming of organisms and that of computer 
software and hardware, with security being key for both. 
We envision a similar paradigm of Trustworthy Syn-
thetic Biology (TwSB).

To provide the basis for this strategic independent 
research and development effort, we proposed four 
principles of TwSB: safety, assuredness, efficiency, and 
robustness. Safety refers to intrinsic biocontainment 
mechanisms that cannot be mutated or degraded over 
time, preventing escape and interbreeding of the geneti-
cally modified population with the wild population. 
Assuredness refers to the reliability and stability of engi-
neered components; that is, they must work as planned 
in the intended environment. Efficiency refers to work-
ing with an organism’s intrinsic biology instead of trying 
to override it. This is necessary to minimize negative 
impacts on fitness. Robustness refers to generating 
genetic diversity among modified species while leverag-
ing population-level responses for signal amplification.

The field of synthetic biology combines the disciplines 
of engineering and biology to construct novel biological 
parts, molecular devices, and even entire organisms. It 
has the potential to change the world. With application 
spaces from health care, to agriculture, to biofuel pro-
duction, to materials, one may wonder if there is any-
thing that cannot be done with synthetic biology.1

While synthetic biology holds great promise, many 
challenges remain. Living systems are infinitely com-
plex and difficult to manipulate. Synthetic biologists 
have mastered techniques for building and introducing 
engineered components into a variety of living systems, 
but these components do not always perform predict-
ably. Introduction of engineered components often has 
negative impacts on the host organism, and genetically 
modified organisms are often not as robust as their wild 
counterparts. The cost associated with genetic engineer-
ing and the unknown impact of these modified organisms 
on environmental or human health limit their potential 
for use beyond the lab. For the full potential of synthetic 
biology to be realized, these challenges must be addressed.

To be deployed on a wide scale, synthetic biology 
products must perform their specified task when they 
are supposed to and for as long as they are supposed to, 
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With these TwSB principles in mind, we set out to 
generate a deployable plant-based sensor (Figure 1). Our 
first set of aims was to tackle issues related to biocontain-
ment, genetic programming, and signal amplification. 
Our second set of aims was to realize specific applica-
tions of sensing and reporting and plant transgenesis. 
Much of the work on this project laid the groundwork 
for compelling and impactful sponsor-funded research.

First, we sought to develop a general strategy for 
stable biocontainment of genetically modified organisms 
to ensure safety of our proposed technology. Our initial 
strategy was to employ CRISPR-Cas9 to induce large-
scale genome restructuring in such a way that main-
tained and preserved mating among modified organisms 
while prohibiting mating with the wild population. As 
a proof of concept, work was done in a genetically trac-
table microbial system, the baker’s yeast Saccharomyces 
cerevisiae. However, concurrently, others in the field 
demonstrated the need for far more complex rearrange-
ments for total genetic isolation,2 achieved only with a 
strong negative impact on the fitness of the yeast.

Next, focusing on genetic programming, we addressed 
the TwSB principles of assuredness and efficiency. Natu-
rally occurring gene circuits commonly break. The goal 
of this task was to develop reliable and portable genetic 
circuits. We sought to develop general methods for sta-
bilizing gene circuits based on modifying the intrinsic 
properties of the gene circuit to prevent mutation and 
subsequent malfunction. We based our experiments on a 
microbial system with a previously characterized genetic 
circuit, using an existing circuit that limits population 

growth via expression of a toxin when the population 
reaches a certain density.3 As anticipated, reproduc-
ible failure of the circuit was observed; however, we 
were unable to identify causative mutations via targeted 
sequencing of the circuit itself. These results indicate 
that the gene circuit was not accumulating mutations 
and malfunctioning; rather, the host was evolving to 
overcome the growth restrictions imposed by the popu-
lation control circuit. Results highlight complexities of 
engineering in a living system and illustrate the impor-
tance of working with an organism’s intrinsic biology to 
develop reliable genetic circuitry.

Finally, robustness was addressed through a signal 
propagation approach. In this task, we sought to 
increase population performance via the development of 
enhanced signaling capabilities. To this end, we designed 
and engineered a portable synthetic extracellular signal-
ing pathway that allows for widespread dissemination of 
a signal through a population. The pathway we devel-
oped uses the volatile organic compound, diacetyl, a 
known diacetyl receptor from the nematode Caenorhab-
ditis elegans, ODR-10, and the downstream signaling 
components from the baker’s yeast mating factor path-
way.4 For an initial proof of concept, this pathway was 
engineered in yeast, but it was designed to be portable 
to algae and even plants. We engineered two strains of 
yeast, one capable of generating the diacetyl signal (the 
sender) and the other capable of responding to it (the 
receiver), and we were able to demonstrate function of 
these components. Employing this pathway in conjunc-
tion with molecule-specific sensing components could 
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Figure 1.  Overview of the TwSB project. Tasks aligned with principles are in blue boxes. Application-specific tasks are in green boxes.
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provide increased sensitivity for the molecule being 
detected. Much of the work transitioned to a sponsor-
funded research effort, and we have begun prototyping 
key components in plants.

With principles defined, we set out to generate TwSB-
compliant plant sensor and reporter systems. To demon-
strate a plant sensor, we chose microcystin, a globally 
distributed environmental toxin produced by harmful 
algal blooms, as our analyte.5 We used computational 
protein design to generate a novel protein receptor as 
the sensor recognition element and constructed an engi-
neered transcription factor that would be stabilized in 
the presence of microcystin, binding to DNA and acti-
vating the transcription of a reporter. This approach had 
limited success, and we investigated bacterial histidine 
kinase receptors (HKRs) as an alternative platform for 
engineering novel sensing domains for the detection of 
microcystin.6

In addition to engineering sensors for microcys-
tin detection, we worked to generate novel reporters 
for standoff detection in plants. Currently, alterations 
in pigment production are primarily used for standoff 
detection, since that is the easiest way to alter plant 
reflectance; however, modifying pigment content 
often has negative impacts on plant fitness and is not 
covert. As an alternative to existing reporters, we pur-
sued the development of hyperspectral reporters for 
plants. All organisms capable of photosynthesis pro-
duce two types of chlorophyll, a (λmax = 665 nm) and 
b (λmax = 652 nm). In addition to these chlorophylls, 
algae produce a number of additional types of chloro-
phyll. Among these is chlorophyll f (λmax = 705 nm), 
which can be produced from chlorophyll a via expres-
sion of a single enzyme, chlorophyll f synthase.7 To test 

the feasibility of using chlorophyll f as a hyperspectral 
reporter, we performed proof-of-principle imaging exper-
iments. Our studies indicated that conversion of as little 
as 1% of chlorophyll a to chlorophyll f would be detect-
able by hyperspectral imaging in a relevant organism at 
standoff distances.

In summary, the TwSB independent research and 
development effort provided a platform for us to estab-
lish the principles of TwSB: safety, assuredness, effi-
ciency, and robustness. Further, it enabled us to develop 
key concepts for a Defense Advanced Projects Agency 
(DARPA) performer role. Beyond that, this work posi-
tions APL to become a leader in the development and 
deployment of living biological sensors.
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