
S. C. Lee

Johns Hopkins APL Technical Digest, Volume 34, Number 2 (2018), www.jhuapl.edu/techdigest234

Trustworthy Computing at APL

Susan C. Lee

ABSTRACT
As dependence on cyber-enabled, networked systems grows, so does the need to make them
more trustworthy, especially in the high-stakes adversarial environment of Johns Hopkins Uni-
versity Applied Physics Laboratory (APL) sponsors. This article describes APL’s research over
nearly two decades to make computing systems more trustworthy—ensuring that they will
do what we expect them to do, and nothing else. The basic elements of a trustworthy com-
puting environment—high-assurance systems providing a reference monitor and a separation
mechanism—appeared in the literature in the 1970s. When APL began its work, however, few
mechanisms to create these environments existed, and even fewer systems incorporated them.
True to its legacy, APL did not stop at research into potential mechanisms for trustworthy comput-
ing; it also led the way by demonstrating how they could be realized in practical, working systems.
This article details APL’s development of reference monitors, including an early reference monitor
that today is able to detect the activity of a very stealthy threat in executing code. It describes APL’s
innovative use of existing COTS hardware to provide separation and APL’s role in the creation of
new hardware in COTS computers specifically intended to provide a high-assurance separation
mechanism. Finally, it describes APL’s continuing efforts to make high-assurance system devel-
opment tools both available and usable by APL’s engineers, including the application of formal
methods, a very potent but nascent software assurance technique, to find life-threatening flaws in
real-life critical systems. In the 21st century, APL may create the defining innovations in trustworthy
computing that will make the Internet—the defining innovation of the 20th century—safe to use.

invisible fabric woven of ubiquitous devices and connec-
tions that has achieved the status of a dimension beyond
physical space and time. Our lifestyle, our critical infra-

INTRODUCTION
The Challenge of Trustworthy Computing

Unprecedented innovation and investment in the
last quarter of the 20th century transformed comput-
ing from isolated instances of number crunching into an

Note: This article includes content from the issue “Trustworthy Computing at APL,” Johns Hopkins APL Tech. Dig. 32(2), 459–554 (2013).

http://www.jhuapl.edu/techdigest

Trustworthy Computing at APL

Johns Hopkins APL Technical Digest, Volume 34, Number 2 (2018), www.jhuapl.edu/techdigest 235

structure, and even our national security are embedded
in cyberspace as much as they are in the more famil-
iar dimensions. As a human-made domain not bound
by the laws of physics and too complex for its human
creators to fully understand, cyberspace challenges our
ability to control and secure it. Fundamentally, we lack
the technical capability for building and understanding
systems of such complexity. Security researchers, Johns
Hopkins University Applied Physics Laboratory (APL)
researchers among them, seek to discover the scientific
foundations and engineering disciplines of trustworthy
computing, allowing us to build systems in cyberspace
with no more concern about their reliability and security
than we have for brick-and-mortar structures.

Creating Trust
As it relates to computer security, trust can be

described as blind faith; we expect a computer system
to operate correctly, although we have no proof that it is
doing so. If a trusted system fails, its behavior does not
meet our expectation, but we often cannot detect when
a system misbehaves. Most cyber systems used today are
considered trusted systems in this sense. It is important
to note that a system can be trusted and untrustworthy
at the same time. A trustworthy system requires four
things: (i) a complete definition of correct operation,
(ii) a monitor to collect evidence of correct operation,
(iii) a means to ensure that the monitor cannot be cor-
rupted by the system, and (iv) guarantees that the moni-
tor is correct and incorruptible.

The challenge of attaining these pieces of evidence
can be explained by a thought experiment. Imagine that
the operation of system A is monitored and evaluated
by system B. If system B reports no incorrect opera-
tion by A, can we assume it is safe to trust system A?
The answer is yes, but only if we assume that system B
is trustworthy. To assess whether system B is operating
correctly, we require another system (system C) to moni-
tor and evaluate the operation of system B. If system C
does not report incorrect operation of system B, we can
trust that system A is operating correctly—but only if
we trust system C. Unavoidably, every trustworthy com-
puting system will include at least one trusted system; we
depend on this system’s correct behavior even though we
cannot verify it. In logic, this is referred to as an axiom.
In the domain of trustworthy computing, this situation
is called the root of trust. From the root of trust, we can
create a chain of trust, which in our thought experiment
is system C�system B�system A.

In our thought experiment, we described system B
as verifying the correct operation of system A. More
precisely, system B is verifying system A’s adherence to
a security policy—that is, the definition for correctness.
(Note that correctness pertains to operations or behav-
ior, not results; in other words, the program itself may

not give the correct answer, but if it faithfully executes
the instructions we gave it, the system is operating cor-
rectly.) Ideally, a security policy would encompass all
the behavior we want and would preclude all behavior
we do not. As systems approach the size and complex-
ity of most operating systems and applications, a com-
prehensive statement of correct operation is outside the
realm of today’s technology. A significant challenge for
trustworthy computing is defining a security policy that
captures those aspects of correct operation that indicate
that the system is free from malicious manipulation.

