
P. D. Curtis et al.

Johns Hopkins APL Technical Digest, Volume 35, Number 1 (2019), www.jhuapl.edu/techdigest58

Traffic Generation System for the Defense
Advanced Research Projects Agency
Spectrum Collaboration Challenge

Peter D. Curtis, Anthony T. Plummer Jr., J. Emery Annis, and William J. La Cholter

ABSTRACT
The Defense Advanced Research Projects Agency (DARPA) Spectrum Collaboration Challenge
(SC2) required competitors to develop shared spectrum solutions for next-generation communi-
cation systems. To enable competitors to test their designs and DARPA to measure and evaluate
their utility, the Johns Hopkins University Applied Physics Laboratory (APL) designed and built a
wireless research test bed called the Colosseum. One of its components, the Traffic Generation
System, enabled on-demand generation and logging of Internet Protocol (IP) version 4 (IPv4) traf-
fic in the Colosseum. The Traffic Generation System simulated a set of network applications run-
ning simultaneously on a group of peer nodes, such as a video conferencing application connect-
ing four participants. The Traffic Generation System provided a continuous and unpredictable
stream of traffic so that competitors could be measured against a maximum expected traffic
flow transmitted through their radios with no possibility of gaining an unfair advantage. IP traffic
provides good evaluation metrics because IP packets can be counted, and statistics such as data
throughput, latency, jitter, and loss can be calculated. This article discusses the software, hard-
ware, and networking design of the Traffic Generation System.

ment across a set of collaborative intelligent radio net-
works (CIRNs). The Colosseum’s resources included
software-defined radios (SDRs), a wireless channel emu-
lator, emulated backhaul networks, data streams repre-
senting realistic user applications, and an emulated GPS
service. The Colosseum provided services for research
(e.g., a controlled testing environment and secure data
storage) and competition (e.g., scorekeeping).

Fundamental to being able to evaluate competitors’
designs in the Colosseum was having realistic traffic

INTRODUCTION
The Defense Advanced Research Projects Agency’s

(DARPA) Spectrum Collaboration Challenge (SC2)
inspired competitors to design solutions enabling radios
to collaborate so that they could share, and therefore
more efficiently use, the congested radio frequency (RF)
spectrum. In support of SC2, APL designed and built a
wireless research test bed, known as the Colosseum. (See
the article by Coleman et al. in this issue for an overview
of the Colosseum.) The test bed resources facilitated
research and testing in autonomous spectrum manage-

http://www.jhuapl.edu/techdigest

Traffic Generation System for the DARPA Spectrum Collaboration Challenge

Johns Hopkins APL Technical Digest, Volume 35, Number 1 (2019), www.jhuapl.edu/techdigest 59

flows between radios to measure the effectiveness of
competitors’ algorithms for sharing the RF spectrum.
User Datagram Protocol (UDP) over Internet Protocol
(IP) version 4 (IPv4) traffic was generated, collected,
and measured between each competitor’s network of
nodes. A competitor’s transmitting node received a
stream of data that it had to send to a receiving node.
That received traffic could be compared against the data
originally sent by the source to evaluate the quality of
transmission. IP traffic provides good evaluation met-
rics because each packet can be counted to determine
packet throughput, packet latency and jitter, and packet
loss. Competitors used these metrics during practice to
improve the performance of algorithms and ensure con-
nectivity of the nodes. DARPA used the metrics during
competitions to evaluate and compare the performance
of competitors’ radios.

APL designed and built the Traffic Generation
System to enable on-demand generation and logging
of IP traffic between CIRNs in the Colosseum. APL
custom-built this system, rather than relying on a com-
mercial product, to meet the competition’s unique
requirements and because of the implementation flex-
ibility offered by a custom system. The Traffic Genera-
tion System did, however, use the open-source software
Multi-Generator (MGEN) developed by the Naval
Research Laboratory (NRL),1 to generate controlled IP
traffic configured with different traffic profiles. When
IP traffic was requested for an experiment, the system
retrieved the MGEN traffic profile file specified in the
experiment configuration and instantiated the MGEN
application to generate, receive, and log the transmit-
ted IP traffic between CIRNs. The MGEN application
generated unpredictable content, so competitors had to
use their radios, rather than caching or predictive algo-
rithms, to ensure that the receiving radios had received
all content correctly.

REQUIREMENTS
Competitors deployed and executed their algorithms

on a network of standard radio nodes (SRNs) in the Col-
osseum. (See the article by White at al. in this issue for
more on SRNs.) To evaluate efficiency and collabora-
tion among concurrent users, each competitor SRN was
required to exchange data within its network across the
RF Emulation System. The Traffic Generation System
provided data in the form of UDP over IPv4. The Traf-
fic Generation System provided an application-layer ser-
vice to SRNs, from which each SRN could prioritize and
transmit data streams.

