
Project Minard: War-Rooming and Geospatial Analysis in Virtual Space

Johns Hopkins APL Technical Digest, Volume 35, Number 3 (2020), www.jhuapl.edu/techdigest 179

AR VR
MR

Project Minard: A Platform for War-Rooming and 
Geospatial Analysis in Virtual Space

Stephen A. Bailey, Justin R. Renga, Joseph T. Downs, Miller L. Wilt, Brock A. Wester, 
and Jordan K. Matelsky

ABSTRACT
The geographic movement of individuals and assets is a complicated maze of relational data, 
further complicated by the individuals’ relationships or allegiances to organizations and regions. 
Understanding this depth and complexity of information is difficult even on purpose-built sys-
tems using conventional compute architectures. A Johns Hopkins University Applied Physics 
Laboratory (APL) project, called Minard, upgrades the war room to a virtual reality (VR) space. 
This system provides analysts with a collaborative and secure virtual environment in which they 
can interact with and study complex and noisy data such as alliances, the transit of individu-
als or groups through 3-D space, and the evolution of relationships through time. APL engineers 
designed intelligent visualization systems to bring the best of human intuition to state-of-the-art 
VR, with human–machine teams interacting both through the VR headset and behind a conven-
tional computer terminal.

distances, in this case favoring the portrayal of rele-
vant coastline and island details through simple carved 
wooden sculpture.2

While these examples may seem exotic, other exam-
ples might be more familiar to the modern mind: the 
“war room” portrayed in the film Doctor Strangelove dis-
plays the USSR in silhouette, with only notable land-
marks labeled (Figure  2). In place of the usual detail 
found on a map, this map instead renders the trajecto-
ries of nuclear-armed bomber planes. These maps—and 
many others like them, spanning thousands of years of 
history—have one thing in common: the story they tell 
is of the traversal and utilization of space, and irrelevant 
details are omitted entirely.

BACKGROUND
It is interesting to look back through the historical 

record at some of the earliest existing written maps to 
see what details their creators thought were important 
enough to memorialize in stone. One of the earliest 
examples of a map—if it can be called one—is the 
Babylonian Map of the World (Figure 1), a stone tablet 
now on display at the British Museum in London.1 
This map displays Babylon at the center of a circle, 
surrounded by seven mountains. But unlike modern 
maps, the regions carved into this map do not repre-
sent geographic regions: instead, they represent tribes, 
communities, or notable landmarks. Slightly more 
modern Inuit cartography devices, such as the Ammas-
salik wooden oceangoing maps, likewise ignore explicit 

http://www.jhuapl.edu/techdigest


S. A. Bailey et al.

Johns Hopkins APL Technical Digest, Volume 35, Number 3 (2020), www.jhuapl.edu/techdigest180

By 1869, a cartographer named Charles Joseph 
Minard leveraged this abundant historical inspiration 
to create one of the first deliberate marriages of cartog-
raphy and data visualization for public consumption. 
Minard’s “figurative map,” shown in Figure 3, delivered 
large amounts of relevant information to the viewer 
quickly and effectively. Note the colocation of quanti-
ties, such as army size, with geographic information such 
as the location of Moscow and the paths of rivers. This 
chart is now hailed as a victory of data visualization—a 
case where high informational density is decoupled from 
visual clutter.3

OVERVIEW OF PROJECT MINARD
Minard was constrained by what a modern artist 

would now consider a cripplingly limited tool kit. Our 
team proposes Project Minard, a modern-day extension 
of the Minardian data visualization philosophy. This 
work is designed to combine the benefits of modern-day 
cartographic and geographic information system (GIS)-
based geospatial rendering with high-quality 3-D data 
visualization. This tool enables analysts and researchers 
to explore spatially distributed data in its native multidi-
mensional and multimodal form.

