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ABSTRACT
This article proposes a resilience engineering approach to augment reliability analysis of complex 
autonomous systems. This change of approach does not imply a change in reliability metrics per se 
but requires the addition of resilience considerations to reflect the potentially extreme range of oper-
ating environments. In essence, the performance metrics that form the basis for reliability (i.e., pre-
venting anticipated system failures) will have to incorporate measures of a system’s resilience, both 
to rare or unanticipated disturbances and to compromised functioning, as an integrated capability.

ing expected is typically defined in relation to assump-
tions underlying the analysis of peer-level or higher-level 
functions that are linked to the subsystem under study. 
In this way, reliability allows subsystem capability analy-
ses to be mutually decoupled into composable units that 
can be integrated readily into a full-system assessment. 
This construct fails to capture the mitigating effects of 
subsystems necessarily integrated into autonomous sys-
tems whose function is to sense and respond to events 
that put its functioning at risk.

Engineering architectures have been defined for an 
unmanned commercial shipping concept known as Mari-
time Unmanned Navigation through Intelligence in Net-
works (MUNIN), which was developed under a 5-year 
European maritime industry/academic partnership ending 
in 2016 (see http://www.unmanned-ship.org/munin/). 
In the United States, the first medium displacement 
unmanned surface vehicle (MDUSV), named Sea Hunter 
and pictured in Fig. 1, was launched in April 2016 and is 
undergoing operational testing administered by the Office 
of Naval Research. Sea Hunter is the first unmanned ship 
capable of conducting an extended oceangoing voyage in 
completely autonomous mode.

INTRODUCTION
Automation in complex systems implies satisfactory 

performance of a number of linked processes in a chang-
ing environment without human intervention. Perfor-
mance may include processes that control, constrain, or 
limit the physical state of the system. In contrast, auton-
omy implies that performance is self-governed.1 A self-
governing process by its definition requires application 
of rules specified at a level that is more abstract than 
the physical situation. As such, an autonomous system 
requires the following types of processes:

•	 Observation—Both sensing and abstraction of con-
crete events

•	 Orientation—Abstract awareness of operating con-
ditions, both internal and external

•	 Decision—Assessment and selection of alternative 
actions or plans against one or more abstract objec-
tives, constraints, and limits

For any subsystem of a system, reliability is a mea-
sure of probability that the subsystem functions to an 
expected level when employed.2 The level of function-
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Reliability, Resilience, and Autonomous Systems
Systems are typically engineered to meet a stated reli-

ability within a range of operating conditions. Systems 
do not pass acceptance testing if they cannot perform 
reliably at the boundaries of that range of conditions.3 
Additionally, systems are typically delivered with warn-
ings and instructions regarding operation outside the 
defined range, particularly if safety is an issue. Ideally, 
the user of a system ensures that operating conditions 
are within the appropriate limits before and during use 
of the system.

In recent years, interest has grown in creating systems 
that are not only reliable but also resilient (i.e., capable of 
responding to changes in their environment so that they 
can continue to operate).4 Many approaches to resilience 
include human operators to identify potential failure 
conditions and to initiate work-around procedures.

In the case of complex autonomous systems, by con-
trast, a user may not be available to monitor operating 
conditions and to respond by securing any functions 
that pose an undue risk to continued operation or taking 
measures to protect the system physically. Whereas a user 
may be able to anticipate an imminent disruptive event, 
an autonomous system operating for an extended period 
must have resources available to secure its operation and 
to protect itself under a range of conditions far wider 
than its nominal operating range. Meaningful reliability 
measures for autonomous systems, in contrast to tradi-
tional probabilistic risk analysis measures, must be

•	 dynamic, with explicit treatment of disturbance or 
functional anomaly detection, reaction, and recov-
ery processes;

•	 interdependent, with explicit treatment of interac-
tions among contributing factors; and

•	 potentially emergent, with performance factors aris-
ing from complex linkages that defy simplistic causal 
modeling.