DARPA created several scenarios in which competi-
tors tested, and DARPA evaluated, their designs. These
scenarios mimicked real-world situations and obstacles
that wireless communications system would face. (See
the article by Coleman et al. in this issue for more on

the SC2 scenarios.) Scenario files specified application
traffic flows, such as video and voice-over-IP (VoIP), as
well as profiles for traffic, including steady, bursty, or
randomly distributed patterns. Each scenario defined
the specific traffic among a set of SRNs. For example,
in one scenario a VoIP stream might have had a higher
priority than a file transfer stream.

Given the important role of the Traffic Gen-
eration System in Colosseum, it had to meet several
requirements:

•	 The system had to emulate IPv4 and UDP.

•	 The system had to be flexible so that it could gen-
erate IP flows capable of emulating specific applica-
tions and user network traffic. It had to be possible
to specify flows with a given source and destination
UDP port, packet size, and packet rate.

•	 The system had to support the generation of mul-
tiple simultaneous flows. Each flow had to be defined
with a pair of source and destination SRNs.

•	 The Traffic Generation System had to be com-
manded by the Colosseum Resource Manager
and support traffic for 128 SRNs simultaneously
without any performance degradation. (See the
article by Mok et al. in this issue for more on the
Resource Manager.)

Each generated packet had the following requirements:

•	 Packets had to be capable of being marked with
Differentiated Services Code Point (DSCP) and
type of service (TOS) values for quality of service
(QOS) queue processing. Some flows could be
transmitted with higher priority than others and
were expected to be received without degradation
to performance, regardless of the current load on
the system.

•	 Packets had to be tagged with a key-hash message
authentication code (HMAC) using keys cryp-
tographically randomly generated and securely
supplied to the MGEN application prior to instan-
tiation. This verified that the packet contents could
not have been guessed or manipulated, which
ensured competition integrity.

•	 Packets were required to include the transmis-
sion timestamp, flow ID, and flow-specific packet
sequence numbers. The flow ID was used for map-
ping flows to SRNs. The transmission timestamp and
sequence numbers supported calculating throughput
rate, latency, jitter, and loss. All generated traffic had
to be easily logged and measured to provide statistics
for scoring and visualization systems. Flows had to
be logged on a per-packet basis.

http://www.jhuapl.edu/techdigest

P. D. Curtis et al.

Johns Hopkins APL Technical Digest, Volume 35, Number 1 (2019), www.jhuapl.edu/techdigest60

•	 Statistics had to be calculated per flow, per SRN,
or per team. All log files and calculated statistics
needed to be available to competitors during prac-
tice sessions and in scoring and visualization systems
during matches.

•	 Packet payload had be randomized to avoid any cach-
ing or compression algorithms and to ensure fairness.

TRAFFIC GENERATION SYSTEM ARCHITECTURE
The Traffic Generation System delivered on-demand

UDP datagrams to SRNs for routing over wireless com-
munication channels between SRNs (through the RF
Emulation System; see the article by Barcklow et al.
in this issue for more on this system). The datagrams
were received back by the Traffic Generation System
so it could calculate packet statistics by measuring the
offered packet load, packet content, and packet recep-
tions. The Colosseum’s primary traffic generator appli-
cation was MGEN, an open-source IP traffic generator
that creates real-time network traffic that can be logged
and received for analysis.

To support a large number of simultaneous traffic
generation requests with centralized control, the Traf-
fic Generation System had a single traffic controller and
multiple traffic generators, each running on a dedicated
server. The traffic controller allocated traffic resources,
orchestrated traffic allocation and de-allocation, and
monitored the health of all traffic generators. Traffic
generators provided the traffic resources and managed
the collection and distribution of traffic logs. Traffic
resources were generated and consumed in Docker con-
tainers,2 each encompassing a single MGEN application
for either transmission or reception, and multiple dedi-
cated server devices for hosting the Docker containers.
Figure 1 is a diagram of the Traffic Generation System.
The Traffic Generation System’s innovative design
approach enabled a scalable and flexible architecture
that could support the diverse requirements of the
competition. The system needed to facilitate undefined
future traffic profiles, a varying number of simultaneous
SRNs traffic flows, and performance targets.

