
An Asset Pipeline for Creating Immersive Experiences

Johns Hopkins APL Technical Digest, Volume 35, Number 3 (2020), www.jhuapl.edu/techdigest 169

AR VR
MR

An Asset Pipeline for Creating Immersive 
Experiences: From CAD Model to Game Engine

Blake A. Schreurs

ABSTRACT
When an object is designed for manufacture and use, it is vital that various members of the design 
team, as well as the object’s end users, be able to fully comprehend the purpose and value of 
the designed object. Engineers at the Johns Hopkins University Applied Physics Laboratory (APL) 
call this “experiencing design intelligence.” When designing objects for use by people, following 
human-centered design practices will help the design team leverage the experience of those 
people to inform the object being created. Computer-aided design (CAD), in use for decades, has 
revolutionized the design and manufacturing processes for objects ranging from toys to build-
ings to spacecraft. CAD tools provide a wealth of information that is essential for many modern 
operations, and today CAD data can be combined with newer technologies to create immersive 
experiences that provide even more information and lead to even greater design intelligence for 
both design teams and end users. This article presents a nominal asset pipeline, including best 
practices, for taking a CAD model into a game engine to create an immersive experience.

Although they are fantastically powerful, models built 
using CAD tools exist in a space separated from the 
physical world, forcing engineers to make the concep-
tual leap between the digital and physical domains. With 
the advent of advanced prototyping techniques such as 
additive manufacturing (3-D printing), design teams 
have additional tools to help them more quickly iterate 
through the design process. Today, by taking advantage of 
augmented and virtual reality (AR and VR, respectively, 
or XR collectively), engineers can immerse themselves in 
the digital world to experience a design before it is manu-
factured in the physical world. Experiencing this design 
intelligence enables design teams to more quickly and 

INTRODUCTION
The field of engineering has always been aimed at 

aiding someone in performing a task through the use 
of applied scientific principles. Many organizations, 
including APL, have championed human-centered 
design as a means to expand their focus beyond the 
technical challenge of building an object to include 
gaining a full understanding of how that object will be 
used within its operational context. Computer-aided 
design (CAD) has been an indispensable tool of design 
engineers for decades. Historically, advances in CAD 
have generally been driven by a desire to increase the 
utility of a product, reduce the time to deliver the prod-
uct, or both.

http://www.jhuapl.edu/techdigest


B. A. Schreurs

Johns Hopkins APL Technical Digest, Volume 35, Number 3 (2020), www.jhuapl.edu/techdigest170

effectively communicate impactful information, such as 
complex manufacturing instructions, and to fully con-
sider the object’s end user during the design phase, before 
an object is manufactured and it is too late or too costly to 
make modifications. Table 1 presents a brief comparison 
of various methods for engaging with a design.

While CAD tools excel when used for designing and 
mathematically analyzing models, they are not focused 
on showing CAD models in a human-centric context. 
In contrast, the electronic gaming industry has pri-
marily focused on creating new human-centric experi-
ences and empowering developers to create novel ways 
of interacting with digital content. Combining these 
domains allows operators to explore and understand 
CAD-based objects in an intuitive and informative 
way. To do that effectively, they need a pipeline to move 
models (often called content or assets) from CAD tools 
to game engines.

A game engine consists of the main game program 
containing the game logic; a rendering engine for generat-
ing animated 3-D graphics; an audio engine that includes 
the algorithms related to sounds; a physics engine that 
“enforces” the laws of physics so that physical interactions 
within the system are realistic; and artificial intelligence 
designed specifically for the game.1,2 Traditionally, game 
engines have been used to develop video games, but their 
use is expanding into many other fields such as film, auto-
motive design, architecture design, and construction.

Engineers today can create immersive experiences 
by importing their CAD models into a game engine, 
enabling them to review and iterate over designs much 
more quickly than they could with physical prototypes; 
once the workflow is established, reviews can be done 
in minutes. Furthermore, unlike traditional on-screen or 
printed CAD designs, immersive technology can provide 
an accurate sense of scale and can tailor an experience 
of the design to the specific user. As physical designs 
increase in size (human-size and bigger), the ability to 
understand the full scope and scale becomes even more 
challenging and important.

BUILDING A CUSTOM EXPERIENCE
Immersive technology is perhaps the most personal 

form of computing devised to date. Instead of being 

designed as a simple interface to a computer or an output 
from a computer, immersive tools are designed to be an 
extension of the operator. For example, when a user 
puts on a headset, the headset knows where that user’s 
head and hands are. It knows which direction the user 
is facing, and in some cases, the headset’s built-in eye 
tracking knows precisely what the user is looking at.