Whereas reliability analysis of physical or electronic 
components is understood to be a complex endeavor 
requiring a detailed analysis of the physical processes 
involved in a component’s functioning, the type of 

reliability analysis considered adequate for a system of 
components is typically a more traditional fault tree 
analysis.2 However, this method does not accurately 
account for mechanisms in place to ensure that faults 
are contained and functioning is restored. Instead, fault 
tree analysis relies on an assumption that risk probability 
and risk severity are analytically separable effects. For 
an autonomous system, however, they are generally not 
separable and therefore require a more integrated repre-
sentative model.

Reliability and Control
A useful way to visualize the difference in 

approaches to reliability analysis is to consider the 
difference between open-loop control and closed-
loop control.5 Simple depictions of both are shown in 
Fig. 2. A system whose operation follows a prescribed 
procedure using only initial (feedforward) conditions 
is an open-loop control system. Such a system may 
have synchronization timing, but its operation is not 
influenced by conditions it affects. If a disturbance 
enters the operating environment, the program cannot 
respond to it. The reliability of such a system can be 
captured with a static analysis, such as a fault tree, 
because reliability is related only to the system’s ability 
to perform the set procedure to achieve the desired 
output under the initial conditions and a prescribed 
range of disturbances.

In contrast, in a closed-loop control system, a system 
controller reacts as a function of a desired goal state 
and of feedback regarding observed conditions under its 
influence. In this case, if a disturbance enters the operat-
ing environment, the controller can sense it and respond 
appropriately. The reliability of such a system is related 
to its ability to gain or maintain a state within accept-
able tolerance around the goal. Working through such 
relationships requires a dynamical systems analysis. In 
autonomous systems, where there is no human interven-
tion even at the highest levels of control, every system 
necessarily operates as a closed-loop control system.

Figure 1.  Sea Hunter. (Credit: DARPA.)
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Figure 2.  Open-loop and closed-loop control.
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Resilience Informs Reliability
This article proposes a resilience engineering 

approach to assess the reliable performance of complex 
autonomous systems. This change of approach requires 
a reassessment of the traditional reliability metrics 
both at the system and subsystem levels. The resulting 
resilience-informed metrics are measures of how effec-
tively subsystems can uphold the overall system’s produc-
tive functioning under adverse conditions.

In resilience engineering, a failure is not simply 
accepted as a risk with some contained probability. It 
is instead an event to be assessed for its impact on con-
trolled operation and to be addressed accordingly by 
an integrated subsystem. In this way resilience focuses 
attention on the many small, not yet catastrophic, dis-
ruptions or failures for which recovery is possible and 
potentially necessary. Autonomous systems need to be 
engineered to handle anticipated changes in the operat-
ing environment, including extreme variation in condi-
tions or acute disturbances or disruptions. Autonomous 
systems may also have to respond to changing mission 
needs while in operation. Such changes may redefine 
the nature of their controlled operation or the criteria 
for their success. Even if a system is engineered against 
every anticipated disruption, unanticipated events may 
require the system to maintain or regain control robustly 
on the basis of very limited information.

When resilience is viewed as a process of control, 
whether it is control of system performance, of key aspects 
of the operating environment, or of both, measures of 
resilience for a complex autonomous system are strongly 
coupled to measures of the degree that the system can 
maintain or regain control.6 A system whose performance 
is in control is operating to the full extent of what its oper-
ating environment allows. A system whose performance is 
out of control is operating outside its capacity to limit risk 
to its future performance to an acceptable level.

CONTEXT: AUTONOMOUS SHIPS
Setting requirements for resilience demands a thor-

ough search for situations that pose the greatest risk 
to the system’s safe continued operation. Risk analysis 
scores hazards on their rate or probability of occurrence 
and the severity of consequences given an occurrence. 
Often the probability is rated on a four-to-seven-category 
scale ranging from improbable to frequent,7 where each 
successive category either follows a logistic probability 
scale or traverses a power of 10. Likewise, the severity is 
also rated on a four-to-seven-category scale ranging from 
negligible to catastrophic,7 often following a geometric 
progression of value lost, such as a power of 10. Hazards 
with an unacceptable combination of high probability 
and severity are targeted for engineering development of 
mitigation systems to reduce the overall risk.