For example, rail, air, or road traffic may be visual-
ized along the transit corridors represented in the data, 
or individual units might be tracked across a map. The 
movement of individuals, sales, or resources may be 
tracked with a bird’s-eye view across the globe. Further-
more, our tools are designed to also enable real-time data 

exploration. Analyses may be performed on these data 
by interacting in a virtual space, and the effects can be 
viewed by users in real time, much like how participants 
in a war room might manipulate pieces on a table-size 
battlefield. For example, an air traffic control operator 
might choose to watch the impact of temporarily shut-
ting down a runway; a hospital administrator may want 
to explore the implications of moving a population of 
patients from one region to another; or perhaps an epi-
demiologist might explore how viruses transit interna-
tional borders.

Key to this process is minimizing the time required to 
close the feedback loop between a user’s input and the 
system rendering the input’s downstream effects. To con-
duct this research collaboratively, our software uniquely 
includes the integration of multiple users’ inputs in the 
same virtual space.

While virtual reality (VR) may not afford a user the 
same level of precision as professional analysis tools or 
software libraries do, it is our intention that this system 
will enable the formation of immediate visual intuitions 
where they were not previously accessible.

ARCHITECTURE
Among his many works, Charles Minard constructed 

highly informative maps of rail traffic. Whereas the 
French railroad in Minard’s day stretched only around 
9,000 rarely traveled miles and transported only 102 mil-
lion ton-kilometers per year, the same graphic today 
would need to cover more than 25,000 miles of rail and 
more than 30 billion ton-kilometers per year.5,6

To accommodate such immense data sets, our 
approach combines a VR immersive platform for ren-
dering outputs with server-based data analytics software 
for data analysis. These systems communicate through a 
generalizable application programming interface (API), 
which enables highly flexible transit of data sets for visu-
alization in overlay on a geospatial map.

Figure 1.  An early Babylonian Map of the World, c. 6th century 
BC. Much like its contemporaneous maps, the map (circle graphic 
with triangular motifs) points to tribes and major landmarks 
rather than geographically precise locations. (Image courtesy of 
the British Museum, London, United Kingdom.1)

Figure 2.  The war room as depicted in the film Doctor Strange-
love. The maps on the wall convey virtually no usable geographic 
information beyond that required for the relevant tasks. (Public 
domain image from Ref. 4.)

http://www.jhuapl.edu/techdigest


Project Minard: War-Rooming and Geospatial Analysis in Virtual Space

Johns Hopkins APL Technical Digest, Volume 35, Number 3 (2020), www.jhuapl.edu/techdigest 181

Architecture at Scale
The Minard system is composed of a database, which 

is encrypted at rest and stores original data sets along-
side user-defined modifications; a back-end service, 
which acts both as database manager and as an authen-
tication and analysis platform; an arbitrary number of 
front-end visualization endpoints, including (but not 
limited to) VR headsets; and an asset datastore, which 
stores and publishes nontabular formatted data (such as 
3-D objects, point clouds, or other multimedia) to the 
visualization endpoints. See Figure 4 for an illustration.

Render Abstraction
The Minard server exposes an API against which a 

front-end rendering platform may authenticate. Once 

authenticated, the data transmitted from the server do 
not contain rendering instructions, and the presenta-
tion of these data to the end user is the responsibility of 
the visualization terminal. This means that a user may 
attach a VR headset and work along another user who is 
perhaps interacting directly with the data through a con-
ventional laptop or workstation. Our implementations of 
Python client-side library and Unity-based visualization 
endpoint are two examples of Minard API consumers.

MinardVR: VR Visualization Endpoint
We have implemented an example visualization end-

point for VR headsets using the Unity engine, selected 
because of its flexibility in targeting a wide variety of 
consumer VR and mixed reality headsets, including the 
Oculus Rift, the Microsoft HoloLens, the HTC VIVE, 
and other non-headset hardware.8

The VR platform undergoes a series of life cycle 
events as the system comes online, is used by an end 
user, and potentially makes changes to the underlying 
datastore. This life cycle begins with loader components 
retrieving data from datastores such as the Minard API 
and an asset datastore. Loaders then hand off ingested 
resources to a series of specialized managers. These load-
ers and managers approximate a Model-View-Controller 
(MVC) architecture.