For system B to accurately assess the operation of
system A, system A must be unable to corrupt the oper-
ation of system B. If system A has the means to influ-
ence system B, then it is possible that system A can
cause system B to be unable to discover system A’s mis-
behavior. This is precisely the defect in many current
security products: they can be affected by, and some-
times even rely on, the very systems they are observing,
allowing the products to be circumvented or subverted.
A mechanism for separation, as the concept is called in
the field of trustworthy computing, prevents the moni-
tored system from corrupting the monitoring system.
Creating this separation is vital to maintaining the
chain of trust.

A flaw of logic in or implementation of the root of
trust and the separation mechanism may allow a system
to violate the security policy, breaking the chain of
trust. By definition, these trusted elements provide no
evidence of correctness while they operate. For this
reason, we need to verify their correct operation before
deployment, through testing or analysis. Many tools can
be used to improve confidence that a given system is free
of flaw, but the size and complexity of most functional
systems overwhelm today’s capability to provide a priori
guarantees. In a true trustworthy system, the root of
trust and separation mechanisms must be provably cor-
rect. This is the final and most fundamental challenge
of trustworthy computing.

A SHORT HISTORY OF TRUSTWORTHY
COMPUTING

As early as the 1970s, a Defense Science Board report
offered a discouraging view of computer security.1 Rec-
ommendations from that report and other DoD reports
described most of the basic concepts for trustworthy
computing,2,3 such as a reference monitor mediating
computer program behavior, separation for the refer-
ence monitor, and high assurance for correct operation
of the monitor and separation mechanism. Over the
next quarter-century, a number of government-funded
efforts produced requirements for, designs of, and, in a
few cases, prototypes of secure operating systems and
trustworthy computers.4,5 But the era of custom trust-

http://www.jhuapl.edu/techdigest

S. C. Lee

Johns Hopkins APL Technical Digest, Volume 34, Number 2 (2018), www.jhuapl.edu/techdigest236

worthy computing platforms ended in the 1980s with
creation of the commodity computer market (i.e., the
personal computer); government spending on computers
was dwarfed by that of the commercial market, which
had far lower expectations for security.

The government reacted to the COTS computing era
in the 1980s with the issuance of the “Rainbow Series” 6
of specifications for industry, outlining the require-
ments for building COTS computers qualified for sensi-
tive government applications. Some industry providers
attempted to meet the Rainbow standards, but, eventu-
ally, applying these standards proved to be very difficult
and time consuming. The evolution of computer and
software technology outpaced the ability of providers
to produce certified, state-of-the-art computing capabil-
ity. Ultimately, industry lost interest in supplying certi-
fied computers, and the government wanted to leverage
inexpensive, state-of-the-art commercial computers.
The government’s focus shifted to adding security to
COTS products.

By the start of the 21st century, hacking had evolved
from a teenage amusement into the cyberattack, a serious
vehicle for disruption and crime. Computer and software
manufacturers began considering, and then providing,
commodity products including mechanisms that could
form the foundation for a trustworthy computing envi-
ronment.7,8 Although the evolution is far from complete,
today’s computers offer a significant number of options
for creating trust. APL has contributed to and taken
advantage of some of these in its pursuit of trustworthy
computing.

DESIGNING TRUSTWORTHY SYSTEMS AT APL
Research into trustworthy computing began very

early in the history of cyber operations at APL. Initially,
prompted by tasking from the National Security Agency
(NSA), APL made significant advances in defining
security policy and monitoring systems. Recognizing
that separation mechanisms needed to be rooted in
hardware, APL began exploring novel ways to use and
improve existing COTS hardware-supported separation
for trustworthy computing.

NetTop Failed Operation Recovery and
Correction Element

In 2000, NSA asked APL to address the challenge of
providing fault-aware capabilities for NetTop,9 a single
system with multiple levels of security. NSA was experi-
menting with using virtual machines to allow a user to
access both unclassified and classified networks from
a single physical host, rather than needing a separate
physical host for each network; in addition, NSA hoped
to create in-line encryptors in software to replace stand-
alone hardware-only implementations.

NetTop was a software system consisting of the NSA
Security-Enhanced Linux (SELinux)10 operating system
and VMware, a commercial hypervisor, executing on a
standard Intel x86 computer. VMware allowed the simul-
taneous execution of multiple virtual machines (VMs),
while SELinux provided the mandatory access controls
needed to ensure that no data flowed between VMs
running at different classification levels (see Fig. 1 for a
configuration that included an in-line encryptor). Any
system enforcing the separation of unclassified and clas-
sified networks had to be a trustworthy system. Respond-
ing to NSA’s need, APL invented one of the first systems
for trustworthy computing on a commodity computer,
the NetTop Failed Operation Recovery and Correction
Element (N-FORCE).11,12

The N-FORCE Design
N-FORCE was a software–hardware hybrid that

comprised a security policy, an assessment system, and a
separation mechanism. N-FORCE had a software com-
ponent called the N-FORCE Daemon and a hardware
component called the N-FORCE Box (see Fig. 2). The
Daemon was responsible for periodically examining
code and data structures on the system and detecting
any errors; the Box, a custom standalone hardware com-
ponent, was responsible for ensuring that the Daemon
was executing when expected.

Classi�ed
Solaris

workstation

In-line
encryptor

(government
approved)

Unclassi�ed
Windows NT
workstation

Filtering
router

(government
approved)

VMware

Trusted Linux host OS

Hardware

Figure 1.  NetTop concept with in-line encryptor.

