
Minerva: Applied Software Engineering for XR

Johns Hopkins APL Technical Digest, Volume 35, Number 3 (2020), www.jhuapl.edu/techdigest 185

AR VR
MR

Minerva: Applied Software Engineering for XR

Blake A. Schreurs

ABSTRACT
This article describes Minerva (Multiuser Intuitive Exploitation and Visualization), a proof of con-
cept demonstrating a dynamic multiuser alternative to traditional file-oriented intelligence pro-
cessing and dissemination pipelines. The main goal of the effort was to enable multiple clients
to look at the same data in the ways that worked best for them depending on the type of device
they were using. Although Minerva did not evolve into a fully developed software product, the
team of developers at the Johns Hopkins University Applied Physics Laboratory (APL) created a
functional prototype and demonstrated effective use of standards and microservices for host-
ing and streaming static content. APL teams are applying the lessons learned from this effort
to other projects seeking to take advantage of XR to improve traditional data production and
representation pipelines.

share an objective, but because of their varied roles,
they use different devices. The field operative would be
more likely to use a smartphone or laptop, both of which
require tools to conserve battery and available band-
width. The VR analyst, removed from the field, would
likely have much more computational power and net-
work throughput at their disposal, empowering them to
distill available data into actionable information.

This article describes the design of the system, which
provided a live, heterogeneous, multimodal, distributed
common operating picture. The system was designed
to be composed of modular services, allowing the vari-
ous technological components to be reused when pos-
sible. Even though most applications do not share all of
Minerva’s design demands, engineers can make use of
individual components as needed.

INTRODUCTION
The Minerva (Multiuser Intuitive Exploitation and

Visualization) project, one of the first virtual reality
(VR) projects at APL, was an independent research and
development effort to explore the possibility and value
of a platform-independent, standards-enabled common
operating picture that could work in XR on traditional
desktop systems, mobile devices, and the web. Much of
the development in this project focused on finding effec-
tive mechanisms to provide the same data to all devices
and users in ways that were best suited to each device in
its operational context.

In the operational scenario envisioned for this
research, a VR analyst would be supporting a field
operative by collating data and disseminating the most
important information to the field operative in a live
connected system. In this usage scenario, the two users

http://www.jhuapl.edu/techdigest

B. A. Schreurs

Johns Hopkins APL Technical Digest, Volume 35, Number 3 (2020), www.jhuapl.edu/techdigest186

SOFTWARE DESIGN
Minerva had an explicit requirement to have various

clients that would work concurrently across a broad range
of devices. Because of this requirement, the monolithic
application approach traditionally used by the gaming
industry (which has since given birth to the modern XR
industry) would not suffice. Instead, the team took a
microservices approach. This design philosophy requires
that interfaces between components of the system be
well defined, but it allows specific components to be
implemented in whatever technology suits the developer
(so long as it adheres to the interface).

The VR and the Windows Desktop clients were writ-
ten in Unity (a game engine commonly used in the XR
industry), and the C# scripts were written in Microsoft
Visual Studio, the code editor recommended for use by
Unity. The web client was written in JavaScript and
used the Mapbox library for visualizing geospatial data.

Sever-side microservices were written in C#, in the
hopes that there would be potential to share significant
amounts of code or libraries between Unity and the
microservices. In practice, the disparities in develop-
ment philosophy between authoring games and web ser-
vices did not lead to significant sharing between these
two codebases.

Open Standards
As stewards of their government sponsors’ resources,

APL teams have made the use of open standards and
formats an integral part of many system designs. As part
of the Minerva project, a considerable amount of time
was spent analyzing alternatives to determine which
portions of the effort could be performed using open-
source software tools and technologies. When open-
source options were not viable, the team did research to
find tools that were generally affordable. The team was
able to successfully develop a reference implementation
using free/open-source software, with the exceptions

of the Unity game engine and Microsoft Visual Studio
(two common, and generally affordable, applications for
this kind of development).

Types of Data
For this effort, we focused on three classes of data—

static data, inconstant data, and ephemeral data—to
understand how the data in each class were used, stored,
and transferred between systems. Categorizing each
piece of data helped shape the technology selection
strategy. Table 1 summarizes the three data classes.