Loaders are responsible for ingesting data from the 
database (via the Minard server API) or from an asset 
manager. Metadata and information about the entities 
that inhabit the map (for example, individuals, planes, 
or subway cars) are loaded from the Minard API. Scene 

Figure 3.  Charles Minard’s carte figurative, or “figurative map,” of Napoleon’s doomed invasion of Russia in 1812. Reproduced here in its 
original French, the map conveys geospatial position, temperature and weather, and the scale of the diminishing French Grande Armée. 
(Public domain image from Ref. 7.)

Time series
database

Asset
database

Visualization 
engine

Analysis
engine

Authenticated
API

Permissions
Projections

Visualization 
endpoint

Visualization 
endpoint

Visualization 
endpoint

Figure 4.  An illustration of the Project Minard architecture. On 
the right, several visualization endpoints (such as VR headsets or 
a laptop) receive data from the server-side API, which transmits 
data queried from a database based on the permissions of the 
user requesting the data.

http://www.jhuapl.edu/techdigest


S. A. Bailey et al.

Johns Hopkins APL Technical Digest, Volume 35, Number 3 (2020), www.jhuapl.edu/techdigest182

objects like a map, multimedia, and 3-D models are 
loaded from the asset manager.

Once resources are loaded into the Unity scene, 
managers are responsible for manipulating and updating 
the state of the objects as a simulation is interactively 
animated. For example, a time step manager maintains 
simulation time and ensures that a reliable “clock” signal 
is available to all other managers. An event manager 
keeps track of events taking place, such as the temporary 
closure of a shipping port or the meeting of two heads 
of state at an embassy. Complete lists of managers and 
loaders are available in Table 1.

Our implementation takes inspiration from state-
management patterns such as Flux, decoupling render 
cycle from state management.9 For example, as entities 
traverse the map during a simulation, they are “drawn” 
to their next destination by a finite force that is scaled in 
proportion to the distance the entity must cover before 
the next time step (as dictated by the simulation time 
step manager). Hearkening to historical figurative maps, 
entity positions are only as specific as the resolution 
and data density the map allows. In many conventional 
visualization strategies, multiple entities can inhabit the 
same 3-D position in space (i.e., they do not collide). 
While this precise localization mode may be more faith-
ful to the measurement, it is nearly useless when pre-
sented to a human viewer, as the visualization becomes 
unintelligible.

Instead, in our Minardian visualization, our entities 
“trend” toward their true location but can collide with 
each other to form clusters of individuals (Figure  5). 
These moving and shifting clusters are far more visually 
informative than they would have been had the posi-
tions been reported as precisely as possible. Additionally, 
this design decision enables the VR engine to gracefully 
handle more moving entities, as the exact location of 
entities becomes the responsibility of the engine and 
does not need to be tightly correlated with the database 
at every rendered frame.

Minard API Server
To present the necessary volume of data through an 

authenticated API, we developed the Minard API server 
in Python, using the Flask HTTP server framework.10 

Table 1.  VR visualization endpoint loaders and managers

Name Responsibilities

Loader
  Map loader Control the loading of 3-D or 2-D map resources on which the rest of the simulation will 

be performed.
  Entity loader Load “entities”—or atomic components of the simulation (such as human individuals, 

objects, vehicles, or other tangible assets) from the Minard API server.
  Location loader Load static regions and locations (such as state borders or the coordinates of rest stops 

along a highway).
  Entity path loader Load the dynamic locations and movement plans of entities from the API server.
  Media-entity association loader Correlate media from the asset server with the appropriate entity or location, using meta-

data from the API server.
  Relationships loader Construct a directed graph between all entities and all locations, where edges represent 

real-world relationships such as familial ties (X “Is Father To” Y), associations (X “Lives 
At” Y), or affiliations (X “Works For” Y).

  Events loader Ingest event objects from the Minard API into the simulation timeline.
Manager
  Simulation time step manager Control the passage and speed of simulation time.
  Entity lifetime manager Control the entry or exit of entities from the scene as they are created or destroyed.
  Relationship manager Manage the directed graph produced by the relationships loader.
  User selection manager Convert user selection and interaction actions into rendered outputs or database 

manipulations.
  Events manager Control the occurrence of discrete events and correlate with the clock information from 

the simulation time step manager.
  Media-Entity association manager Handle the dynamic rendering of (potentially large) multimedia files for the user and 

accept newly loaded material from the media-entity association loader.

