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ABSTRACT
A Johns Hopkins University Applied Physics Laboratory (APL) team conceived of and developed a 
first-of-its-kind mixed reality “social prosthetic” system aimed at improving emotion recognition 
training and performance by displaying information about nonverbal signals in a way that is 
easily interpretable by a user. Called IN:URfACE (for Investigating Non-verbals: Using xReality for 
the Augmented Consideration of Emotion), the proof-of-concept prototype system uses infrared 
sensors to measure facial movements, pupil size, blink rate, and gaze direction. These signals are 
synchronized in real time, registered in real space, and then overlaid on the face of an interaction 
partner, such as an interviewee, through a mixed reality headset. The result is dramatic accentua-
tion of subtle changes in the face, including changes that people are not usually aware of, like 
pupil dilation or nostril flare. The ability to discern these changes has applications in fields such 
as law enforcement, intelligence collection, and health care. This article describes how the system 
works, the technical challenges and solutions in designing it, and possible areas of application.

owes much to the technological innovations that enable 
more advanced methods of understanding both the 
objective measurement of emotion and the subjective 
experience of emotion.10 Humans are inherently social11 
and much of that interaction relies on emotional aware-
ness, or the knowledge of the feelings present in oneself 
and others and the ability to incorporate them into dif-
ferent aspects of cognition such as decision-making and/
or problem-solving.12

Understanding emotional states through nonverbal 
signals is a key component to inferring the thoughts 
and feelings of others.13 This inference is known as 
empathic accuracy,14 and these inferences can be made 

INTRODUCTION
The study of emotion includes psychological,1 neuro

psychological,2 psycholinguistic,3 and psychophysiologi-
cal4 and psychopathological5 perspectives and their 
concomitant research methods. The psychophysiologi-
cal concept of emotion incorporates both the autonomic 
and somatic nervous systems4 and is considered a scien-
tific descendant of Darwinian theory6; however, recent 
research identifies limitations of Darwin’s views on emo-
tion.7 As the scientific study of emotion progresses,8 
contemporary models of emotion incorporate affect (the 
subjective experience of emotion), cognition (learning, 
memory), sensation, perception, and the neural corre-
lates thereof.9 This theoretical and empirical evolution 
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by carefully observing the face. This line of research 
was pioneered by Paul Ekman, one of the most influ-
ential psychologists of the 20th century.15 The human 
face communicates through several nonverbal channels, 
including facial expressions, jaw tension, blood flow 
in the cheeks and forehead, changes in the size of the 
pupils, and movements of the eyes.14,16 Understanding 
social signals from faces is critical for social interaction, 
but people vary widely in their ability to perceive, inter-
pret, and assess these signals, particularly their truthful-
ness.16 While Ekman’s research remains influential, the 
evolving models of emotion suggest far more complexity 
in both the expression and interpretation of emotion.17 
Nevertheless, the human face remains a rich source of 
emotional information, but it can be challenging to 
interpret for neurotypical individuals, much less those 
with specific deficits.18

The scientific understanding of emotion has ben-
efited from advances in technology, but the ability to 
address deficits in and maladaptive regulation of emo-
tion, and/or the inability to accurately interpret emo-
tion, requires greater attention. Detecting subtle facial 
signals is difficult, but research suggests that it is train-
able.16 Current training is restricted to seminars and 
online training materials and does not always replicate 
real-world environments in which emotion detection 
is needed. Incorporating mixed reality (XR) technol-
ogy in training, with real people in real environments 
in real time, allows for more complex and ecologically 
valid training scenarios. Further, XR enables the user 
to receive information in context and without interrup-
tion. Together, these advantages impart confidence that 
XR treatment may improve training and information 
transfer, particularly to new counterparts in new situa-
tions. Furthermore, XR technology in combination with 
other wearable sensors may afford the opportunity to 
not only accelerate training of specialty fields but also 
address the deficits of the impaired.19

The concept of a social-emotional prosthetic has been 
abstracted by the artificial intelligence research commu-
nity for some time;20 however, XR has helped concretize 
those discussions. In particular, the capability for highly 
sensorized XR systems to focus on both the wearer and the 
other allows for a better examination of cognitive com-
ponents such as attention and memory of the user while 
additional sensors are focused outward on the other. The 
capability to measure cognitive abilities in XR21 is par-
ticularly useful when employing the more theoretically 
sophisticated component models of emotion that incor-
porate attention and memory along with affect.17