The traffic controller received requests from the
Resource Manager during automated (Colosseum-
controlled) experiments or from SRNs during manual

Resource Manager

SRN 1
CLI

Automated
requests

Manual requests

Traf�c generator 1

Docker
container

MGEN
TX

Docker
container

Traf�c generator 2

Docker
container

MGEN
TX

Docker
container

MGEN
RX

Traf�c generator 3

Docker
container

MGEN
TX

Docker
container

MGEN
RX

Traf�c generator 4

Docker
container

MGEN
TX

Docker
container

MGEN
RX

RF Emulation System

•••

•••
SRN 128

tr0

SRN 3

tr0

SRN 2

tr0

SRN 1

tr0

SRN 2
CLI

SRN 3
CLI

SRN 128
CLI

Management network
Traf�c network
RF connection

Resource Manager

RF Emulation System

MGEN
RX

Traf�c controller

Figure 1.  Traffic system block diagram. The traffic controller received traffic requests from the Resource Manager or SRNs and deter-
mined the appropriate allocation of containers on traffic generation servers. The traffic generators sent IP traffic to be serviced by the
SRNs over the RF Emulation System.

http://www.jhuapl.edu/techdigest

Traffic Generation System for the DARPA Spectrum Collaboration Challenge

Johns Hopkins APL Technical Digest, Volume 35, Number 1 (2019), www.jhuapl.edu/techdigest 61

(user-controlled) experiments via a management net-
work. Users on SRNs used the Command Line Inter-
face (CLI) application to send traffic requests (see the
article by White et al. in this issue). The traffic con-
troller stored and managed traffic requests and traf-
fic profiles to support experiments. The traffic profiles
were defined within a scenario and were aligned to RF
channel conditions. These scenarios were preloaded in
the traffic controller and were selected by callers to the
system. After receiving a request, the traffic controller
sent commands to multiple traffic generation servers
that managed Docker containers and MGEN applica-
tions to generate IP traffic for simulations. Each traffic
generator could send or receive IP traffic to any SRN in
the Colosseum. The SRNs received traffic via the traffic
network on the tr0 interface (see the article by White et
al. in this issue) and routed the data over RF through the
RF Emulation System.

The start of traffic depended on the mode of opera-
tion. In automated mode, traffic resources were allo-
cated and instantiated automatically alongside all other
required systems for the automated experiment. The
Traffic Generation System alerted the Resource Man-
ager of successful instantiation. When all other systems
were prepared in the Colosseum, the Resource Manager
sent a second message to initiate the sending of IP traffic
to the SRNs. In contrast, during a manual experiment,
after receiving a request from a user on an SRN, the traf-
fic controller immediately started the IP traffic once the
initialization steps were complete.

Each MGEN instance either generated or received
one or more UDP flows between a pair of source and
destination SRNs. Figure 2 shows the logical data path
for a pair of sending and receiving MGEN instances.
Two such send/receive pairs could be used to emulate
bidirectional traffic flows. The set of flows between two
SRNs was identified as an application. Each application
required a transmitter container and a receiving con-
tainer. When viewing the system from an Open Systems
Interconnection (OSI) model3 perspective, the contain-
ers and the MGEN program acted as the application
and transport layers, while the SRNs were responsible
for routing the offered traffic between the two sending
and receiving MGEN containers.

Figure 3 is a diagram of the traffic generation serv-
ers and SRN connections. To support its required traf-
fic load, the Colosseum included multiple dedicated
traffic generation servers. Each server could support a

configurable amount of Docker containers, translating
to hundreds of simultaneous traffic applications. Each
container was created and destroyed as needed so that
system resources could be reused. Each MGEN con-
tainer was connected to a specific virtual local area
network (VLAN) on the traffic servers that were dedi-
cated to a specific SRN. Each sender SRN received its
MGEN traffic from its own traffic generation source,
and the receiver SRN sent its MGEN traffic to a traf-
fic generation sink. The traffic generation source and
sink containers were not required to be on the same
server. The figure shows an example traffic flow from
a source Docker container, through SRN 1, through
the RF Emulation System, through SRN 2, and back to
the sink Docker container. The source IP address of an
MGEN application was determined by the ID of the cor-
responding sender SRN, and the destination IP address
was determined by the ID of the corresponding receiver
SRN. Each SRN was assigned a /24 subnet for traffic
generation, allowing for over 200 MGEN sending or
receiving instances per SRN. An SRN was connected to
traffic generator sources or sinks by a VLAN identified
by the SRN’s ID. Each VLAN spanned a traffic network
composed of 10-Gb networking modules in a blade chas-
sis network backplane and Big Switch software defined
networking elements. The Traffic Generation System
comprised the traffic network as well as the physical
servers and containers on which SRNs and traffic gen-
eration sources and sinks resided. The physical servers
connected to the traffic network via a 10-Gb connec-
tion. The SRNs received traffic on the tr0 interface
and routed the data through Universal Software Radio
Peripheral (USRP) software defined radios over the RF
Emulation System.

TRAFFIC CONTROLLER
The traffic controller was the service responsible for

handling traffic requests. To do so, it had to maintain
reservation and traffic scenario state for each session
running on the Traffic Generation System. It made the
necessary procedure calls to the traffic generation serv-
ers to facilitate MGEN traffic flows being sent between
the SRNs specified in the request.