Subsystem Functions
To provide a framework to identify hazards to safe 

operation, system functions are organized by functional 
groups with limited linkages between groups. In this 
way, system functions are envisioned as a loosely coupled 
set of subsystems with qualitatively distinct sets of haz-
ards, most of which can be assessed without invoking a 
complex monolithic system model. Common functional 
groups applicable to autonomous ships would likely 
include the following:

•	 Voyage planning, execution, and monitoring

•	 Maneuvering and avoidance

•	 Observation of environment, ships, and other objects

•	 Hull integrity and stability, bilge and ballast

•	 Emergency handling (firefighting, flood control, etc.)

•	 Propulsion and steering

•	 Power generation and distribution

•	 Logging, reporting, and communications

•	 Security and access control

Architectures based on these functional groups have 
been published for the MUNIN concept.8

Operating Conditions
Disruptions to safe operation are likely sensitive to 

one or more external and internal operating conditions. 
To estimate the associated risk accurately, the associated 
probability and severity measures must be assessed under 
all applicable conditions, weighted by the likelihood of 
their occurrence. External conditions are largely random 
with some degree of predictability, but some internal 
conditions may persist, such as a component in a state 
of degraded capability for which restoration, repair, or 
replacement would require human intervention.

Common operating conditions applicable to autono-
mous ships would likely include the following8:

•	 Scheduled unrestricted cruise and maneuvering

•	 Cruise and maneuvering under limitations due to 
mission requirements

•	 Cruise under limitations due to degraded capability

•	 Traffic detection and collision avoidance

•	 Ice or object detection and avoidance

•	 Legally restricted navigation

•	 Weather routing

•	 Low visibility

•	 Loss of communication or GPS
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•	 Propeller fouling

•	 Emergencies (collision, flooding, fire)

Combinations of these conditions provide the con-
text to assess a system’s ability to maintain its essential 
functioning.

ELEMENTS OF RESILIENCE
In resilience engineering, it is necessary to understand 

that events will put the control of system performance 
at risk. It is equally necessary to understand the causes 
of those events in terms that will lead to effective miti-
gation strategies. A model for system performance and 
control must serve as a frame of reference to understand 
issues posed by a range of untoward events, enabling 
identification of the critical measures that determine 
that the system is not in control.

When devising measures, it is preferable to strive for 
simplicity but also to recognize the implications of com-
plex linkages in the system. Simple measures generally 
lead to simpler designs for mitigation, but overly simple 
designs may lack the robustness required to handle the 
expected range of untoward events. The desired model 
for controlled system performance not only informs 
the engineering of mitigation systems but also becomes 
the basis for the system’s own awareness and control 
of state—anticipating events, securing functions, and 
restoring control under stressing or compromised oper-
ating conditions.

In any unplanned and uncontrollable event that 
can be anticipated, there is potential for operational or 
functional failures. These failures can be categorized 
as untoward events, or disturbances, which can lead to 
associated subsequent losses of capability or operational 
capacity, or disruptions. Disturbances will always occur; 
however, disruptions can be avoided.

Three Resilience Strategies
Resilience can be sepa-

rated into three largely dis-
tinct strategies: prevention, 
response, and recovery. 
Their effects are depicted in 
Fig. 3 (adapted from Ref. 4). 
With adequate preparation 
and resources, disruptions 
can be prevented. The mea-
sure of prevention is the 
degree of reduction in the 
frequency of a given dis-
ruption resulting in a loss 
with similar magnitude and 
recovery time.

If a disruption does occur, actions may be taken to 
reduce the probability and/or severity of further losses. 
These actions make up a response and are measured by 
mitigation of the fractional loss of one or more operat-
ing capacities for disruptions with similar frequency and 
recovery time. The response is optimal if the lowest 
point of the operating capacity is maximized.