With the goal of improving emotion recognition 
training and performance, a cross-disciplinary APL team 
developed IN:URfACE (for Investigating Non-verbals: 
Using xReality for the Augmented Consideration of 
Emotion), a proof-of-concept prototype headset-based 
XR system that displays information about nonverbal 

signals in a way that is easily interpretable by a user 
(see Figure 1 for an illustration of the system’s goal and 
the video on APL’s YouTube channel, https://youtu.be/
oNi1pCj6tY4, for a quick demonstration). The system 
collects facial signals by using a range of sensor modali-
ties, synchronizes the signals in real time, registers them 
in real space, and overlays changes on the face of an 
interaction partner, such as an interviewee. Changes 
in facial signals, including expression, blood flow, and 
muscle tension, may be communicated to the headset 
wearer through “glimmers,” or ephemeral holographic 
overlays, placed within the real world. Such overlays 
allow the user to receive information from the XR system 
in real time without interrupting the social interaction. 
With peripheral equipment, highly sensorized XR sys-
tems may be capable of detecting changes in voice and 
body language, as well as psychophysiological changes 
(heart rate, skin conductance, and blood pressure) asso-
ciated with emotion and arousal that individuals may 
not be able to detect unaided.

This glimmer approach departs from alternative sys-
tems (e.g., Autism Glass22 and Brain Power23) that also 
support emotion recognition by means of XR. These 
systems are prescriptively oriented toward recognition: 
when worn, the headsets declare the emotion expressed 
by a counterpart’s face so that the headset wearer can 
match their perception of the emotion to the head-
set’s identification. Instead, the IN:URfACE system 
enhances visibility of and draws attention to the chang-
ing facial actions that compose an emotional display 
so that the user can attune to the components of an 
expression and make the determination themselves. The 
authors believe this approach to scaffolding whereby the 
“experienced partner”24 is the XR system will ultimately 
be able to accommodate a wider range of skill sets.

Amid growing concerns about the application of arti-
ficial intelligence to emotion recognition,25 this more 
conservative and constructive approach enables the user 
to make their own determination given accentuated pre-

From this: To this:

unity

Figure 1.  Goal of IN:URfACE MR social prosthetic system. The 
system aims to improve emotion recognition training and per-
formance by displaying information about nonverbal signals in a 
way that is easily interpretable by a user.
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sentation of the involved cues. By conveying landmarks 
instead of directions, this approach seeks to avoid a situ-
ation analogous to a GPS user blindly following guid-
ance and driving their car into a lake. Furthermore, the 
approach affords the opportunity for the user to better 
develop self-efficacy during dyadic interaction, a compo-
nent that more prescriptive approaches fail to cultivate.26

Depending on the context, the system may be used 
to train or also in practice. Studies demonstrating skill 
transfer from equipped training to unequipped practice 
will inform usage.

Many contexts stand to benefit from improved skills 
in empathic accuracy.14 In contexts where it is critical 
to establish an affiliative stance, these skills have vary-
ing names: in intelligence, they are called operational 
accord27; in medicine, bedside manner28; and in psycho-
therapy, rapport.29 These skills are also essential for the 
conflict resolution activities commonly required of law 
enforcement officers.

Those with deficits in this capacity, such as those 
on the autism spectrum, often find face reading chal-
lenging.30 As a clinical intervention, this system might 
help compensate for communicative deficits.31 It is this 
potential as an assistive technology that inspires its clas-
sification as a prosthetic.

SYSTEM DEVELOPMENT OVERVIEW
Figure 2 is a high-level illustration of the system. The 

system includes an eye tracker, a depth camera for reg-
istration, a computer to process 
sensor readings and place them 
within a virtual environment 
registered to reality, a wire-
less access point, and an MR 
headset. Each component is 
described below.

HoloLens and XR
The Microsoft HoloLens 

headset enables the system’s 
XR component. The inter-
viewer wearing the headset is 
able to view sprites overlaid on 
the interaction partner’s face—
for example, dots indicating 
changes in facial expressions or 
lines tracking eye movements 
(see Figure 3). The overlays allow 
the wearer to receive informa-
tion from the MR system in 
real time and without computer 
mediation to avoid interrupting 
the social interaction.

In the proof of concept, the 
bulk of the processing was per-

formed offboard and the processed output was streamed 
to the HoloLens, as shown in Figure 2. Ultimately, this 
capability would be embodied in an all-in-one solution 
for field deployment.