Virtual
machine

1

Virtual
machine

2

Virtual
machine

3

SMM-
enforced
isolation

Physical
separation

SMM
N-FORCE
Daemon

VMware

SELinux OS

INTEL x86 processor

Chain of
trust

N-FORCE
Box

Figure 2.  NetTop trustworthy operation with N-FORCE.

http://www.jhuapl.edu/techdigest

Trustworthy Computing at APL

Johns Hopkins APL Technical Digest, Volume 34, Number 2 (2018), www.jhuapl.edu/techdigest 237

To provide separation, the N-FORCE Daemon was
executed in a special processor mode, called System
Management Mode (SMM), that was available on the
commercial x86 processor. The N-FORCE code was
loaded into an area of memory called System Manage-
ment Random Access Memory (SMRAM) at boot time
through use of an Option Read-Only Memory (ROM).
Option ROMs allow an incorruptible set of instruc-
tions to be executed before any potentially corrupted
operating system executes. As soon as the N-FORCE
code is loaded, write access to SMRAM is disabled, pro-
tecting the code from modification by the assessment
target (SELinux, VMware, and the VMs). When SMM
is triggered, normal execution on the system stops and
control is passed to N-FORCE Daemon code, allowing
N-FORCE to freely examine the state of the system.
Note that not all implementations of the SMM included
the memory write-protect feature that was critical to
N-FORCE separation.

While the Daemon code was protected from altera-
tion by its location in SMRAM, its execution could
be prevented by malicious code running as part of the
assessment target. To ensure complete separation of
N-FORCE from its assessment target, the N-FORCE
Box was designed to check that the Daemon was exe-
cuting when expected. As a hardware component inde-
pendent of the x86 platform, the N-FORCE Box formed
the root of trust on which the NetTop chain of trust was
built. Although very simple in design and construction,
and essential to NetTop’s trustworthy operation, the
N-FORCE Box was never implemented, partly due to
reluctance to add custom hardware to a COTS design.

Designing an appropriate security policy to make
NetTop trustworthy, especially for the in-line encryp-
tion application, was another pioneering task. Over
time, NSA had evolved the fail-safe design analysis
(FSDA) methodology for assuring hardware encryptors.
FSDA involved creating a comprehensive fault tree for
the design and determining that no fault resulted in the
failure to encrypt the classified data that passed through
it. For NetTop, the SELinux/VMware software combi-
nation controlled the movement of the data stream; a
fault could possibly allow data to flow from the classified
side straight to the unclassified network without passing
through the encryption VM. Applying FSDA directly to
software as large and complex as SELinux and VMware
would not be possible. APL analyzed FSDA and defined
an equivalent method for software. Application of this
modified methodology to NetTop identified the criti-
cal code that must have integrity and execute in a pre-
defined manner to demonstrate correct operation.

During execution of the NetTop system, N-FORCE
periodically checked the state of the machine, verify-
ing the critical components and timing. To assess the
integrity of code and data belonging to critical objects
in the system, a cryptographic hash (called the golden

hash) was obtained from a reference system prior to
NetTop’s execution. By hashing a contiguous block of
code and static data structures during execution and
comparing it to the golden hashes, NetTop confirmed
that the critical code and data had not been altered.
Checks on the timing between invocations of critical
code segments confirmed that they were executing
as expected.

The Significance of N-FORCE
N-FORCE was considerably ahead of its time. Even

years later, guarantees for the integrity of critical soft-
ware in commercial systems were limited to compari-
sons to golden hashes at boot time only, offering no
guarantees for the software as it executes. Exploits
accomplished while the software was running had free
rein until the system was rebooted. Even though it was
confined to monitoring structures that were expected
to be static during execution, N-FORCE’s ability to do
so periodically, while the critical software was running,
represented a pioneering capability. Even today, a few
commercial capabilities provide dynamic monitoring,
but none of them have the breadth of the N-FORCE
fault coverage.

The Linux Kernel Integrity Measurer
Development for Secure Virtual Platform

The Linux Kernel Integrity Measurer (LKIM) proj-
ect was a direct follow-on to N-FORCE, funded by NSA
as part of the Secure Virtual Platform (SVP) project in
2005. LKIM was developed as a measurement service—
that is, it created a representation of the critical struc-
tures in memory but relied on a separate attestation
service to decide whether the representation was cor-
rect. Figure 3a shows a use case for granting access to a
resource based on the results of a measurement. LKIM
depended on other developments under SVP to provide
separation.