Figure 5.  Minardian visualization. Many individuals crowd 
around a point on a small square map. On the left, “precise” 
entity placement obscures the number of entities in the scene 
and reduces the clarity of the visualization. On the right, colliding 
entities better illustrate the salient features of the data set.

http://www.jhuapl.edu/techdigest


Project Minard: War-Rooming and Geospatial Analysis in Virtual Space

Johns Hopkins APL Technical Digest, Volume 35, Number 3 (2020), www.jhuapl.edu/techdigest 183

The Python programming language provided us with 
the necessary combination of both well-supported anal-
ysis libraries, including NumPy, SciPy, and SciKit for 
numerical computation and NetworkX for graph analy-
sis, as well as robust networking libraries for transferring 
data to and from a database and the front-end visualiza-
tion endpoints.11–13

Our implementation of the Minard API server 
exposes a stateless JSON API to the visualization clients. 
Depending on the use case, this API may be authenti-
cated, and it is our intention to enable differential autho-
rized access to various data elements from the database. 
In this way, it will be possible for multiple users to engage 
with the same virtual scene without sharing private or 
sensitive information with all users equally.

CONCLUSION
A generalizable framework for geospatial embedding 

of data visualization products has far-reaching applica-
tions in a variety of domains, including health care, 
defense, and civil engineering. Our proposed solution to 
this open question, Project Minard, addresses many of 
the shared needs of these domains: tracking individual 
actors or assets through time and space; interrogating 
the relationships between those actors and assets and 
how they change over time; and revealing how pertur-
bations to these data sets and the consequences thereof 
can inform decision-making or strategy. Our software 
has been developed with extensibility and flexibility 
in mind, and it is our intention that Minard’s software 
capabilities will scale gracefully with the needs of its 
user base.

Particular target candidates for further study include 
disaster recovery and response planning, transport 
(freight and public) control, and the monitoring of 
health information both at a local (building-wide) scale 
as well as at an international scale. It is our hope that 
these software patterns and architectures will guide 
future data visualization efforts and will enable higher-
quality, more intuitive interpretations of complex data 
sets across many domains of research.

REFERENCES
  1“The Map of the World.” British Museum. https://www.britishmuseum.

org/collection/object/W_1882-0714-509 (accessed Feb. 1, 2019).
  2A. M. MacEachren, “A linear view of the world: Strip maps as a 

unique form of cartographic representation,” Am. Cartogr., vol. 13, 
no. 1, pp. 7–26, Jan. 1986.

  3C. J. Minard, “Tableaux graphiques et cartes figuratives . . .,” Biblio-
thèque numérique patrimoniale des ponts et chaussées, 1869.

  4S. Kubrick (dir.), Doctor Strangelove, distributed by Columbia Pictures, 
Jan. 1964, public domain image from Wikimedia Commons, https://
commons.wikimedia.org/wiki/File:Dr._Strangelove_-_The_War_
Room.png.

  5A. Mitchell, The Great Train Race: Railways and the Franco-German 
Rivalry, 1815–1914, 1st ed. New York: Berghahn Books, 2000.

  6“Railways, passengers carried (million passenger-km) – France.” 
World Bank. https://data.worldbank.org/indicator/IS.RRS.PASG.
KM?locations=FR (accessed Feb. 1, 2019).

  7C. J. Minard (1781–1870), public domain image from Wikimedia Com-
mons, https://commons.wikimedia.org/wiki/File:Minard.png.

  8“Unity.” https://unity3d.com/ (accessed Feb. 1, 2019).
  9“Flux.” https://facebook.github.io/flux/ (accessed Feb. 1, 2019].
10“Flask—Flask 1.0.2 documentation.” http://flask.pocoo.org/docs/1.0/# 

(accessed Feb. 1, 2019).
11T. E. Oliphant, Guide to NumPy, 2nd ed. US: CreateSpace Indepen-

dent Publishing Platform, 2015.
12E. Jones, T. Oliphant, P. Peterson, and others, SciPy: Open source sci-

entific tools for Python, 2001.
13A. A. Hagberg, D. A. Schult, and P. J. Swart, “Exploring network 

structure, dynamics, and function using NetworkX,” in Proc. 7th 
Python in Science Conf., Pasadena, CA, 2008, pp. 11–15.