In addition to alerting the headset wearer to subtle 
changes in facial expression and eye movement, the 
system may be configured to measure other signals that 

Head movement Blink rate Gaze direction

Facial expressions Pupillary response

Figure 3.  The MR social prosthesis system enables finer perception of nonverbal cues. The 
interviewer wearing the headset is able to view data points overlaid on the interaction part-
ner’s face, enabling the wearer to receive information in a way that is easily interpretable, in 
real time, and without interrupting the social interaction.
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Figure 2.  IN:URfACE system organization. The system includes 
an eye tracker, a depth camera for registration, a computer to pro-
cess sensor readings and place them within a virtual environment 
registered to reality, a wireless access point, and an MR headset.
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people may have difficulty perceiving, including changes 
in blood flow or in muscle tension. See Table 1 for phe-
nomena the system may measure, the modalities and sen-
sors associated with each measurement, and the way the 
system displays each type of change to the headset wearer.

Face Tracking
The system uses a depth camera (Microsoft Kinect v2 

and its associated Software Development Kits [SDKs]) 
to capture facial muscle actions. From point clouds at 
a resolution of ~0.25 megapixels, ~100 facial points are 
tracked via the Microsoft Face Tracking SDK imple-
mentation of the CANDIDE-3 face model. These facial 
points are assembled as ~10 shape units (e.g., nose). 
These shape units, when associated with directions of 
movement, comprise ~20 action units (e.g., nostril flare). 
The coordination of those action units constitutes 
expressions, which correspond to ~6 basic emotions 
(e.g., disgust). This mapping 
to emotion by the Face SDK 
implements Ekman and Fri-
esen’s Facial Action Coding 
System (FACS).13,32,33 To 
reconstruct a skinned, ani-
mated emoting face for overlay 
in the HoloLens, these data 
are fed into a Unity instance. 
Brekel Pro Face 2 wraps most 
of these features into a single 
product. This process is sum-
marized in Figure 4.

Eye Tracking
Eye movement is tracked 

with the SMI RED-m, a now 
legacy device that exploits the 
red-eye effect in which infrared 
(IR) is differentially reflected 
off of the retina through the 
pupil. This effect makes the 
pupil appear brighter than the 
iris and serves the basis for 
gauging pupil size, gaze direc-
tion, and blink rate.

Pupil Size
To measure changes in pupil size, the system first 

establishes a baseline pupil size from a user-triggered cal-
ibration. The system smooths the curve of noisy tempo-
ral measurements of pupil size to lend an average value 
over a time window, and then filters out any measure-
ment that is outside typical values. Finally, it normalizes 
the pupil value by dividing the smoothed and filtered 
pupil size by the baseline pupil size to provide a more 
stable metric of size change and direction. Figure 5 illus-
trates this process.

Gaze Direction
Eye rotation is measured from changes in corneal 

reflection. The cornea is bulbous, so the incident shape 
of the bright region contorts from round when viewed 
head-on to oblong when viewed obliquely. The SMI eye 
tracker interface provides an (x, y) screen coordinate for 

Emotion

Expression

Action units

Shape units

Tracked points

Point clouds

~6

~20

~11

87+13

512×424

Brekel Pro Face 2

CANDIDE-1 CANDIDE-2 CANDIDE-3

Figure 4.  Face tracking. The system’s depth camera captures facial muscle actions. From point 
clouds, facial points are tracked. These facial points are assembled as shape units (e.g., nose), 
which, when associated with directions of movement, comprise action units (e.g., nostril flare). 
The coordination of those action units constitutes expressions, which correspond to basic emo-
tions (e.g., disgust).

Table 1.  System measurements, modalities, sensors, and MR displays

Phenomenon Modality Sensor MR Display

Musculature, 
microexpressions

Depth Microsoft Kinect v2 TOF-IR Action unit glimmer

Pupil diameter/saccadic 
activity

Eye-tracker, 
pupilometer

SensoMotoric Instruments (SMI) RED-m 
eye tracker (now a legacy device)

Colored blinking outlines

Hue and periodics: heart, 
blink, and respiration rates

Visible light Microsoft Kinect v2 RGB Eulerian magnification

Temperature, blushing/
blanching

High-frame-rate long-
wave infrared (LWIR)

FLIR E60bx False color
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where each eye is “looking.” These screen coordinates 
are converted to directional vectors by ray cast.34 The 
direction and rotation are derived from this vector using 
Unity’s built-in Quaternion library.35 The typical signal 
coming out of the eye tracker is noisy and has value 
“gaps” caused by either eye blinking or the tracker’s loss 
of eye registration.