LKIM greatly improved the N-FORCE monitor-
ing capability by expanding it beyond hashes of the
static portions of the executing code to encompass the
dynamic changes that occur as Linux runs. LKIM uses a
precise specification of possible behavior extracted from
the Linux code before it is executed. A program’s code
governs how the program structures in memory evolve
as it executes. By examining memory periodically during
execution, LKIM can detect when its state is not con-
sistent with the code that should be executing; these
deviations always indicate that something is amiss, most
often the presence of malware. Figure 3b is a graphical
representation of the structures LKIM checks, illustrat-
ing the complexity of the code and the assessment.
Although LKIM is named for its first application, mea-
suring the Linux kernel, the approach is general and has
been implemented for other operating systems.

http://www.jhuapl.edu/techdigest

S. C. Lee

Johns Hopkins APL Technical Digest, Volume 34, Number 2 (2018), www.jhuapl.edu/techdigest238

The Significance of LKIM
Other malware detection technologies work on signa-

tures, heuristics about how malware behaves, or devia-
tions from previously observed “good” behavior. Products
using signatures fail to detect new (so-called zero-day)
malware. Because both heuristics and observation-based
models are imprecise descriptions of behavior, the toler-
ance (threshold) for deviations must be high, lowering
their probability of detecting malware in favor of avoid-
ing a large number of false alarms. In contrast, the LKIM
security policy is based on the logic of the desired code;
it will reliably reveal the presence of malware, even
previously unknown malware, with a very low rate of
false alarm. The LKIM measurement was able to detect
deeply buried malware characteristic of the “tier 5 and
6”13 actors (nation-states) with high confidence.

LKIM Deployment
In 2010, LKIM was deployed on 50+ Linux servers on

APL’s network. LKIM was incorporated into the stan-
dardized server provisioning process. Attestation was
orchestrated by a centralized APL-developed attestation
service called Maat. To date, the attestation service has
not been incorporated into any APL security process.

APL developed Tactical LKIM for use on Navy plat-
forms. For tactical use, a new, faster method of captur-
ing memory snapshots was needed to avoid interfering
with the near-real-time operation of tactical systems.
In addition, measurements take place on request, rather

than periodically, to give the system operators a feeling
of greater control and surety. To date, LKIM with the
information assurance subsystems has been installed on
several naval vessels. In the 2017–2019 time frame, inte-
gration with additional information assurance, tactical
control, sonar, and imaging servers is planned.

Record and Replay
Ideally, a monitor assessing correct operation would

execute continuously, alongside the target, pinpointing
the exact moment that the target deviated from correct-
ness, thus minimizing the damage. One way to perform
continuous monitoring and dynamic analysis without
incurring unacceptable performance impact is to use
a technique known as record and replay (RnR). RnR
records a program’s behavior at speed with minimum
overhead; then high-overhead analysis is performed off-
line, during the target’s idle periods, or in another pro-
cessor, such as another core in the same machine or in
another machine in a cloud. This technique was first
applied to debugging, where a developer records a trace
of a program with a bug and then replays that trace to
determine the cause of the bug.14 More recently, applica-
tion of RnR to intrusion analysis, detection, and preven-
tion has been suggested.15–17 APL suspected that many
existing and new techniques could leverage RnR to sup-
port trustworthy computing, so the Lab created its own
RnR system to use in devising and experimenting with
novel dynamic analysis applications.

Client

4. Measurement

3. Attestation

1. Session
request

6. Session
established

2. Request
redirected

5. Request
forwarded

Gatekeeper Server

Measurement
service

(a) (b)

Figure 3.  (a) Resource access attestation. (b) LKIM measurement of the Linux kernel visualized as a graph.

http://www.jhuapl.edu/techdigest

Trustworthy Computing at APL

Johns Hopkins APL Technical Digest, Volume 34, Number 2 (2018), www.jhuapl.edu/techdigest 239

RnR Design
Most computer operations

are deterministic. Given an
initial state, the final state of
a machine is predictable after
execution of any uninterrupted
sequence of instructions. In
a typical program, hundreds
of thousands of sequential
instructions can be replayed
from an initial state. Not all
execution is deterministic,
however, since unpredictable
events occur, such as keyboard
input, network traffic, and
other external interrupts. These events cause the flow
of execution to jump from one set of sequential instruc-
tions to another. Because events occur nondetermin-
istically, the complete sequence of instructions is not
deterministic either.

To accurately reproduce the execution of a program, a
recorder first captures the initial state of the target (e.g.,
the CPU registers, virtual memory, virtual hard disk, and
other devices that are part of the virtual machine) and
then records the time of all nondeterministic events that
occur, along with any associated data (e.g., the content
of a network packet). To replay, a player restores the ini-
tial state and executes the original program. The player
recreates the nondeterministic events at the appropriate
points during the execution (see Fig. 4).

APL implemented an RnR prototype in a VM
environment using KVM/QEMU, one of many virtual
machine systems. Performance measurements indicated
that neither recording overhead nor storage require-
ments precluded the use of RnR as a monitor in a trust-
worthy computing application.18

The Significance of RnR
N-FORCE and LKIM examine periodic snapshots of

memory during program execution. While superior to
assessment only at boot time, this approach reveals only
that something unwanted occurred between snapshots.
It cannot determine what occurred or pinpoint when
it occurred to a granularity finer than the snapshot
interval. An RnR-based continuous monitoring system
captures the moment of exploitation, reveals how the
exploitation worked, and records exactly what the mal-
ware did. In theory, this capability leads to systems that
“inoculate” against detected exploits, repair damage, and
continue execution without a glitch in real time.

RnR Applications
In practice, RnR has been most frequently used as a

forensics tool. Today’s malware employs a repertoire of
techniques to make ordinary forensic analysis very diffi-

cult. APL developed an RnR-based tool called REnigma
that was deployed on APL’s network in FY2016 and is
in daily use. Suspected phishing e-mails and suspected
malicious websites are “detonated” and recorded on
REnigma. The replay reveals exactly what the malware
did, enabling cleanup and future prevention. Another
RnR-based forensics tool, called Control-Flow Integrity
Monitoring (CFIM), is specifically used to detect telltale
signs of a return-oriented programming attack launched
from a malicious PDF file. DoD Acquisition, Technol-
ogy, and Logistics funded development of CFIM and, in
FY2016, began funding its transition to operational use.