After the response, damage can be assessed and 
efforts to regain full functionality can begin. This recov-
ery process largely begins after the loss of operating 
capacity has halted, but it can overlap with the response 
period. Recovery is measured by both the amount of 
operating capacity recovered and the rate of recovery 
for disruptions with similar risk. All three aspects of 
resilience play key roles in determining the ability to 
maintain and restore operating capacity in the face of 
potential disruptions.

Resources for Resilience
Maintaining or regaining controlled operation 

typically requires sufficient resources of at least five 
mutually dependent types9: (i) time, (ii) knowledge, 
(iii) readiness, (iv) material, and (v) energy. Figure  4 
illustrates the role of these resources in the context 
of maintaining closed-loop control of operations. The 
figure’s inner cycle is an observe–orient–decide–act 
loop10 depicting common identifiable processes that 
together lead to controlled progress toward an intended 
goal. Each process leads to a product, such as the events 
composing the state of the operational environment, 
including internal states, such as the state of the sys-
tem’s readiness to execute one or more alternative plans 
of action. Observation leads to information feedback, 
which is used to build a construct, or model, of the 
situation as needed for effective control. This construct 
is informed by higher-level knowledge of the situation, 
which allows generation of useful assumptions about 
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Figure 3.  Elements of resilience. (Adapted from Ref. 4.)
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the past, present, and predicted future situation, to 
fill gaps in the construct. A decision process is used 
to evaluate alternative plans of action for feasibility 
and predicted effectiveness, leading to the selection of 
a plan to execute. Both the construct and new feed-
back allow refinement of knowledge though processes 
of assimilation and validation. Evaluation of the situ-
ation can lead to changes in higher-level strategy and 
subsequently changes in intention governing the plan 
of action. Strategy also drives preparation of the system 
to achieve a state of readiness for effective control.

In the context of this control process, the time avail-
able to perform a critical activity is a constraint that 
establishes the sufficiency of other types of resources. 
Accurate and relevant knowledge of the system’s state 
and its environment, informed by observations, leads to 
improved selection among alternative methods of main-
taining or restoring control. Those alternative methods 
are enabled by the existence of subsystems engineered 
to restore control; they compose the system’s readiness, 
or preparedness. To restore control to a physical state, 
subsystems require available stores of material, energy, 
or both.

Example: Redundancy in Critical Systems
An autonomous ship’s machinery must be both 

physically and functionally reliable. The propulsion 
machinery, in particular, is prerequisite to safe navi-
gation. Increased reliability in critical systems can 
be achieved by a number of measures. Redundancy, 
for example, is a simple strategy and can be achieved 
physically by redundant systems that perform the same 
function in the same way. It can also be achieved func-
tionally by redundant processes that perform the same 
essential function or meet the same need by perhaps 
a more robust, if less efficient, means. Redundancy is 
one particular strategy that lends itself to traditional 
probabilistic risk analysis methods but also is under-
stood easily as a resilience strategy.

RETHINKING THE FAULT TREE
Deciding whether to use, adapt, or create alterna-

tive models or methods for reliability analysis requires 
assessing their suitability to capture the essential system 
linkages and relationships among system states and con-
figurations that impact reliability. In traditional probabi-
listic reliability analysis, these linkages and relationships 
are summarized in a tree-like diagram called a fault tree.2 
An example is depicted in Fig. 5. Leaves of the tree rep-
resent nominally independent logical conditions whose 
states (true or false) aggregate via logical linkages (and, 
or, etc.) to higher-level logical states, commonly called 
house events. At the top of the tree is a failure condi-
tion that is visually linked to all its related elemental 
conditions in such a way that computing the probability 
of failure from the probability of elemental conditions 
is a rule-based process of interpreting the linkages and 
aggregations. Fault trees are often an adequate descrip-
tion of failure probabilities for reliability analysis. The 
reliability is considered an inclusive aggregation of the 
many failures that would be interpreted as a case of a 
system not behaving reliably.