Blink Rate
Blinks are indirectly detected by the loss of registra-

tion of the bright region. This loss of registration is deter-
mined to be a blink versus another obscuration on the 
basis of its duration. As shown 
in Figure 6, a single “blink” is 
defined as occurring when the 
size of the pupil falls below 
the blink pupil size threshold 
parameter, remains below the 
blink threshold for at least 
the blink duration parameter, 
and finally returns to above 
the blink pupil size threshold 
parameter.

Real-Time Sensor Streaming
Sensor data must be sent, 

synchronized, processed, and 
displayed to the user without 
introducing lag that will make 
the user experience awkward 
and unnatural. Unity on the 
HoloLens alone cannot con-
nect to Brekel on the laptop 
computer because of incom-

patible networking libraries 
(UWP). Therefore, the system 
coordinates Unity instances 
on the laptop and on the 
HoloLens. Unity provides 
an application programming 
interface (API) that handles 
networking by sharing a game 
scene between “local players” 
and networking using a cen-
tral server.

In this networked multi-
player game, the laptop acts 
as a server and a local player. 
The HoloLens acts as another 
local player. The shared game 
scene is the mask tracked on 
the Kinect. The mask is the 
local player’s “game charac-
ter.” Two masks can be seen 
at one time, and movements 

of the masks are synced both ways. This solution elimi-
nated the need for two masks and confined all process-
ing to the laptop.

Real-Time Spatial Registration
External sensor data must be transformed to the 

user’s point of view, and locations and dimensions for 
the overlays must be calculated. Both people in a two-
person (dyadic) social interaction move about, so over-
lays must be transformed to account for changes in 
position relative to static sensors and to one another. 
HoloLens and Kinect each have separate spaces, but to 
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Figure 6.  Blink rate measurement. A single “blink” is defined as occurring when the size of the 
pupil falls below the blink pupil size threshold parameter, remains below the blink threshold for 
at least the blink duration parameter, and finally returns to above the blink pupil size threshold 
parameter. (Note that the pupil data shown are typical.)
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Figure 5.  Pupil size measurement. The system first establishes a baseline pupil size from a user-
triggered calibration (top graph). It then smooths the curve of noisy temporal measurements 
of pupil size to lend an average value over a time window and filters out any measurement that 
is outside typical values (bottom graph). Finally, it normalizes the pupil value by dividing the 
smoothed and filtered pupil size by the baseline pupil size to provide a more stable metric of size 
change and direction. (Note that the pupil data shown are typical.)
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map a mask onto a real face, 
these spaces must match. An 
object being tracked by both 
devices is needed to sync these 
spaces. Figure 7 illustrates the 
process for arriving a registra-
tion solution.

Overlay Design
Overlays must be easily 

interpreted by the user while 
not obstructing the user’s 
vision or interfering with 
natural interaction. To avoid 
overwhelming the viewer 
by displaying an abundance 
of information all at once, 
the system offers a selection 
of information presentation 
styles. One option displays 
the original mask with facial 
points provided by Unity. 
Another removes the opaque 
mask but retains the facial 
points for better visibility. 

Eye features

Face points Combined mask

(a) (b) (c) (d)

Figure 8.  Overlay presentation options showing facial actions and eye features. One option displays the original mask with facial points 
provided by Unity (a). Another removes the opaque mask but retains the facial points for better visibility (b). Another style displays 
color-changing dots highlighting areas of movement (c). The most sophisticated style uses the color-changing dots as light sources that 
reflect on a transparent mask to illuminate wider regions of movement on the face (d, where the mask is shown in gray for emphasis; 
the dark regions of the mask are transparent through the HoloLens). Black circles represent the baseline pupil size, and colored circles 
represent the current pupil size. The size of the circles represents the current pupil size relative to the baseline (e.g., if the colored circle is 
smaller, the current pupil size is less than the baseline pupil size). Blink rates are represented by ellipses, with black ellipses representing 
the baseline blink rate and colored ellipses representing the blink rate relative to the baseline (e.g., if the colored ellipsis is bigger, the 
current blink rate is higher than the baseline blink rate). Gaze directions are displayed as cylinders, with each cylinder rotated to point 
to the direction of the gaze.