Many factors, including the user’s age, height, weight, 
and clothing, affect how the user will experience an 
application. For many in the entertainment/gaming 
industry, adapting to the physical needs of the user is 
a new challenge. For those authoring immersive tools 
for use in design and manufacturing processes, this chal-
lenge becomes an invaluable asset, enabling teams to 
rapidly ideate, experiment, and communicate. Instead 
of talking about human-centered design with the focus 
on people in aggregate, immersive technology makes 
it practical to perform human-centered design for an 
individual, providing tools that are custom tailored to 
the user. In addition to their value in design analysis, 
custom immersive experiences can provide value to 
design teams and end users through personalized train-
ing and rehearsals of difficult tasks (especially if the 
users can wear equipment similar to what they would 
wear in the field).

IMMERSIVE TECHNOLOGY PROCUREMENT
As with all software, there are three options for get-

ting needed functionality from immersive applications. 
The first is open-source software. Since this type of 
software is available for free on the internet, the value 
proposition is unbeatable if the software meets proj-
ect requirements. Unfortunately, very few open-source 
CAD visualization tools have enough functionality and 
maturity to meet the needs of real-world use cases. The 
second option is commercial off-the-shelf (COTS) prod-
ucts. Immersive COTS software products do exist, and 
many of them provide a lot of useful capabilities. How-
ever, COTS software is generally limited to the func-
tionality the vendor chooses to develop, and the source 
code is almost always unavailable. If the source code of 
a COTS product cannot be obtained, there could be 
security concerns when procuring foreign-developed 
applications. The third option is custom software. 

Table 1.  Comparison of various methods for viewing or experiencing a design

Speed of Production Relative Cost Fidelity to Final Design

CAD on screen Extremely fast Inexpensive Limited sense of scale and mass
Immersive experience Fast Inexpensive No limitations on physical size; no sense of mass
3-D print Slow Moderately inexpensive Limits on physical size that can be produced
Prototype Slow Expensive Fully conveys scale and mass of final design
Final product Very slow Very expensive Finished product
Note that blueprints are intentionally omitted from this comparison. They are an effective means of communicating specifications to manufac-
turing experts but are often a poor way of communicating with individuals who are using objects in the field.

http://www.jhuapl.edu/techdigest


An Asset Pipeline for Creating Immersive Experiences

Johns Hopkins APL Technical Digest, Volume 35, Number 3 (2020), www.jhuapl.edu/techdigest 171

Organizations can use available game engines to develop 
their own software to create immersive experiences 
(these game engines can also be open source, COTS, 
or custom built). Although developing a custom expe-
rience is slow and expensive, custom applications will 
do precisely what is needed while eliminating concerns 
about security issues related to the origin of the software. 
Given the expense of building a custom experience, 
however, teams should perform an analysis of alterna-
tives before initiating a development effort: procurement 
is very often preferable to custom development so long as 
the project’s requirements are sufficiently met.

The next section describes a nominal pipeline for 
moving a CAD model into to a game engine for the pur-
pose of designing a custom experience, regardless of the 
specific game engine.

A NOMINAL PIPELINE: FROM CAD MODEL TO 
GAME ENGINE

Because of variations in software packages, no pro-
cessing pipeline fits all approaches for developing an 
immersive experience. The nominal nine-step pipeline 
described below and shown in Figure  1 includes the 
major areas a design team should consider when plan-
ning to move a model from CAD into a game engine.

Much of the pipeline is designed around model 
geometry and graphical performance. In 3-D graphics, 
triangles are the atomic shape from which all models are 
created (much like pixels in an image) and are the metric 
used to determine model detail and computational com-
plexity. In most designs, a large degree of accurate detail 
ensures that the design can be fully understood and is 
of high quality. For desktop CAD systems, poor render-
ing performance is often an unfortunate side effect of a 
complex and high-quality model. In an immersive expe-
rience, this side effect is both unfortunate and unaccept-
able: a system that does not render images quickly not 
only results in a subpar experience, but it can also make 

users physically ill. Different immersive devices have 
different performance needs, so the design team must 
define performance requirements up front. For example, 
a high-end graphics workstation with a powerful GPU 
will provide the ability to render more complex geom-
etry (2,000,000+ triangles) than a stand-alone device 
(which will often have recommended polygon limits in 
the 50,000- to 100,000-triangle range).