RnR has also been incorporated into a tool called
General Analysis Toolkit Using Record and Replay
(GATOR), funded by the Department of Homeland
Security Science and Technology Directorate. This tool
enables software developers to find, analyze, and fix criti-
cal software bugs before their software is deployed. In this
context, RnR provides some of the software assurance
that is also needed for a trustworthy computing system
(see the Assurance of Correct Functionality section).

The next goal is to use RnR as a host-based intrusion
detection monitor—similar to Aftersight.19 As the host
executes, the recording of activity is immediately sent to
the separate process that analyzes the execution in the
background. Analysis could be as extensive as desired
through parallelization, sending the recording to mul-
tiple analysis systems, with each performing a different
technique simultaneously. Continued research might
lead to a system that automatically analyzes and recov-
ers from an attack.

Separation
Assured separation between the assessed and assess-

ing systems is crucial to achieving trustworthy comput-
ing. APL’s use of SMM for separation on N-FORCE was
innovative for its time and still holds potential for cer-
tain applications. The separation guarantees provided
by SMM alone, however, are insufficient without some
additional external assurance that the assessment func-

1. Create snapshot 1. Reload snapshot
Snapshot

2. Record events

Recording Replaying

Interrupt Network...

Guest
operating
system

Hypervisor
+ recorder

Guest
operating
system

Hypervisor
+ player

2. Replay events

Automated
analysis

engine (e.g.,
execution
monitor)

Inspect

Control

Figure 4.  Basic RnR operation.

http://www.jhuapl.edu/techdigest

S. C. Lee

Johns Hopkins APL Technical Digest, Volume 34, Number 2 (2018), www.jhuapl.edu/techdigest240

tions performed by code using SMM are being executed.
The failure to implement the N-FORCE Box despite its
low cost and profile illustrated the hurdles that any non-
commercial solution would likely encounter. Concurrent
with work on N-FORCE, APL began to explore com-
mercial separation guarantees.

Independent Research and Development
Rockwell Collins claimed that its AAMP7 is a

unique processor that is “a separation kernel in hard-
ware.” Although not used in commodity computers, it
was produced commercially. APL explored the separa-
tion claims made for the AAMP7 and examined how
it might be applied in tactical systems to enhance their
trustworthiness.19

APL also embarked on a project, called Trusted Ring,
to take better advantage of the Intel memory ring system
to provide separation.20 Intel processors divide memory
into four rings, 0, 1, 2, and 3, that have different privi-
lege levels and access to code running in other rings.
At that time, the full operating system executed in the
most privileged ring, 0. All other code executed in the
least privileged ring, 3. APL demonstrated the capabil-
ity to transparently “lift” an executing operating system
from its very privileged location in ring 0 to a less privi-
leged location in ring 1. This freed up ring 0 to provide
hardware-enforced separation for security functions, like
a monitor for trustworthy computing. Today, commer-
cial operating systems also use the ring system to achieve
separation for critical kernel functions.

The Trusted Platform Module
Near the start of this century, major manufactur-

ers, such as Intel and Microsoft, formed a consortium
call the Trusted Computing Group (TCG). Driven by
e-business security concerns, the TCG created specifica-
tions for separation support that can be implemented by
processor manufacturers and used by software develop-
ers who create sensitive applications. Their foundational
specification is the Trusted Platform Module (TPM),

which establishes a hardware-enforced root of trust for
software in main memory.

APL has contributed significantly to the specifica-
tion of the TPM through participation in TCG work
groups. While at IBM, APL’s Dr. David Challener
worked on the design of the IBM PC embedded security
subsystem and the first TPM chip. APL continued to
support his contributions to the TCG after he joined
the Lab in 2009. He serves on the board of directors,
chairs the TCG Software Stack Work Group, and par-
ticipates in the Technical Committee, the Virtualiza-
tion Work Group, and the Storage Work Group. He
currently co-chairs the TPM Working Group. Dr. Chal-
lener was instrumental to creating the most extensive
modification to the TPM specification (version 1.1 to
version 2.0) while at APL.21

In addition to the main TPM work group, the TCG
has work groups for mobile,22 embedded,23 and virtu-
alized platforms.24 Mobile devices pose a challenge for
the TCG, since most have space, power, and cost con-
straints that hinder the adoption of a discrete TPM
chip; however, recent mobile technologies, such as the
ARM TrustZone technology, have hardware mecha-
nisms to partition the device into secure and nonsecure
resources.25 An APL researcher, Kathleen McGill, co-
chairs the TCG Mobile Platform Working Group, whose
goal is to specify a mobile adaptation of the TPM and a
reference architecture.26

The Significance of the TPM
Hardware resources to provide guarantees for trustwor-

thy computing are foundational; having these resources
on COTS computers opens a whole world of possibili-
ties for designing trustworthy systems. PC manufacturers
shipping TPM-enabled PCs include Dell, Lenovo, HP,
Toshiba, and Fujitsu. Microsoft has announced that all
systems submitting to the Windows Certification Pro-
gram after January 1, 2015, will be required to include a
TPM meeting the TPM 2.0 specification.27 TPMs have
been used in a wide variety of applications, including