The traffic controller was a Python Flask REST (rep-
resentational state transfer) application programming
interface (API) web service4 running on uWSGI (Unbit

Traf�c generator Traf�c generator

MGEN SRN SRNUDP RF UDP MGEN

Figure 2.  Logical traffic generation data path. UDP traffic flowed from an MGEN application in a
source traffic generator to a source SRN. The traffic then flowed over RF to a sink SRN and back to
a sink traffic generator.

http://www.jhuapl.edu/techdigest

P. D. Curtis et al.

Johns Hopkins APL Technical Digest, Volume 35, Number 1 (2019), www.jhuapl.edu/techdigest62

Web Server Gateway Interface) middleware5 and an
NGINX reverse proxy.6 The REST API accepted
requests to start traffic, terminate traffic, and retrieve
traffic request status. Traffic requests for automated
experiments were made by the Resource Manager, and
traffic requests for manual experiments came from
the SRNs.

Each traffic request progressed through a series of
states (Figure 4). The general life cycle of a request in
the Traffic Generation System was as follows:

1.	 Requested state

	J A traffic request was received from either the
Resource Manager or the SRN CLI.

	J The request’s parameters were validated for cor-
rectness.

	J The SRNs specified in the request were verified
against the Resource Manager’s table of active
reservations.

	J Allocation algorithms were run (SRN mapping,
container allocation, traffic generation alloca-
tion).

2.	 Allocating state

	J The traffic controller commanded the appropri-
ate traffic generators to initialize source and des-
tination Docker containers.

3.	 Ready state

	J Waited for scenario start message.

4.	 Active state

	J When a start-traffic message was received
(during a manual experiment) or executed by
the traffic controller automatically (during an
automated experiment), a message was sent to
the traffic generators to initiate the start of the
MGEN application. This started flowing traffic
to the SRNs.

Traf�c generator 1 (blade server)

Docker send container

MGEN App

Docker listen container

MGEN App

Docker send container

MGEN App

Docker listen container

MGEN App

Docker send container

MGEN App

Docker listen container

MGEN App

Docker send container

MGEN App

Traf�c generator 2 (blade server)

Docker listen container

MGEN App

Dell blade chassis

Blade
chassis
network

backplane

USRP

Traf�c source

Traf�c
sink

SRN 1

LXC container

SRN 2

tr0
interface

LXC container

tr0
interface

SRN source

SRN sink

USRP

VLAN

VLAN

VLAN

VLAN

VLAN

VLAN

eth1

eth1

VLAN

VLAN

USRP

SRN 3

tr0
interface

LXC container

SDN
traf�c

network
switch

Physical
VLAN
Logical �ow

RF Emulation System

Figure 3.  Traffic generation servers and SRN connections. The figure shows an example traffic flow from a source Docker container,
through SRN 1, through the RF Emulation System, through SRN 2, and back to the sink Docker container.

http://www.jhuapl.edu/techdigest

Traffic Generation System for the DARPA Spectrum Collaboration Challenge

Johns Hopkins APL Technical Digest, Volume 35, Number 1 (2019), www.jhuapl.edu/techdigest 63

5.	 De-allocating state

	J A de-allocation request was later received from
the Resource Manager or SRNs.

	J The traffic controller commanded the traffic
generators to stop MGEN instances, stop and
delete Docker containers, and copy MGEN log
files to the network-attached storage (NAS) for
future analysis.

When scenarios were updated and a scenario reload
request was sent, the traffic controller copied updated
scenario data directly from the NAS onto the local file
system and reran all fixture scripts to populate the data-
base with the updated scenarios.

The process of allocating traffic generation containers
involved associating sending and receiving IP addresses,
traffic direction, traffic generation host, and session-
identifying tokens for each scenario application speci-
fied in the node map. The container status, memory,
CPU, and throughput statistics were also tracked.

The allocation process began by taking the previ-
ously supplied node map and filtering for any scenario
applications in the current session that used these nodes
in their send or receive positions. Objects were then cre-

ated holding the aforementioned fields for both send and
receive containers (though no traffic generation con-
tainers were actually created at this stage).

Before traffic generation containers could be started,
each active container had to be associated to a traffic
generation server by using a greedy best-fit strategy that
chose the traffic generator with the fewest containers
allocated to it.

TRAFFIC GENERATOR
The main purpose of the traffic generators was to

host the Docker containers and MGEN applications
to generate and receive UDP traffic to and from SRNs,
enabling competitors to test their algorithms. The traf-
fic generator, similar to the traffic controller, used a
Python Flask REST web service running on a uWSGI
middleware and an NGINX reverse proxy. The traffic
generator accepted requests to manage Docker contain-
ers, including creating and destroying Docker containers
and starting and stopping MGEN within the contain-
ers. Whereas the traffic controller service managed the
lifetime and validation of competitor scenarios and the
assignment to resources on all traffic generators, each
traffic generator’s service managed the resources it hosts,
without awareness of competitors.