Stephen A. Bailey, Air and Missile 
Defense Sector, Johns Hopkins University 
Applied Physics Laboratory, Laurel, MD

Stephen A. Bailey is a software engineer 
in APL’s Air and Missile Defense Sector. 
He has a BS in premedical studies from 
Penn State and an MS in computer science 
from Johns Hopkins University. He has 

a diverse set of skills including full-stack web applications 
development, virtual/mixed reality devices and development, 
and Unity game engine development. He has worked as the 
principal investigator for multiple independent research and 
development (IRAD) projects at APL and serves on an APL 
committee that funds innovative new ideas across the Air 
and Missile Defense Sector. His email address is stephen.
bailey@jhuapl.edu.

Justin R. Renga, Air and Missile Defense 
Sector, Johns Hopkins University Applied 
Physics Laboratory, Laurel, MD

Justin R. Renga is a member of the Com-
mand, Control, and Communications 
Systems Group in APL’s Air and Missile 
Defense Sector. He holds a BS in games and 
simulation arts and sciences and computer 

science from Rensselaer Polytechnic Institute and an MS in com-
puter science from Johns Hopkins University. His background is 
in software engineering, computer science, game development, 
and user interface design. He has worked on various computer 
science and software engineering projects while at APL, includ-
ing researching a method to perform in-line detection and cor-
rection of abnormal C++ program behavior. Before joining APL, 
Justin worked at Sotera Defense Solutions as a defense contrac-
tor assisting in the development and maintenance of mission-
critical software. His email address is justin.renga@jhuapl.edu.

http://www.jhuapl.edu/techdigest
https://www.britishmuseum.org/collection/object/W_1882-0714-509
https://www.britishmuseum.org/collection/object/W_1882-0714-509
https://commons.wikimedia.org/wiki/File:Dr._Strangelove_-_The_War_Room.png
https://commons.wikimedia.org/wiki/File:Dr._Strangelove_-_The_War_Room.png
https://commons.wikimedia.org/wiki/File:Dr._Strangelove_-_The_War_Room.png
https://data.worl﻿dbank.org/indicator/IS.RRS.PASG.KM?locations=FR
https://data.worl﻿dbank.org/indicator/IS.RRS.PASG.KM?locations=FR
https://commons.wikimedia.org/wiki/File
https://unity3d.com/
https://facebook.github.io/flux/
http://flask.pocoo.org/docs/1.0/#
mailto:stephen.bailey@jhuapl.edu
mailto:stephen.bailey@jhuapl.edu
mailto:justin.renga@jhuapl.edu


S. A. Bailey et al.

Johns Hopkins APL Technical Digest, Volume 35, Number 3 (2020), www.jhuapl.edu/techdigest184

Joseph T. Downs, Research and Explor-
atory Development Department, Johns 
Hopkins University Applied Physics Labo-
ratory, Laurel, MD

Joseph T. Downs is a data scientist in APL’s 
Intelligent Systems Branch. He received 
his bachelor of science degrees from the 
University of Maryland, College Park in 

physics, mathematics, and computer science, and he com-
pleted a master of information and data science degree at the 
University of California, Berkeley. In his work, Joe has brought 
computational and statistical methods to bear on problem 
domains ranging from genomics to space mission planning 
to neuroscience to national defense. He recently led devel-
opment of an analysis pipeline for FEMA’s national response 
to COVID-19 on a White House task force, and he has sup-
ported image processing and network analysis of data for the 
Intelligence Advanced Research Projects Activity MICrONS 
project on petascale neuroscience. His email address is joe.
downs@jhuapl.edu.