Hash (hash last
segment, PCR) PCR

TPM

Hash (segment 1
hash, PCR)PCR

TPM

Initialize
PCR PCR

TPM

Hash (hash next
segment, PCR) PCR

TPM

Power
on

HW root of trust

Hash
segment 1

Segment 1

Hash
next segment

Last segment

Hash
last segment

Last segmentNext segmentFirst segment

Measured SW
con�guration loaded

and executing

Unique hash for
entire con�guration

Segment 1
hash

Next segment
hash

Last segment
hash

Execute Execute Execute

Load Load Load

Figure 5.  Measured Boot chain of trust.

http://www.jhuapl.edu/techdigest

Trustworthy Computing at APL

Johns Hopkins APL Technical Digest, Volume 34, Number 2 (2018), www.jhuapl.edu/techdigest 241

secure military platforms,28 secure industrial control sys-
tems,29 and secure electronic voting systems.30

The most common use case for the TPM is called
Measured Boot. As each part of a software configura-
tion (e.g., OS, applications) is read from the disc, the
executable is hashed and sent to the TPM. The TPM
concatenates the hash with the value in a Platform
Control Register (PCR) and rewrites the result into the
PCR (“extends the PCR”). When the Measured Boot
completes, the PCR on the TPM contains a crypto-
graphically unique representation of the software on the
system that can be used for attestation (see Fig. 5). Even
though Measured Boot can provide evidence of only the
initial state of the platform, it provides a foundation to
build a more comprehensive chain of trust.

ASSURANCE OF CORRECT FUNCTIONALITY
The tenets and technology of trustworthy comput-

ing all depend on trusting some system that is not itself
subject to dynamic assessment of correct operation. A
human could be a root of trust—for example, a system
administrator might be trusted to keep a password secret.
In that case, a background check on the person may
provide assurance. However, in the case of software and
hardware roots of trust, we need some way of proving
that they will operate correctly without observation of
their actual behavior. Analysis and testing are the tools
used to provide this assurance. APL has been working to
improve the effectiveness and usability of software assur-
ance technology for the past decade.

Formal Methods
Human constructions in the physical world are con-

strained by the laws of physics. Human constructions in
cyberspace are not. Although the hardware portions of a
computing system are subject to laws of electromagnetics
and the electrical properties of materials, the operation
of computing hardware is driven by the arrangement of
these materials—an arrangement that in today’s chip
manufacturing world is controlled by software. There is
little loss of generality in the claim that proving the cor-
rectness of a cyber system is equivalent to proving the
correctness of software, an entity that is not subject to
the laws of physics.

Despite its independence from physical constraints,
the operation of software is not without limits. In cyber-
space, logic takes the place of physics. No matter how
unexpected or odd the behavior of software seems, we
can be sure it is obeying the laws of logic. While few pro-
grammers think they are composing elaborate theorems
that can, in principle, be proven to describe some speci-
fied behavior, this is exactly what programs are. Formal
methods (FM) are the collection of logical constructs
and tools that allow us to prove the theorems we write
as programs.

FM fall into one of two categories: model checking or
deductive verification. Model checkers perform a brute-
force exploration of the state space of the system model,
proving that it will never enter some user-defined unde-
sirable state or that it will probably reach some user-
defined desirable state. Deductive verification proves
properties about a program by first describing the valid
input states of the program as a logical predicate—that
is, a precise, logical statement about the system’s state,
which can be true or false at any given moment in the
system’s evolution. Then, by applying inference rules
corresponding to each instruction in the program, the
starting predicate is transformed into a similar predi-
cate describing the program’s final state. This process is
similar to traditional mathematical proofs, such as the
two-column proofs familiar to many people from high
school geometry.

Today, most commonly used programming languages
are not amenable to applying logic to prove proper-
ties about the programs; further, the programs are far
too large and complex. To address these issues, FM
are applied to small, but critical, portions of a program
that can be cast in a form amenable to transformation
through the application of valid rules of logic. Proving
correctness for critical operations can greatly increase
confidence in the entire program. For example, in one of
the first applications of FM at APL, researchers sought
to prove that the specification for a field-programmable
gate array implementation of the Scalable Configurable
Instrument Processor (SCIP) correctly handles stack
operation in all cases. SCIP is designed to execute pro-
grams written in a specific programming language that
performs the majority of logical and arithmetical opera-
tions using the stack; thus, correctly handling stack
manipulation is essential to correct execution.31 Since
the SCIP was designed for use in satellite-borne scien-
tific instruments, unrecognized flaws could lead to the
loss of scientific data obtained at great cost.