There were three main phases of an MGEN lifetime,
controlled by the traffic generator. A summary of the
traffic generator portion of that flow is detailed below:

1.	 Receive requests to start Docker containers.
The traffic generator service started the number of
requested Docker containers hosting the MGEN
service.

2.	 Receive request to start traffic. After the con-
tainers were created, a “start traffic” command was
received, which triggered the MGEN application to
start inside the Docker container. The MGEN appli-
cation in the sender container would start to send
traffic to source SRNs and the listener container
would start to receive traffic from destination SRNs.

3.	 Receive a stop request for traffic. When this mes-
sage was received, the traffic generator stopped the
MGEN application running inside the container.
The traffic generator then destroyed the container
and copied the MGEN log files that stored collected
traffic data to an external NAS.

The traffic generator Docker containers were an
Ubuntu base image with the MGEN application added.
Docker containers were used to enable on-demand and
simultaneous creation of traffic generation sources. The
traffic generator service interacted with MGEN via an
execution interface in the Docker container, sending
commands to start or stop MGEN. Docker was man-
aged by the traffic generation software using the Python
Docker API library.

Requested

Invalid reservation,
invalid mapping,

resources unavailable

Allocating

Ready

Active

De-allocating

Allocation
error

Error

Traf�c generator error

Request submitted

Request is well formed

Ready received

Generation activated

Generation terminated

Figure 4.  Traffic controller session flow diagram. A request
through the traffic controller was first validated and verified, then
a traffic generator was allocated and activated, and finally after
the request completed, the traffic generator was de-allocated.

http://www.jhuapl.edu/techdigest

P. D. Curtis et al.

Johns Hopkins APL Technical Digest, Volume 35, Number 1 (2019), www.jhuapl.edu/techdigest64

Each traffic generator was configured with 128 Linux
sub-interfaces to segment the physical Ethernet VLAN
(802.1Q) tagged trunk port. Using the Linux Docker
container macvlan network driver,7 128 corresponding
virtual Linux bridges were established. These bridges
were used to connect each corresponding sub-interface
to any instantiated Docker container. Each Docker
network was assigned a subnet ID, gateway IP address,
VLAN ID, and parent sub-interface. When a Docker
container was created, it was assigned an IP address
on this subnet and connected to the Linux bridge.
Note that containers were only connected to a single
Docker network.

The MGEN application generated, received, and
logged all IP traffic. A customized MGEN binary was
provided to support payload randomization. This custom
binary was developed to offer increased integrity for IP
traffic by integrating a key supplied HMAC attached
to each packet that could be checked by receiver using
a supplied secret file provided by the traffic controller.
The MGEN binary also
generated a random payload
for every packet to prevent
packet compression from
being used to artificially
inflate throughput metrics.

MGEN configuration
of traffic flows could be
customized by scenario
designers in many different
ways. MGEN supported the
description of IP traffic via
command line arguments or
through a scripted execution
format. The scripted opera-
tion supported the high-
fidelity traffic requirements
of the SC2 competition,
so it was integrated into
the scenario definitions.
MGEN scripts allowed for
multiple simultaneous num-
bered flows to be established
within a single application.
Flows could then be turned
on and off or modified at
different times throughout
the script.

The Traffic Genera-
tion System’s ability to log
and process traffic statistics
was vital to operation. The
MGEN application gener-
ated log data for each packet
sent or received, includ-
ing flow ID, flow sequence

number, source and destination IP, port number, packet
size, and timestamp. The NRL-developed TRace Plot
Real-time (TRPR) application8 made it possible to
quickly process these logs and plot bit-rate throughput,
latency, jitter, and loss.

TRAFFIC SCENARIOS
A traffic scenario represented a multi-party network

application running across two or more network nodes.
For example, a traffic scenario might have simulated
a UDP-based H.323 application that provided multi-
participant video conferencing. The scenario defined
the network traffic for each participant and the over-
all duration of the conference. A competitor’s group
of SRNs represented the computers used by each par-
ticipant. The competitor’s software on each SRN facili-
tated data transmission over the RF Emulation System
(physical layer) over which the IP-based application had
to communicate.

{
	 “traffic _ scenario _ id”: “1”,
	 “description”: “Video, HTTP, and FTP traffic involving 5 Nodes”,
	 “applications”: [
	 {
		 “app _ id”: 1,
		 “description”: “Netflix between Node 1 and 2”,
		 “throughput _ max _ bps”: 5000000,
		 “send _ node _ id”: 1,
		 “receive _ node _ id”: 2,
		 “type”: “MGEN _ App _ Name”,
		 “name”: “Netflix1”
	 },
	 {
		 “app _ id”: 2,
		 “description”: “Netflix between Node 2 and 3”,
		 “throughput _ max _ bps”: 5000000,
		 “send _ node _ id”: 2,
		 “receive _ node _ id”: 3,
		 “type”: “MGEN _ App _ Name”,
		 “name”: “Netflix1”
	 }
]
}

Figure 5.  Sample traffic scenario JSON file. Each application described a traffic flow between a
sending and receiving node.