SNAP

Figure 7.  Real-time spatial registration. In the first attempt (left), the HoloLens was placed 
directly on the Kinect before the applications were started. With both devices looking from the 
same viewpoint, the HoloLens’s space was roughly aligned, revealing that face alignment was 
off by a few feet. In the second attempt (middle), the HoloLens was placed on the user’s head 
while the user’s face was captured by the Kinect. Hitting the Enter key moved the HoloLens’s 
space so that user’s face “snapped” in front of the mask captured by the Kinect, but face align-
ment was still off by a few inches. The third attempt involved manually adjusting the virtual posi-
tion by changing position values. This was a tedious and time-consuming process that could not 
be performed in real time. So instead, the Space key was held to enable the HoloLens’s move-
ments to nudge the mask toward better registration (right).
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Another style displays color-changing dots highlight-
ing areas of movement; in other words, the dots change 
colors if regions of interest move about the face faster 
than a threshold speed. The most sophisticated style 
uses the color-changing dots as light sources that reflect 
on a transparent mask (shown in gray for emphasis in 
Figure 8, the dark regions of the mask are transparent 
through the HoloLens) to illuminate wider regions of 
movement on the face. This approach to implement 
glimmer is intuitive and performant.

The eye features are anchored (eye features are set as 
children to the corresponding parent points on the face 
mask) to their respective left and right eye points of the 
face mask. As the overall mask moves, so do the points. 
Since the eye features are mounted to the points, they 
also move with the overall face.

NEXT DIRECTIONS
With the goal of later differentiating the system 

toward the application areas previously mentioned—
intelligence, law enforcement, and health care—next 
directions are concerned with advancing the system to 
support the interpretation of facial cues and to develop 
metrics to evaluate the system’s performance.

Three classes of factors converge in the forging of an 
expression (emotional display): environmental, circum-
stantial, and mental (Figure 9). The goal is for the system 
to consider context to decompose observable state into 
contributing components. The system could reveal 
confounds: is the facial signal witnessed a reflection 
of emotion or something neutral? For example, mouth 
movement could be caused by smiling or by readying to 
speak. The system could assess congruence; understand-
ing whether facial signals are conflicting is critical for 
detecting emotional leakage, or fleeting displays that 
reveal suppressed affect, like quick and tiny movements 
of the face called microexpressions. Environmental fac-

tors also bear on psychophysiological measurands and 
need to be ruled out to attribute a display to affect. For 
example, pupil flare may due to changes in ambient light 
or to changes in workload. Additionally, the system may 
process and integrate multiple cues in coordination to 
assist the user in assessing social signals. Such advance-
ments support understanding, enabling the system to 
sense contextual information and then integrate it with 
facial cues to support more accurate interpretation of the 
social meaning of those cues.

Since the environment, including ambient tempera-
ture, light, and sound, can alone change facial display, 
the system needs environmental sensing to disambigu-
ate the source of change. Toward this end, IN:URfACE 
would be extended with sensors that capture ambient 
properties from the environment for correspondence 
with the psychophysiology of the subject. For example, 
a change in skin temperature below the nose may indi-
cate stress, but only under controlled humidity.36 Pupil 
dilation indicates anger, but only under controlled light-
ing.37 Because environmental context circumscribes 
the meaning of particular measurements, this fusion of 
directed and ambient sensing endows contextualization 
capacity in preparation for the introduction of addi-
tional sensing modalities.

Humans’ internal states influence how they interpret 
actions and information—happy and relaxed people are 
more likely to perceive happiness in others, while stressed 
people are more likely to perceive aggression in others.38 
Hills appear steeper when viewers are fatigued.39 Mea-
suring users’ psychophysiological responses as well as 
those of their subjects informs the system of how users 
visually search scenes and how they react to the mean-
ing derived from scenes. This information may be fed 
back to the user to help them see any biases in their 
interpretation of a scene, and to the system itself to 
help it understand how people respond to varying types 
of scenes.40
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Figure 9.  Classes of factors that converge in the forging of an emotional display. The goal is for 
the system to consider context to decompose observable state into contributing components.
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Metrics to quantify how well the system performs 
in a naturalistic setting, like a conversation, must be 
defined in stride with development. Basic metrics gauge 
sensing and processing accuracy, such as the area under 
the receiver operator characteristic curve for detection 
of facial and ocular actions. Advanced metrics gauge 
the accuracy of the system at determining, for example, 
whether an apparent expression is due to an environ-
mental change versus an emotional display.