Miller L. Wilt, Research and Exploratory 
Development Department, Johns Hopkins 
University Applied Physics Laboratory, 
Laurel, MD

Miller L. Wilt is a software engineer in 
APL’s Research and Exploratory Develop-
ment Department. He holds a BS in com-
puter engineering from Lehigh University 

and an MS in computer science from Johns Hopkins Uni-
versity. Miller has a diverse set of programming and DevOps 
skills, including machine learning, full-stack web develop-
ment, Android development, and software deployment. Recent 
efforts include investigating the use of machine learning to 
classify the type of data transmitted over a wireless communi-
cations link; leading an assessment of the architecture, design, 
code quality, and security of a government-developed Android 
application; and architecting, designing, and developing vari-
ous applications and microservices. He was awarded three 
internal IP disclosures resulting in multi-million-dollar follow-
on contracts and has received three APL special achievement 
awards for outstanding technical excellence. His email address 
is miller.wilt@jhuapl.edu.

Brock A. Wester, Research and Explor-
atory Development Department, Johns 
Hopkins University Applied Physics Labo-
ratory, Laurel, MD

Brock A. Wester is a project manager and 
supervisor of the Neuroscience Group in 
APL’s Research and Exploratory Develop-
ment Department. He holds a BS in com-

puter engineering from the Georgia Institute of Technology 
and a PhD in biomedical engineering from Emory University. 
Brock’s current research efforts span connectomics, neuro big 
data, neuroprosthetics, user interfaces, and immersion (VR/
AR/MR). He is the project manager on the Machine Intelli-
gence from Cortical Networks (MICrONS) project, principal 
investigator on an NIH grant focused on the development of 
neuro big-data resources, principal investigator of the Revo-
lutionizing Prosthetics program, and vice chair of the Johns 
Hopkins Engineering for Professionals Applied Biomedical 
Engineering program. Before joining APL, Brock was the 
co-founder and chief technology officer of NanoGrip Tech-
nologies, which developed and commercially produced mul-
tiple-degree-of-freedom micromanipulation tools for micro-
assembly, mechanical testing, and biological interfacing. His 
email address is brock.wester@jhuapl.edu.

Jordan K. Matelsky, Research and Explor-
atory Development Department, Johns 
Hopkins University Applied Physics Labo-
ratory, Laurel, MD

Jordan K. Matelsky is a project manager 
and big-data scientist in APL’s Research 
and Exploratory Development Depart-
ment. He holds a BS in computer science-

neuroscience from Johns Hopkins University. Jordan’s current 
research focus areas include big-data neuroscience connec-
tomics and machine learning for health care environments. 
His projects include large-scale network analyses on brain maps 
and central-nervous-system microbiome detection, and he cur-
rently serves as a precision-medicine data scientist in collabora-
tion with the Johns Hopkins Hospital system. Prior to joining 
APL, Jordan was the chief technology officer and cofounder of 
FitMango, a personalized fitness software company. His email 
address is jordan.matelsky@jhuapl.edu.

http://www.jhuapl.edu/techdigest
mailto:joe.downs@jhuapl.edu
mailto:joe.downs@jhuapl.edu
mailto:miller.wilt@jhuapl.edu
mailto:brock.wester@jhuapl.edu
mailto:jordan.matelsky@jhuapl.edu

	Project Minard: A Platform for War-Rooming and Geospatial Analysis in Virtual Space
	Stephen A. Bailey, Justin R. Renga, Joseph T. Downs, Miller L. Wilt, Brock A. Wester, and Jordan K. Matelsky
	ABSTRACT
	BACKGROUND
	OVERVIEW OF PROJECT MINARD
	ARCHITECTURE
	Architecture at Scale
	Render Abstraction
	MinardVR: VR Visualization Endpoint
	Minard API Server

	CONCLUSION
	REFERENCES
	Author Bios
	Table 1. VR visualization endpoint loaders and managers.
	Figure 1. An early Babylonian Map of the World, c. 6th century BC. 
	Figure 2. The war room as depicted in the film Doctor Strangelove. 
	Figure 3. Charles Minard’s carte figurative, or “figurative map,” of Napoleon’s doomed invasion of Russia in 1812. 
	Figure 4. An illustration of the Project Minard architecture. 
	Figure 5. Minardian visualization. 