Dynamic Fault Trees
Although fault tree aggregations are often expressed 

as rates of occurrence, these rates are still only a static 
view of relationships among conditions related to failure. 
Failure rates cannot be tracked over time without some 
adaptation. One such adaptation is the dynamic fault 
tree.11 It was created to enable the evaluation of failure 
risk, and hence reliability, as a function of time. Time 
dependence is added to the probabilistic models for ele-
mental conditions, and time requirements are added to a 
house events table, which relates the relevance of house 
events to failure as the system evolves through discrete 
changes of state over time. Reaction and recovery time 
are reflected in the evolution, and time requirements 
can be established accordingly.
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Figure 4.  Resources for resilience in a control context.
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Figure 5.  Fault tree.
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Dynamic Probabilistic Risk Analysis
An alternative approach to fault trees is to apply 

dynamical systems analysis to the computation of risk. 
This approach is common in component reliability 
analysis, where reliability is a function of measures on 
physical processes described by a set of simultaneous dif-
ferential equations. This approach, however, is much less 
common for systems of systems. Some of the earliest uses 
of this approach in the commercial sector have involved 
continuous event trees, and simplifications of them to 
equivalent discrete event trees, for commercial nuclear 
reactor safety analysis.12 Other methods of this type 
include Monte Carlo simulation and Markov cell-to-cell 
mapping techniques. Recent developments in autono-
mous ground and airborne vehicles have motivated the 
use of this alternative approach in pursuit of better reli-
ability assessment of systems with autonomous control.13

CONCLUSION
The concept of reliability as static property of a com-

plex autonomous system is limited as a guide to its engi-
neering. Reliable performance is instead a quality of how 
the system works to maintain its essential functioning—
the broader concept of resilience. The system’s proper-
ties relevant to its resilience can be characterized as 
measures of its potential to continue to function in the 
face of irregular variations, disruptions, or degraded 
operating conditions. Engineering for resilience in 
autonomous systems is not simply a matter of adjusting 
procedures and tolerances. Rather, it requires continu-
ous active monitoring and control of system and sub-
system performance. These control functions make an 
autonomous system cognitive in the sense that it works 

to identify and minimize influences that would disrupt 
its essential functioning. If the methods we choose to 
assess reliable system performance do not account for 
these resilience strategies, they are at best incomplete. 
Methods that treat the maintenance of reliable per-
formance as the dynamical process it is show promise 
of accurately accounting for resilience in the wave of 
autonomous systems we expect to see in the near future.

REFERENCES
  1Vamvoudakis, K. G., Antsaklis, P. J., Dixon, W. E., Hespanha, J. P., 

Lewis, F. L., et al., “Autonomy and Machine Intelligence in Complex 
Systems: A Tutorial,” in Proc. 2015 American Control Conf., Chicago, 
IL, pp. 5062–5079 (2015).

  2Kuo, W., and Zuo, M. J., Optimal Reliability Modeling: Principles and 
Applications, John Wiley & Sons, Hoboken, NJ (2003).

  3Kossiakoff, A., and Sweet, W. N., Systems Engineering: Principles and 
Practices, John Wiley & Sons, Hoboken, NJ (2003).

  4Ayyub, B. M., Risk Analysis in Engineering and Economics, 2nd Ed., 
CRC Press, Boca Raton, FL (2014).

  5Dorf, R. C., and Bishop, R. H., Modern Control Systems, 12th Ed., 
Pearson Education, London (2011).

  6Hollnagel, E., Woods, D. D., and Leveson, N. G. (eds.), Resilience Engi-
neering: Concepts and Precepts, CRC Press, Boca Raton, FL (2006).

  7U.S. Department of Defense, Department of Defense Standard Practice: 
System Safety, MIL-STD-882E (11 May 2012).

  8Rødseth, Ø. J., and Tjora, Å., “A System Architecture for an 
Unmanned Ship,” in Proc. 13th International Conf. on Computer and 
IT Applications in the Maritime Industries (COMPIT 2014), Redworth, 
UK (2014).

  9Hollnagel, E., and Woods, D. D., Joint Cognitive Systems: Foundations 
of Cognitive Systems Engineering, CRC Press, Boca Raton, FL (2005).