The system was developed in the DISC-o, the Dyadic 
Interaction Studies Co-Operative, in APL’s Intelligent 
Systems Center. This space is dedicated to the study of 
the social exchanges between agents engaged in one-
on-one interaction. It is equipped with XR development 
hardware and software and various psychophysiologi-
cal sensors. Contact sensor modalities in the DISC-o 
include functional near-infrared spectroscopy (fNIRS, 
now being upgraded to double the channels and enable 
hyperscanning, or the simultaneous collection from two 
participants), electromyography (EMG), electrocardi-
ography (EKG), electroencephalography (EEG), photo
plethysmography (PPG), electrooculography (EOG), 
electrodermal activity (EDA), and respiration sensors. 
Standoff sensor modalities include thermal, hyperspec-
tral, radio frequency (RF), time-of-flight infrared (TOF-
IR) depth sensors, eye-safe lidar, and pupillometry. It is 
possible to append each of these sensors onto the plat-
form, some of which was accomplished with the Novel 
Perception project (see the article in this issue).

Assessing multiple faces simultaneously is very diffi-
cult, even for those most adept. See the video at https://
www.jhuapl.edu/Content/techdigest/videos/multiplex-
microexpressions.mp4 for a demonstration. For screen-
ing purposes, the system could be extended to aid the 
user in detecting anomalous reactions to a query broad-
cast to a group of individuals.

CONCLUSION: APPLICATION OPPORTUNITIES
Success in many fields depends on skilled understand-

ing of social signals. The XR social prosthesis system was 
initially developed for intelligence interviewers and police 
officers, who could use the system to better detect decep-
tion. Deception is detected through a combination of 
facial expressions, body language, voice, verbal content, 
and verbal style,41 in addition to other psychophysiologi-
cal signals.42 Currently, nonmechanical deception detec-
tion is taught through in-person seminars and online 
interactive software, but how much this training gener-
alizes to new situations is an open question. XR could 
increase the speed of skill acquisition, improve retention, 
and help students generalize what they have learned. 
Most people can detect deception only at chance levels,43 
and lengthy training is often required to improve this 
ability. Another application in this domain is to improve 
skills in threat assessment and conflict de-escalation and 

resolution. For example, the system could help train offi-
cers to recognize and overcome the impact of stress on 
perception of emotion. These skills would also benefit 
other fields, such as diplomacy and business, where nego-
tiation is important. The system may also help inform 
the development of robotic autonomous systems that 
can adjust their behavior based on feedback from subtle 
changes in their human partners’ psychophysiology.44

This system also has applications in health care. 
For example, practitioners could use it to improve the 
speed and accuracy of emotion assessment. With sup-
port in recognizing and responding to patients’ nonver-
bal communication, practitioners may better develop 
bedside manner and rapport with patients to achieve 
favorable interaction outcomes. Building such alliances 
with patients is particularly important for psychothera-
pists and/or physicians, for whom XR shows promise as a 
training modality.28

The system might also be used to help restore func-
tion of patients experiencing social deficits as a result 
of a traumatic brain injury or cognitive decline, or of 
individuals along the autism spectrum. Deficits in any 
of the underlying components of emotional awareness 
can lead to a variety of dyadic and social challenges and 
diminished quality of life. Researchers have examined 
the feasibility of wearables to assess the functioning of 
individuals along the autism spectrum, and initial results 
are encouraging.45 Future iteration of IN:URfACE may 
include means of objectifying the Social Responsiveness 
Scale, long considered a standard in the assessment of 
social functioning in individuals along the autism spec-
trum.46 The system could also be adapted for clinicians 
or caretakers who interact with these specialized popu-
lations to assist them in interpreting social signals and 
emotional displays on an individualized basis. To explore 
these applications, the team has engaged with potential 
partners, including the Kennedy Krieger Institute and 
The Arc of the United States, and completed a survey 
on assistive technologies for individuals with intellec-
tual and developmental disabilities.

The convergence of biology, psychology, and tech-
nology inevitably generates concerns about the ethics 
of human performance modification and augmentation. 
Exploring the efficacy of wearable technologies to both 
better quantify performance on emotion-laden cogni-
tive tasks (either in a laboratory and/or naturalistic set-
ting) and help qualify emotional experience for those 
with deficits can lead to a deeper understanding of affect 
across a broader range of capabilities. Few technologies 
are more promising than the highly sensorized variants 
of XR, like the system described herein, for such pur-
poses, but far more research and technological develop-
ment are required.
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