Unlike text or image editing tools, which have gener-
ally accepted interchange formats, there is no accepted 
interchange format between the CAD and interactive 
media worlds. Common mechanical 3-D CAD formats, 
such as Inventor, Creo, NX, Catia, and SolidWorks files, 
are not natively supported by game engines. Media and 
game formats, such as 3DS, FBX, and glTF files, are not 
often available for CAD systems without additional 
cost. Establishing a content creation pipeline from pro-
fessional design tools to interactive media tools remains 
one of the biggest hurdles to creating turnkey immersive 
experiences. Developers in both academia and industry 
are working on simplifying this workflow, but for now 
there is no cost-effective or de facto standard that can be 
recommended for a broad range of applications. Design 
teams should take care to address these interchange 
issues during project planning to ensure that enough 
time, staff, and funds are available to resolve this critical 
part of the effort.

Responding to the demand for tools to help engineers 
move their models into game engines, the industry has 
started to produce applications to automate some of this 
processing. APL has assessed many of these applications 
for various projects and has found that while some improve 
processing in certain cases, none provide a reliable pipe-
line that can fully automate the process. In time these 
products will likely become robust enough that engineers 
will not need to understand much of the underlying pro-
cessing. Until then, it is important that engineers under-
stand the overall process so they can design a content 
pipeline that meets the needs of their team and project.

Design

1

Test

9

Consider light-
ing, materials, 
 and aesthetics

8
Add

interactions

7
Validate
models

6
Import 

into game 
engine

54

Decimate
Remove 

extraneous 
geometry

2 3
Export

geometry

Figure 1.  Notional asset pipeline for moving from a CAD model to a game engine. There is no one-size-fits-all approach to creating an 
immersive technology, but this pipeline includes the nine major steps a team will need to consider regardless of which software applica-
tion they are using.

http://www.jhuapl.edu/techdigest


B. A. Schreurs

Johns Hopkins APL Technical Digest, Volume 35, Number 3 (2020), www.jhuapl.edu/techdigest172

Step 1: Design
In most cases, exporting to a game engine for viewing 

in XR is not the end goal, but rather a step along the 
development process. Therefore, designers should not 
build their parts around viewing them in XR. However, 
they should follow good design practices to make some of 
the stages of the pipeline easier. Having well-structured 
component hierarchies and the ability to identify and 
remove fasteners on export are two design practices that 
can significantly reduce the amount of labor required for 
XR development teams.

Step 2: Remove Extraneous Geometry
One of the advantages of CAD models is that they 

can provide incredible levels of detail, but that detail 
can result in an experience that does not meet per-
formance requirements. Very often the first step in 
reducing the model complexity is to remove extrane-
ous geometry such as fasteners. Rendering these small 
details can be as computationally demanding as ren-
dering large parts. In some tools it is also possible to 
render tiny details into a tex-
ture (a process called texture 
baking) to make a low-polygon 
approximation appear similar 
to a high-resolution model.

Step 3: Export Geometry
In this phase, the content 

that will be imported into the 
game engine is produced from 
the CAD tool directly or from 
a CAD plug-in, a conversion 
tool, or a model optimization 
tool. As mentioned, unfor-
tunately, unlike for images 
or audio, there are no well-
adopted standards to transfer 
geometry/textures between 
CAD and game engines. The 
team should consider these 
transfer challenges at the start 
of the project, as the limita-
tions of certain file formats may 
inform how designs or interac-
tive experiences are built. For 
example, STEP 242 is a popular 
neutral format that works well 
between CAD systems but is 
not supported by the Unreal or 
Unity game engines. OBJ is an 
older standard that is supported 
by many tools but inefficiently 
stores geometry, which can 
cause problems when working 

with high-fidelity models. OBJ has the additional dis-
advantage of requiring separate files for textures and 
materials. FBX is more efficient in terms of storage, but 
it is not supported in some CAD tools, and those tools 
that do support FBX often use different versions, leading 
to significant compatibility issues. The more recently 
introduced glTF format (a royalty-free format provided 
by the Khronos Group) shows promise, but it has not 
garnered broad adoption yet.