Data Discovery and Hosting
Minerva’s Content Directory Service provided a cen-

tralized HTTP-friendly listing to allow clients to find
various kinds of media. This service provided metadata
about the content and federated the collections of all
known static content hosting services. Clients could use
the metadata to look up specific content or to browse
content (for example, the service could provide a listing
of available car models if a client wanted to locate a car
in the world).

Static data were stored on a protected file system,
accessed by a web hosting service over HTTP, and deliv-
ered as binary data. This portion of code also provided
limited transcoding (file conversion) services. There
are many equally viable options for this kind of storage,
including simple static hosting (as implemented), data
warehouse, and data lake. We opted for a web interface
because it was well understood by all client software,
simplifying integration with other components.

Inconstant data were stored in a MySQL database
and accessed via a RESTful web interface serving
JSON formatted data. The example problem concerned
relationships between entities, so a relational database
was appropriate for this effort. Other relational data-
bases would have been more than sufficient, as would
have document-oriented databases. Using RESTful

Table 1.  Data classes used in the Minerva project

Definition Examples Transmission Considerations

Static data Data that are expected to remain
the same any time they are
accessed

3-D models, images, tex-
tures, sound recordings

Often large and proper interpretation requires the
entire piece of data (no partial streams). Lossy trans-
mission tools are not appropriate. Once the data have
been downloaded, they can be cached for future use.

Inconstant
data

Data that are prone to change over
seconds, minutes, or days

Geospatial data, rela-
tional data

Often smaller than static data but require the ability
to update or re-query information at run-time and
often need more reliable transmission mechanisms
than ephemeral data. The need for caching will
depend on each application/client.

Ephemeral
data

Data that are generated frequently
(multiple times a second), used
immediately, and then either
archived for offline analysis or
discarded

Voice-over-IP (VoIP)
audio, XR head/
controller position and
orientation data

Change constantly, and new data coming in do not
generally rely on the correct receipt of previous data.
Therefore, less reliable transmission tools such as user
datagram protocol (UDP) may be appropriate. Cach-
ing is not required.

http://www.jhuapl.edu/techdigest

Minerva: Applied Software Engineering for XR

Johns Hopkins APL Technical Digest, Volume 35, Number 3 (2020), www.jhuapl.edu/techdigest 187

web interfaces enabled both thick clients and thin cli-
ents to be able to access the same data by using nearly
identical implementations, leading to efficient devel-
opment workflows.

Ephemeral data were broken into two categories:
VoIP data and XR headset/controller data. VoIP data
were encoded, transmitted, and decoded using the
open-source Mumble library and Murmur server, elimi-
nating the need for developers to define a specification
or interface. XR headset/controller data were encoded
into JSON and transmitted using SignalR (on projects
after Minerva, the development team has been using
Socket.IO instead of SignalR because of challenges aris-
ing from the release of SignalR 2). See Figure 1 for a
system diagram.

File Formats
A quality file-format standard provides a mechanism

to interchange data effectively between systems. Much
like a web page might use JPEG or PNG files to com-
municate data about an arrangement of pixels on the
screen, various file formats exist to communicate the
shape, texture, and appearance of objects in 3-D space.
Unfortunately, unlike for the World Wide Web, where
there is a large body of well-established and efficient file
formats, the formats available for 3-D models are either
comparatively inefficient or not universally adopted.
Since much of this research was designed to include
a broad variety of client systems, the team focused on
file formats that had extremely broad adoption, and
regarded network efficiency as a secondary concern. The
OBJ format uses separate files for object geometry, mate-
rials, and (optionally) textures. The geometry and mate-

rial portions of this format are particularly inefficient, as
they store data as uncompressed text. Table 2 describes
the file formats supported.

glTF
glTF (Graphics Library Transmission Format) is a

file format specifically designed for graphics data. This
format, and the GLB sub-format, is rapidly gaining
adoption because it is a royalty-free specification and
the defining organization (Khronos Group) has shared
much of the source code openly under the MIT License.
The format efficiently combines geometry, textures, and
animation into a single file, easing hosting of content.
These public libraries are still considered prerelease ver-
sions (the glTF team has not yet released version 1.0), so
they may not be appropriate for many projects. Although
this format was not mature enough for use in Minerva,
it is maturing rapidly and has many advantages over the
OBJ/texture approach.