_ Start capturing traffic at t=0.0 seconds

0.0 LISTEN UDP 5005

_ Start the traffic at t=15.0 seconds

15.0 ON 1 UDP SRC 4005 DST dst _ ip/5005 PERIODIC [20 1024]

_ Stop the traffic at t=86400.0 seconds

86400.0 OFF 1

Figure 6. MGEN script. A single UDP flow with a source port of 4005, destination port of 5005,
sending traffic at 20 messages/second with 1024-byte payload is configured.

http://www.jhuapl.edu/techdigest

Traffic Generation System for the DARPA Spectrum Collaboration Challenge

Johns Hopkins APL Technical Digest, Volume 35, Number 1 (2019), www.jhuapl.edu/techdigest 65

Scenarios were repeatable, but not be predictable—
i.e., a competitor should not have been able to record
traffic during practice and simply replay it during com-
petition. Scenarios simulated different network traffic
bandwidth requirements and profiles, including con-
tinuous streams or bursts, lossy or lossless data, and the
presence or absence of flow control.

As a complement to RF scenarios, which represented
the physical environment in which a group of radios
had to operate, traffic scenarios represented the kinds
of communications that had to occur in those environ-
ments. RF and traffic scenarios together modeled a use
case, such as first responders coordinating a response by
using mobile radios while they moved through an urban
environment that included buildings and lots of back-
ground and changing RF traffic.

Example Scenario
Figure 5 is a partial view of a JSON file for a five-node

scenario including three different types of traffic (video,
HTTP, and File Transfer Protocol, or FTP). Each appli-
cation described a traffic flow between a sending and
receiving node. The traffic pattern characteristics for
each application were described in the named MGEN
script files. One MGEN script could describe any
number of traffic flows over the duration of the scenario.
The MGEN script shown in Figure 6 demonstrates how
sending and receiving packets may be configured.

Once the MGEN send command was started, the
send MGEN file would start to send UDP traffic from
source port 4005 to a destination IP dst_ip to destina-
tion port 5005 after 15 seconds. The key dst_ip was
replaced with the traffic generator destination IP address

Figure 7.  Packet capture. A single packet capture within the flow from source to destination highlights that the IP
traffic is IPv4 and possesses the required fields, such as a DSCP TOS value of 0x60.

http://www.jhuapl.edu/techdigest

P. D. Curtis et al.

Johns Hopkins APL Technical Digest, Volume 35, Number 1 (2019), www.jhuapl.edu/techdigest66

attached to the destination SRN network. There was
a periodic traffic pattern at 20 messages/second with
1,024-byte payload for each message. After 86,400 sec-
onds (or 24 hours), the MGEN traffic stopped. For the
MGEN listen command, the container listened on UDP
port 5005 immediately and continued until it received a
stop request from the traffic generator web service.

A single packet capture within the
flow from source to destination high-
lights that the IP traffic is IPv4 and
possesses the required fields, such as a
DSCP TOS value of 0x60 (see Figure 7).
Following the UDP header is a payload
constructed by MGEN that contains
more fields to satisfy traffic generation
requirements (see Table 1).

TRAFFIC SERVER PERFORMANCE
The APL team executed a few experi-

ments to evaluate the Traffic Generation
System’s ability to provide the required
IP traffic for the Colosseum. The first
experiment aimed to determine the
maximum throughput a single Docker
container running MGEN can generate.
This represented a single application
defined in a traffic scenario file. The
metric provided scenario developers the
limit for a single application flow that
could be generated by the Traffic Gener-
ation System. A traffic scenario was cre-
ated with a single UDP flow, 1024-byte
packets, and periodic transmit pattern.
The packet-per-second rate was varied
to increase the offered load in the con-
tainer. Each run used two Docker con-
tainers hosting MGEN applications to
send the specified traffic. Figure 8 shows
the results of comparing the measured
throughput to the expected throughput
given the offered load. As shown in the
figure, the container was able to main-
tain the expected throughput of 1,000
and 25,000 packets per second. For
larger packets per second, MGEN was
not able to sustain the offered load. It
was determined that a single container
could support approximately 25 MB/s of
offered load.