In addition to scaling limitations, FM can suffer from
limitations in expressiveness. Expressiveness is the ability
of a particular FM to express, or describe, certain aspects
of a program’s operation. Until recently, existing FM did
not express the properties of concurrency (common in
real-time programs) or physical–cyber interfaces well.
Critical systems such as weapon systems and critical
infrastructure control systems employ software that has
real-time requirements and interfaces with physical sys-
tems. To verify these systems, FM must include some
means of expressing the temporal and physical relation-
ship between two (or more) systems operating simulta-
neously and independently. The rules of logic must be
capable of proving that some correct relationship will
hold for all inputs, for all times. In principle, no amount
of testing can establish the validity of that claim, and, in
practice, even large amounts of testing have been found
wanting. APL has been leading efforts to move aca-

http://www.jhuapl.edu/techdigest

S. C. Lee

Johns Hopkins APL Technical Digest, Volume 34, Number 2 (2018), www.jhuapl.edu/techdigest242

demic research on these expressiveness issues to practice
on real-life critical systems.

Real-Time Guarantees
APL’s first application of FM to

a real-time system used a formal
logic called History for Local Rely/
Guarantee (HLRG)32 to verify a
key operation in a software frame-
work called the Surgical Assis-
tant Workstation (SAW). (SAW
was created by the National Sci-
ence Foundation Engineering
Research Center for Computer
Integrated Surgical Systems and
Technology, or CISST ERC, at
the Johns Hopkins University, in
partnership with Intuitive Surgi-
cal, Inc., developer of the da Vinci
surgical robot.) HLRG uses logi-
cal statements, or predicates, to
describe the behavior of concur-
rent software without referenc-
ing its specific implementation.
Within HLRG, predicates are
not confined to the current state
of the system but refer to a vector
of system states, called a trace,
that represents the history of the
system’s evolution over time.33,34
Using these predicates, one can
assert something like “In the past,
address 100 contained some value,
but at some subsequent point in
time, it contained value 23 at the
same time that address 200 con-
tained the original value” and use
logical operators to prove it true
or false.

SAW is a concurrent system,
where different threads of execu-
tion can interleave in unexpected
patterns, producing unanticipated
and sometimes undesirable behav-
ior. From the outset, SAW was
developed using a well-defined
process and set of tools. In par-
ticular, SAW used the CppUnit
and PyUnit testing frameworks to
implement an automated nightly
test suite consisting of more than
1100 tests. Unfortunately, for sys-
tems like SAW, testing cannot
adequately cover the state space

of a real-time system, and the exact conditions of tests
are unrepeatable.

APL analyzed a core algorithm that mediates
exchange of state information (such as the position and

Figure 6.  (a) Data structures used in communicating state among concurrent threads.
(b) The state table circular buffer with read and write pointers. (Reprinted from Ref. 35.)

Task 1

Thread

Cmd

State

Event

Queue

Queue

State
table

Task 2

Thread

Cmd

State

Event

Queue

Queue

State
table

Thread

Queue

Queue

Queue

State
table

Task 3

Usage Command Types

cmd void, write

state read, qualified read

event void, write

19

7

20

21

6

Rea
d i

nd
ex

11

8

9

10

15
14

13

12

18

16

17

Write index

(a)

(b)

http://www.jhuapl.edu/techdigest

Trustworthy Computing at APL

Johns Hopkins APL Technical Digest, Volume 34, Number 2 (2018), www.jhuapl.edu/techdigest 243

velocity of the robot’s joints in space) among concurrent
threads that use it. The communication mechanism
that the SAW uses to share state data among concurrent
threads employs no locks or blocking to prevent simulta-
neous update and use, which would result in the use of
an internally inconsistent state vector. Ensuring that all
parts of the surgical robot use a consistent picture of the
state is essential to its correct operation.

The goal of the formal analysis APL performed was to
ensure that the SAW algorithm indeed guarantees that
no thread ever uses a state vector that is in the process of
being rewritten, for all time (see Fig. 6). After casting the
effect of the SAW algorithm as HLRG predicates, APL
attempted to prove that those logical statements were
true. The first proof failed, finding that the SAW algo-
rithm might allow threads to read corrupted state infor-
mation. APL had found a subtle bug, not by informally
examining the system or by testing it, but by carefully
modeling it, writing a lemma, and attempting a formal
proof. Months of extensive nightly testing had failed to
uncover this problem. A corrected version of the algo-
rithm was proven, making this critical element of the
SAW trustworthy.36,37

Cyber-Physical Guarantees
Hybrid cyber-physical systems also present chal-

lenges to FM. A cyber system that operates at discrete
time steps must correctly follow and control a physical
system that operates continuously. The physical system
obeys the laws of physics, and its behavior can often be
described by a set of equations. A cyber system can only
sense the system state and apply controls to change it at
discrete intervals. Engineers have long written code to
model a hybrid system and then run the model with par-
ticular inputs to see how the system behaves; at best, this
approach affords only the equivalent of evaluating indi-
vidual test cases. It cannot guarantee the exploration of
all important corner cases, nor can it always eliminate
unexpected behavior.

Proof that the control algorithm predictably influ-
ences the physical system requires hybrid logics that are
tailored to include both models of discrete programs and
the continuous equations that govern the analog com-
ponents. Powerful FM available today can reason about
cyber-physical systems, in the context of both model
checking38 and deductive verification.39 With them, we
can create an accurate model of cyber-physical system
components and, subject to the limitations of the model,
make guarantees about the system’s behavior under all
possible input conditions.