WAV
The WAV format is uncompressed audio, making it a

poor choice for a lot of practical use cases. The popular
MP3 codec has licensing issues, leading to challenges
on some platforms. Ogg/Theora may provide an effi-
cient and open alternative, but this format has not been
broadly adopted. For new development efforts that need
to serve static audio files, developers should perform an
analysis of alternatives to find a format that meets their
specific needs.

Diverse Client Support
One of the key precepts of Minerva was to provide

a core set of valuable data and allow each client of the
multiplatform system to represent the data in the most
appropriate way for their particular device. For exam-
ple, a web-based client may provide a map, while a VR
analysis tool would provide an immersive 3-D landscape.
Mobile devices could view data in various formats while
also providing their real-world location back to the
server. Services were set up to allow more specific rep-
resentations as network bandwidth allowed. For exam-
ple, a client might initially represent something with a
generic model of a car, but when bandwidth allowed,
the client could retrieve more item-specific models or

Table 2.  File formats used in the Minerva project

Format Purpose Notes

OBJ/MAT/
  JPG

3-D model geometry,
  materials, and textures

See glTF section

PNG 2-D images/textures

JSON Head/hand position data

WAV Audio See WAV section

Static
Content
Hosting
Service

Data Access
 Service

(geospatial
data, work

spaces)

Content
Directory
 Service

Minerva
client

Ephemeral
data

server

VoIP
server

Minerva
client

Relational
database

Figure 1.  A system diagram showing the major pieces of
software used in Minerva. A client requests what entities exist
within a work space (orange). For those objects for which the
client does not have a representation, the client discovers where
it can download an appropriate representation via the Content
Directory Service (blue). When processing power and bandwidth
permit, the client requests the files from the Static Content
Hosting Service (green).

http://www.jhuapl.edu/techdigest

B. A. Schreurs

Johns Hopkins APL Technical Digest, Volume 35, Number 3 (2020), www.jhuapl.edu/techdigest188

textures to better represent the object. This approach
allowed some base functionality when the network was
constrained and more enriched experiences in permis-
sive environments.

Bottom-Up Representation
To accommodate the various clients, the system

needed to be designed to be conservative with band-
width, storage, and processing by default and to
use media that required more resources only when a
client specifically requested it. To meet this design
requirement, we opted for a bottom-up representa-
tion approach: The core of the system used text-based
representation, which is sufficient to draw vital infor-
mation on a map. If clients wanted media services,
they were available to provide images (often around
1 MB) and/or textured 3-D models (frequently 10 MB
or larger). With this approach, even modest hardware
with a constrained network connection could get vital
information, while more robust systems could present
higher-fidelity data. Table 3 presents the various data
representations, their approximate sizes, and the giga-
bytes of bandwidth they required.

Standard Entities
To be represented, objects in the environment

needed to have a minimum amount of data. This pro-
vided a baseline level of functionality for each client,
so that over time as heterogeneous data structures were
added to the system, an older client not designed for
a new piece of data could provide essential functions
for that data. For any entity in our system, all objects
were required to have a name, location, orientation,
globally unique identifier, and authoring information
(user/timestamp). With these elements, the team was
able to reliably ensure that all tools were able to create,
read, edit, delete, and search (by name, by identifier,
geospatially, or temporally) as appropriate. Optionally,
standard entities could have scale, color, and references
to images, sounds, textures, or models stored in a static
content hosting service.

LESSONS LEARNED
A number of valuable lessons were learned during

this project. First, sensor technology continues to

improve at a remarkable pace, while communications
technologies have not kept up with that pace. The
data throughput of either a 4K camera or a lidar sensor
was able to saturate the wireless bandwidth available
to our system. As a result, we had to develop a strat-
egy to determine which data were needed at run-time,
and which data could be preprocessed and cached on a
static content service. For the purposes of this research,
the development team had to limit live data to device
location, operator pose information, voice data, and
images no larger than 1080p.