The second experiment sought to
determine the maximum traffic a traf-
fic generator server could produce.
This metric was important because
the number of traffic generator serv-
ers could be scaled based on the traffic

requirements. Based on the results from the experi-
ment described above, the traffic in a single container
was fixed to 25 MB/s and the number of simultaneous
maximum-traffic-generating containers was varied.
This experiment showed how much traffic a single
server could generate while maintaining the offered
rate. Figure 9 illustrates the results of measuring the

Table 1.  MGEN payload fields of a sample packet representing satisfaction of
select Traffic Generation System requirements

Field Value

HMAC 0x7B377289159B1CAE0554FC530141384A0BECFE97

TX timestamp 1561389524.24184

Flow ID 5005

Flow sequence number 5127

Randomized payload 548 bytes (entropy of 95.2%)

Messages per second

80

60

40

20

0
1,000 25,000 35,000 50,000 60,000 75,000

Expected rate average (MB/s) TRPR rate average (MB/s)

To
ta

l t
hr

ou
gh

ou
t (

M
B/

s)

Figure 8.  Single link throughput per container. A single container was determined
to support a maximum of approximately 25 MB/s of offered load.

Number of transmit containers

150

100

50

0
1 2 3 5 6 7

To
ta

l t
hr

ou
gh

ou
t (

M
B/

s)

Expected throughout (MB/s) TRPR total throughout (MB/s)

4 8 9 10

200

250

Figure 9.  Maximum traffic per server. A single traffic generation server was deter-
mined to support a maximum of approximately 100 MB/s of offered load.

http://www.jhuapl.edu/techdigest

Traffic Generation System for the DARPA Spectrum Collaboration Challenge

Johns Hopkins APL Technical Digest, Volume 35, Number 1 (2019), www.jhuapl.edu/techdigest 67

maximum traffic load per server. The test runs showed
that after approximately five containers were trans-
mitting at the maximum rate, MGEN was not able to
sustain the offered load. This means that a traffic gen-
erator server could support approximately 100 MB/s of
offered load.

CONCLUSION
As part of SC2, competitors developed solutions to

share spectrum space effectively and efficiently. To give
competitors a test bed for testing their solutions and to
give DARPA a way to measure how competitors used
and shared spectrum space, APL developed the Colos-
seum, a large test bed, to support the SC2 competition.
The test bed included a custom-built Traffic Generation
System that enabled on-demand delivery, reception, and
logging of IP traffic for competitors in the Colosseum.
IP traffic can provide good evaluation metrics because
IP packets can be counted and statistics such as bit-rate
throughput, latency, jitter, and loss can be calculated.
Throughout the SC2 competition, the Colosseum gen-
erated, collected, and measured IP traffic for all competi-
tor radios. This article discussed the software, hardware,
and networking design of the Traffic Generation System
and reviewed the architecture of the system and how it
fit into the Colosseum. It described the traffic network
that enabled the transport of IP traffic to radio nodes
using an architecture enabled by software defined net-

working. Finally, it discussed the major software compo-
nents, the traffic controller and traffic generator.

ACKNOWLEDGMENTS: We thank Paul Tilghman (DARPA SC2
program manager) and Craig Pomeroy and Kevin Barone
(Systems Engineering and Technical Assistance at DARPA)
for their invaluable collaboration and support. We also
thank the many APL SC2 contributors, whose names are
listed on the inside back cover of this issue of the Digest,
and in particular we acknowledge Robert W. Grimes and
Jeremy G. LaFleur. This research was developed with
funding from the Defense Advanced Research Projects
Agency (DARPA). The views, opinions, and/or findings
expressed are those of the authors and should not be
interpreted as representing the official views or policies
of the Department of Defense or the US government.

REFERENCES
  1“Multi-Generator (MGEN).” US Naval Research Laboratory. https://

www.nrl.navy.mil/itd/ncs/products/mgen (accessed Aug. 30, 2019).
  2“Docker.” https://www.docker.com/ (accessed Aug. 30, 2019).
  3“ISO/IEC 7498-1:1994, Information technology — Open Systems

Interconnection — Basic Reference Model: The Basic Model.” ISO,
1994/1996. https://www.iso.org/standard/20269.html.

  4“REST API tutorial.” https://restfulapi.net/ (accessed Aug. 30, 2019).
  5“The uWSGI project.” uWSGI. https://uwsgi-docs.readthedocs.io

(accessed Aug. 30, 2019).
  6“NGINX.” https://www.nginx.com (accessed Aug. 30, 2019).
  7“Use macvlan networks.” Docker, https://docs.docker.com/network/

macvlan/ (accessed Aug. 30, 2019).
  8TRace Plot Real-time (TRPR) application. US Naval Research

Laboratory. https://downloads.pf.itd.nrl.navy.mil/docs/proteantools/
trpr.html.