Step 4: Decimate
Once the extraneous geometry has been removed, 

designers or developers of real-time engines will have 
to determine whether the remaining geometry is too 
complex to be rendered at acceptable performance 
rates. If it is too complex, the geometry will need to be 
simplified before the model is imported into the game 
engine. Some tools, such as Blender, offer a built-in fea-
ture for decimation, and mesh optimization tools are 
available on the market. As a last resort, a low-polygon 
stand-in may need to be developed. Once the mesh is 

Figure 2.  Models showing decimation. The models of the car (labeled 1) and the screw labeled 2 
both contain approximately 14,000 triangles. The model of the screw labeled 3 has been deci-
mated to fewer than 500 triangles. Designers should remove fasteners when feasible and then 
decimate geometry to reduce polygon counts enough to reach target performance metrics.

http://www.jhuapl.edu/techdigest


An Asset Pipeline for Creating Immersive Experiences

Johns Hopkins APL Technical Digest, Volume 35, Number 3 (2020), www.jhuapl.edu/techdigest 173

decimated, the designers should be consulted to make 
sure the output mesh is of sufficient quality to represent 
the design. Figure  2 shows the difference decimation 
can make.

Step 5: Import into Game Engine
The corollary to exporting data from one program is 

to import it into another. Once the geometry (and tex-
tures, if desired) are in an appropriate transfer format, 
the data will need to be imported into the game engine. 
Most game engines will handle their preferred formats 
automatically, but additional tools may be required for 
nonpreferred file formats. Many game-engine-specific 
settings and optimizations can be applied here (such 
as draw call batching3 or ensuring proper parts of the 
model are made static4,5).

Step 6: Validate Models
Caution: Overlooking this vital step could result in 

significant consequences. Scale issues can arise when 
using tools that work in unit-less space, tools that 
assume different units, tools that work at different orders 
of magnitude (meters versus millimeters), or models that 
use both metric and US customary units. If the scale of 
an immersive experience is erroneous, designers will use 
bad data to make decisions to adapt the experience to 
the specific audience. Once someone has an immersive 
experience, it cannot be un-experienced, and it can be 
difficult to shake the first impression of a model when 
viewing it at human scale for the first time. Scale valida-
tion does not have to be complex: a stand-in cube of the 
expected size, acting as a fiducial marker, will help deter-
mine whether there are scaling issues. However scale is 
checked, it should be part of the regular development 
pipeline to ensure consistency throughout the develop-
ment process. Tools commonly orient their coordinate 
systems differently, leading to models that are unin-

tentionally rotated or inverted (most often along the y 
and z axis). An unintended rotation is obvious for most 
models, but highly symmetric objects should be carefully 
checked for unintended rotation.

Step 7: Add Interactions
Once the model has been imported into the game 

engine at the proper scale, interactions can be added. 
Moving hinges, lights that turn on or off, buttons, levers, 
and similar elements can add a level of realism that con-
veys what it would be like to interact with the physical 
object. Creating interactions usually requires a signifi-
cant amount of code and can be labor intensive. How-
ever, when interactions are correctly authored, many 
can be reused across versions of a model, and some-
times across projects, allowing some of the development 
expense to be amortized over time. For AR applications, 
spatial logic (calibration with the real world, world sens-
ing, object recognition, camera control) is handled in 
this step.

Step 8: Consider Lighting, Materials, and Aesthetics
Lighting is extremely valuable when making an envi-

ronment feel realistic. Light conveys a lot of experiential 
information, affecting everything that can be seen and 
how it is seen (after all, without light nothing can be 
seen). Some understanding of various light sources and 
their uses is valuable for artists, designers, and developers 
working to create immersive experiences. It is important 
to remember that different lighting might be used for dif-
ferent purposes, as shown in Figure 3, where the model 
on the left is lit to provide visual clarity for a designer 
and the model on the right is lit to provide a more real-
istic experience. Lighting tools and techniques vary by 
engine, so some tool-specific training is recommended. 
Materials are properties that are attached to a model 
and provide visual characteristics to help objects appear 

Figure 3.  The difference lighting makes in an immersive experience. Identical models rendered in the Unity game engine with different 
lighting and material settings. The model on the left is lit to provide visual clarity for a designer. The model on the right is lit to provide 
a more realistic experience.

http://www.jhuapl.edu/techdigest


B. A. Schreurs

Johns Hopkins APL Technical Digest, Volume 35, Number 3 (2020), www.jhuapl.edu/techdigest174

cult tasks, and imparting complex information quickly 
and realistically.

REFERENCES
1“How do game engines work?” Interesting Engineering, Nov. 2, 2016, 

https://interestingengineering.com/how-game-engines-work.
2“Game engine,” Wikipedia, last edited Apr. 28, 2020, https://

en.wikipedia.org/wiki/Game_engine.
3“Draw call batching,” Unity User Manual (2019.3), San Francisco, 

CA: Unity, updated Oct. 26, 2017, https://docs.unity3d.com/Manual/
DrawCallBatching.html.