10Ford, D., “The Essence of Winning and Losing,” 1995 lecture view-
graphs attributed to J. R. Boyd, http://danford.net/boyd/essence.htm.

11Čepin, M., and Mavko, B., “A Dynamic Fault Tree,” Reliab. Eng. Syst. 
Safe. 75(1), 83–91 (2002).

12Smidts, C., “Probabilistic Dynamics: A Comparison Between Con-
tinuous Event Trees and a Discrete Event Tree Model,” Reliab. Eng. 
Syst. Safe. 44(2), 189–206 (1994).

13Hejase, M., Kurt, A., Aldemir, T., Ozguner, U., Guarro, S., et al., 
“Dynamic Probabilistic Risk Assessment of Unmanned Aircraft 
Adaptive Flight Control Systems,” in Proc. 2018 AIAA Information 
Systems-AIAA Infotech @ Aerospace, Kissimmee, FL, pp. 1–11 (2018).

Craig M. Payne, Force Projection Sector, 
Johns Hopkins University Applied Physics 
Laboratory, Laurel, MD

Craig Payne is an operational assessments 
leader and a Principal Professional Staff 
member in APL’s Force Projection Sector. 
He received a B.S. in chemical oceanog-
raphy from the University of Washington 

and an M.S. in applied physics (ASW curriculum) from the 
Naval Postgraduate School. He is a retired U.S. naval offi-
cer who spent his career serving on surface combatants and 
aircraft carriers and teaching at the U.S. Naval Academy 
where he wrote the textbook Principles of Naval Weapon Sys-
tems. While at APL Craig has been highly involved with the 
development of unmanned surface vessel capabilities and test-
ing while acting as the Office of Naval Research medium dis-
placement unmanned surface vehicle technical organization 
lead and the APL project manager. His e-mail address is craig.
payne@jhuapl.edu.

Bryan M. Gorman, Force Projection 
Sector, Johns Hopkins University Applied 
Physics Laboratory, Laurel, MD

Bryan M. Gorman is a statistical physi-
cist in APL’s Force Projection Sector. He 
received a Ph.D. in 1994 in physics from the 
Florida State University. At APL he serves 
as chief scientist for submarine warfare pro-

grams and as supervisor of the Analytics and Modeling Section 
of the Operational and Threat Assessment Group. His research 
interests have included analytical and high-performance com-
putational modeling of complex systems, advancing model-
based systems engineering, decision analysis, and game theory 
under uncertainty, and improving accuracy and reducing com-
plexity in performance, reliability, and resilience modeling. He 
is a member of the American Physical Society, the Society for 
Industrial and Applied Mathematics, the Association for Com-
puting Machinery, the Military Operations Research Society, 
and the National Defense Industrial Association. His e-mail 
address is bryan.gorman@jhuapl.edu.

http://www.jhuapl.edu/techdigest
http://danford.net/boyd/essence.htm
mailto:craig.payne@jhuapl.edu
mailto:craig.payne@jhuapl.edu
mailto:bryan.gorman@jhuapl.edu

	Using Resilience to Inform Autonomous System Reliability Assessment: A Concept for Autonomous Ships
	Bryan M. Gorman and Craig M. Payne
	ABSTRACT
	INTRODUCTION
	Reliability, Resilience, and Autonomous Systems
	Reliability and Control
	Resilience Informs Reliability

	CONTEXT: AUTONOMOUS SHIPS
	Subsystem Functions
	Operating Conditions

	ELEMENTS OF RESILIENCE
	Three Resilience Strategies
	Resources for Resilience
	Example: Redundancy in Critical Systems

	RETHINKING THE FAULT TREE
	Dynamic Fault Trees
	Dynamic Probabilistic Risk Analysis

	CONCLUSION
	REFERENCES
	Author Bios
	Figure 1. Sea Hunter. (Credit: DARPA.) 
	Figure 2. Open-loop and closed-loop control.
	Figure 3. Elements of resilience. (Adapted from Ref. 4.)
	Figure 4. Resources for resilience in a control context. 
	Figure 5. Fault tree.