Peter D. Curtis, Asymmetric Operations
Sector, Johns Hopkins University Applied
Physics Laboratory, Laurel, MD

Peter D. Curtis is a software engineer in the
Communication and Networking Systems
Group in APL’s Asymmetric Operations
Sector. He has a BS in computer science
and an MS in computer graphics, both

from Mississippi State University. Peter contributed techni-
cal expertise to the design and implementation of the Traffic
Generation System for the DARPA Spectrum Collaboration
Challenge (SC2) Colosseum. His email address is peter.curtis@
jhuapl.edu.

Anthony T. Plummer Jr., Asymmetric
Operations Sector, Johns Hopkins Univer-
sity Applied Physics Laboratory, Laurel,
MD

Dr. Anthony T. Plummer Jr. is the super-
visor of the Spectrum Analysis Section
in the Tactical Communications Systems
Group in APL’s Asymmetric Operations

Sector. He received a BS in electrical engineering from Morgan
State University in 2005 and an MS and a PhD in electrical
engineering from Michigan State University in 2007 and 2011,
respectively. His interests include the design and implementa-
tion of software systems and researching approaches to applying
machine learning to communication and networking applica-
tions. His email address is anthony.plummer@jhuapl.edu.

http://www.jhuapl.edu/techdigest
https://uwsgi-docs.readthedocs.io/
https://docs.docker.com/network/macvlan/
https://docs.docker.com/network/macvlan/
https://downloads.pf.itd.nrl.navy.mil/docs/proteantools/trpr.html
https://downloads.pf.itd.nrl.navy.mil/docs/proteantools/trpr.html

P. D. Curtis et al.

Johns Hopkins APL Technical Digest, Volume 35, Number 1 (2019), www.jhuapl.edu/techdigest68

J. Emery Annis, Asymmetric Operations
Sector, Johns Hopkins University Applied
Physics Laboratory, Laurel, MD

Emery Annis is a communications systems
engineer at APL with a BS in electrical
engineering from the University of Hous-
ton. He is currently studying for a master’s
in electrical engineering with a focus in

communications from Johns Hopkins University. Emery has
contributed to multiple efforts to develop network emulation
environments including an Army Wideband Global Satellite
(WGS) control system, the DARPA SC2 Colosseum, and an
end-to-end networking analysis framework. He regularly con-
tributes to efforts involving RF spectrum coexistence analy-
sis and is interested in applying concepts from both the RF
communications domain and IP networking to develop new
standards and architectures centered on an intelligent con-
trol plane and network maneuver. His email address is emery.
annis@jhuapl.edu.

William J. La Cholter, Asymmetric Oper-
ations Sector, Johns Hopkins University
Applied Physics Laboratory, Laurel, MD

William J. La Cholter is a senior computer
scientist in APL’s Asymmetric Operations
Sector. He has a BS in computer science
and philosophy from the University of
Maryland and an MS in computer sci-

ence from Johns Hopkins University. Since 2011 he has been
a member of the Senior Professional Staff at APL, where he
has conducted research and development (R&D) in software
diversity, cyber operations, malware attribution, and informa-
tion security; performed security assessments of US govern-
ment systems; and developed software for many domains and
missions. For the DARPA SC2 program, Mr. La Cholter was a
lead for a phase 1 RF Emulation System subteam, developer for
the Traffic Generation System, and a software quality subject
matter expert. He has led other APL teams as a section supervi-
sor, project manager, and technical lead. Before joining APL,
he conducted R&D in law enforcement systems, cross-domain
solutions, security incident response, applied cryptography,
adaptive networks, firewalls, and high-assurance operating sys-
tems. His email address is william.la.cholter@jhuapl.edu.

http://www.jhuapl.edu/techdigest
mailto:Emery.Annis@jhuapl.edu
mailto:Emery.Annis@jhuapl.edu

	Traffic Generation System for the Defense Advanced Research Projects Agency Spectrum Collaboration Challenge
	Peter D. Curtis, Anthony T. Plummer Jr., J. Emery Annis, and William J. La Cholter
	ABSTRACT
	INTRODUCTION
	REQUIREMENTS
	TRAFFIC GENERATION SYSTEM ARCHITECTURE
	TRAFFIC CONTROLLER
	TRAFFIC GENERATOR
	TRAFFIC SCENARIOS
	Example Scenario

	TRAFFIC SERVER PERFORMANCE
	CONCLUSION
	ACKNOWLEDGMENTS
	REFERENCES
	Author Bios
	Table 1. MGEN payload fields of a sample packet.
	Figure 1. Traffic system block diagram.
	Figure 2. Logical traffic generation data path.
	Figure 3. Traffic generation servers and SRN connections.
	Figure 4. Traffic controller session flow diagram.
	Figure 5. Sample traffic scenario JSON file.
	Figure 6. MGEN script.
	Figure 7. Packet capture.
	Figure 8. Single link throughput per container.
	Figure 9. Maximum traffic per server.