4”Static meshes,” Unreal Editor Manual, Cary, NC: Epic Games, https://
docs.unrealengine.com/en-US/Engine/Content/Types/StaticMeshes/
index.html (accessed Jun. 8, 2020).

5”Static GameObjects,” Unity User Manual (2019.3), San Francisco, 
CA: Unity, published Jun. 5, 2020, https://docs.unity3d.com/Manual/
StaticObjects.html.

more realistic, such as reflectivity, smoothness, and simi-
lar properties. These materials are what make a model 
appear to be made of metal, plastic, cloth, wood, or some 
other substance. While materials are often used in quan-
titative analysis of CAD parts, during visualization these 
materials provide a wealth of qualitative information. 
Adding aesthetic touches, such as a context-appropriate 
sky and background, for example, is a fast and easy way 
to help boost the user’s feeling of immersion.

Step 9: Test
The final step in the process is testing the imported 

design. Position, orientation, and scale of components 
should be checked, as well as the visual quality of the 
render. Testers should also assess the system from a per-
formance perspective, taking note of any time there is a 
reduction in frame rate or visual clarity. Finally, inter-
active components should be tested. Depending on the 
level of interaction, this can be tested manually, with a 
record/playback mechanism, or with a fully automated 
testing tool/service. A formalized test plan is often 
required to ensure that tests provide sufficient cover-
age of the application and are performed consistently 
throughout development.

CONCLUSION
Immersive technology gives design teams a robust 

tool to increase their own design intelligence as well as 
that of their end users. This article presented a nominal 
pipeline for taking a CAD model into a game engine 
to create an immersive experience that can provide 
value in numerous ways, such as reducing the time it 
takes for design teams to review and iterate on designs, 
providing personalized training and rehearsals of diffi-

Blake A. Schreurs, Information 
Technology Services Department, 
Johns Hopkins University Applied 
Physics Laboratory, Laurel, MD

Blake A. Schreurs is a Senior Profes-
sional Staff member in APL’s XR Col-
laboration Center. He has a BS in com-
puter science from Davis and Elkins 

College and an MS in computer science from George 
Mason University. Blake is a virtual reality (VR) and aug-
mented reality (AR) expert, with a focus on using com-
modity tools and equipment in novel ways to drive positive 
impact for sponsors. He has expertise in technology readi-
ness assessment, ideation and design, application devel-
opment, software architecture, and performance tuning. 
He has extensive knowledge of interactive and real-time 
visualization technology, with a focus on improving situ-
ational awareness for safety, site protection, and Blue force 
protection. He is one of the cofounders of APL’s Immer-
sion Central, an XR community of practice with over 180 
members. His email address is blake.schreurs@jhuapl.edu.

http://www.jhuapl.edu/techdigest
https://interestingengineering.com/how-game-engines-work
https://en.wikipedia.org/wiki/Game_engine
https://en.wikipedia.org/wiki/Game_engine
https://docs.unity3d.com/Manual/DrawCallBatching.html
https://docs.unity3d.com/Manual/DrawCallBatching.html
https://docs.unrealengine.com/en-US/Engine/Content/Types/StaticMeshes/index.html
https://docs.unrealengine.com/en-US/Engine/Content/Types/StaticMeshes/index.html
https://docs.unrealengine.com/en-US/Engine/Content/Types/StaticMeshes/index.html
https://docs.unity3d.com/Manual/StaticObjects.html
https://docs.unity3d.com/Manual/StaticObjects.html
mailto:blake.schreurs@jhuapl.edu

	An Asset Pipeline for Creating Immersive Experiences: From CAD Model to Game Engine
	Blake A. Schreurs
	ABSTRACT
	INTRODUCTION
	BUILDING A CUSTOM EXPERIENCE
	IMMERSIVE TECHNOLOGY PROCUREMENT
	A NOMINAL PIPELINE: FROM CAD MODEL TO GAME ENGINE
	Step 1: Design
	Step 2: Remove Extraneous Geometry
	Step 3: Export Geometry
	Step 4: Decimate
	Step 5: Import into Game Engine
	Step 6: Validate Models
	Step 7: Add Interactions
	Step 8: Consider Lighting, Materials, and Aesthetics
	Step 9: Test

	CONCLUSION
	REFERENCES
	Author Bio
	Table 1. Comparison of various methods for viewing or experiencing a design.
	Figure 1. Notional asset pipeline for moving from a CAD model to a game engine. 
	Figure 2. Models showing decimation. 
	Figure 3. The difference lighting makes in an immersive experience.