Lidar data, object geometry, and object texture infor-
mation were all stored on static content servers. This
was deemed an acceptable limitation, as our research
primarily focused on interacting with data rather than
live processing of sensor output. In the future, having
smarter sensors will likely be a huge benefit for these
kinds of systems: It would be far more efficient to com-
municate the location and height of a telephone pole
than it would be to transmit a high-resolution lidar
point cloud of that telephone pole. This would allow
clients to use a static representation of a telephone pole
without being concerned about the visual details of each
individual pole.

Planning wireless connectivity needs to be performed
up front, especially when designing a system for use by
a broad variety of client devices (cell phones, tablets,
laptops, desktops). The Minerva team used an isolated
Wi-Fi network but found that effective ranges of the
cell phone’s GPS and Wi-Fi signal were nearly mutually
exclusive, limiting range and delaying tests. While all
devices could have theoretically worked via the open
internet, extensive security and authentication features
would have been required to safely publish the microser-
vices on the internet, which was well beyond the scope
of this effort.

As environments get more detailed and enriched, ini-
tial load times for data sets can become untenable for
operator use. Systems should be designed in ways that
allow for streaming of content over time. This allows
operators to interact with vital information while sup-
plemental detail information is loaded.

And, finally, XR control mechanisms continue
to evolve. While our research provided cutting-edge
interfaces for the time, in the last year the industry has
delivered great advancements in hand tracking, gesture
tracking, and eye tracking, which would likely inform
any new application interface designs.

CONCLUSION
The Minerva project sought to explore the possibility

of a standards-enabled common operating picture that
could work in XR on various platforms, optimizing the
data presentation for each device in its operational con-
text. Although Minerva did not evolve beyond proof

Table 3.  Minerva data representations: bottom-up approach

Representation
Approximate

Size
Per Gigabyte of

Bandwidth

Text 250 B 4,000,000

Image 1 MB 1,000

3-D model 10 MB+ 100

http://www.jhuapl.edu/techdigest

Minerva: Applied Software Engineering for XR

Johns Hopkins APL Technical Digest, Volume 35, Number 3 (2020), www.jhuapl.edu/techdigest 189

of concept to become a software product, the effort
was successful in several ways. The functional proto-
type was a viable initial foray into using XR in realistic
operational scenarios. Even in cases where technology
has matured such that code cannot be reused, many of
the lessons learned from this effort continue to provide
valuable design experience and insight for new tools
and technologies. After the completion of this project,
various XR and non-XR software development efforts
at APL have been able to leverage and reuse many of
the standards-based microservices created as part of
Minerva (both the ephemeral data server and Content
Directory Service have since been reused with mini-
mal modifications), demonstrating how this effort has
provided value to the Laboratory well past the project
completion date.

Blake A. Schreurs, Information
Technology Services Department,
Johns Hopkins University Applied
Physics Laboratory, Laurel, MD

Blake A. Schreurs is a Senior Profes-
sional Staff member in APL’s XR Col-
laboration Center. He has a BS in com-
puter science from Davis and Elkins

College and an MS in computer science from George
Mason University. Blake is a virtual reality (VR) and aug-
mented reality (AR) expert, with a focus on using com-
modity tools and equipment in novel ways to drive positive
impact for sponsors. He has expertise in technology readi-
ness assessment, ideation and design, application devel-
opment, software architecture, and performance tuning.
He has extensive knowledge of interactive and real-time
visualization technology, with a focus on improving situ-
ational awareness for safety, site protection, and Blue force
protection. He is one of the cofounders of APL’s Immer-
sion Central, an XR community of practice with over 180
members. His email address is blake.schreurs@jhuapl.edu.

http://www.jhuapl.edu/techdigest
mailto:blake.schreurs@jhuapl.edu

	Minerva: Applied Software Engineering for XR
	Blake A. Schreurs
	ABSTRACT
	INTRODUCTION
	SOFTWARE DESIGN
	Open Standards
	Types of Data
	Data Discovery and Hosting
	File Formats
	glTF
	WAV

	Diverse Client Support
	Bottom-Up Representation
	Standard Entities

	LESSONS LEARNED
	CONCLUSION
	Author Bio
	Table 1. Data classes used in the Minerva project.
	Table 2. File formats used in the Minerva project.
	Table 3. Minerva data representations: bottom-up approach
	Figure 1. A system diagram showing the major pieces of software used in Minerva.