The Skull-Base Surgery Robot
APL’s first application of FM to a cyber-physical

system was for the experimental skull-base surgery
(SBS) robot developed by the Johns Hopkins University
Computer Integrated Surgical Systems and Technology

Group. Its purpose was to help physicians avoid doing
unnecessary damage to the brain during surgical proce-
dures on the base of a patient’s skull. The SBS works
with the surgeon; that is, both the robot and the phy-
sician simultaneously hold a surgical tool. The robot
senses the force the surgeon puts on the tool and allows
it to move according to the equation

	 dt
dp

G f=
r ^ h,

where f is the force exerted by the physician, and p is
the position of the tool in space. This continuous differ-
ential equation represents the negative feedback control
circuit with an admittance control design.

SBS implements a control algorithm designed to
prevent the surgical tool from moving outside a preop-
eratively defined planar boundary, to prevent unneces-
sary injury to the brain. Most of the time, the surgeon
is free to move the tool around the surgical site, with-
out interference from the robot. In this “free zone,” G
is some constant multiple of f . As the tool approaches
one of the preoperatively defined boundaries, however,
it enters a “slow zone,” where the robot is intended to
attenuate the component of the tool’s velocity toward
the boundary. This attenuation increases in propor-
tion to the tool’s proximity to the boundary until, at
the boundary, the component of the velocity normal to
the boundary should go to zero, so that the tool does
not progress farther in that direction (see Fig. 7). APL
performed a formal verification of the control algorithm
performance, to ensure that its design will, in all cases,
prevent the tool from moving outside the boundary.

A system model is an integral part of formal verifi-
cation. Sometimes, just the process of developing and
refining a model identifies problems in the algorithm
design. These can be corrected even before creating a
proof. APL modeled the SBS control system in a dif-
ferential dynamic logic (dL) language, a language that
is not executable but can be formally reasoned about.
Applying sound inference rules to the model,41 dL can
rigorously prove properties about hybrid system behavior
for all possible inputs. Initially, the model represented
the control algorithm for safety and force feedback at a

V
irt

ua
l �

xt
ur

e
b

ou
nd

ar
y D

d

Figure 7.  SBS system control regimes. (Reprinted from Ref. 40.)

http://www.jhuapl.edu/techdigest

S. C. Lee

Johns Hopkins APL Technical Digest, Volume 34, Number 2 (2018), www.jhuapl.edu/techdigest244

single boundary; eventually, the model was expanded to
control of many boundaries sequentially and produced
a combined effect that should ensure safety for a finite
collection of boundaries.

APL used KeYmaera, a tool that provides a computer
interface for creating models and predicates, and auto-
mates some parts of the proof, to perform a formal veri-
fication of the SBS control algorithm. APL developed a
proof of the safety of the control system algorithm for a
single boundary, but counterexamples proved that the
algorithm was, in general, unsafe for multiple bound-
aries. The counterexamples showed specific geometric
configurations of multiple boundaries, where the correc-
tion the system applied for one boundary could push the
tool past another boundary; in addition, for large veloc-
ity movements, the process of enforcing one bound-
ary could violate another, sufficiently closely spaced,
boundary. Eventually, after corrections were made to
the control algorithm, APL was able to prove algorithm
correctness; the final proof had 156,024 proof steps.42

Next-Generation Airborne Collision Avoidance System
In the 1970s, after a series of midair collisions, the

Federal Aviation Administration (FAA) developed an
onboard collision avoidance system: the Traffic Alert and
Collision Avoidance System (TCAS). Airspace manage-
ment will evolve significantly over the next decade with
the introduction of the next-generation air traffic man-
agement system, increased manned air traffic, and the
introduction of unmanned aerial vehicles. To meet new
requirements for collision avoidance, the FAA decided
to develop a new system: the Next-Generation Airborne
Collision Avoidance System, known as ACAS X.43–45

A typical collision avoidance encounter involves two
aircraft: the equipped “ownship” aircraft actively trying
to avoid colliding with a nonequipped “intruder” air-
craft. Both TCAS and ACAS X
avoid such collisions by giving
exclusively vertical advisories to
the pilot of the ownship, such as
“Climb at a rate of 1500 ft/min”
or “Do not descend.” If both air-
craft are equipped with a col-
lision avoidance system, both
pilots can receive coordinated
advisories. While the design of
TCAS was based on geometric
considerations on paths taken by
aircraft, the design of ACAS X
is radically different. ACAS X is
designed around a Markov deci-
sion process (MDP) estimating
the probabilities that two aircraft
may climb, descend, or turn in
the presence or absence of an
advisory.46 Based on those prob-

abilities, the Markov decision process is optimized to
minimize the probability of a collision, while also mini-
mizing extraneous advisories that may distract the pilot.
The practical implementation of this algorithm uses a
score table, composed of two sub-tables interpolated in
succession, one with 698,819 interpolation points and
the other with 38,053,125 interpolation points, resulting
in a very large number of combinatorial cases.

APL needed to break new ground in FM to provide
the FAA with the assurance it sought. First, directly
verifying each point in the ACAS X tables is infeasible
because of their size. Moreover, ACAS advice cannot
always prevent collisions (for example, if two aircraft are
flying head-on at the same altitude and are too close
to maneuver); thus, the statement describing correct
operation cannot simply be “prevents collisions.” APL’s
novel approach first symbolically characterizes safe
zones—geometric configurations of the ownship’s and
the intruder’s positions and speeds such that there exists
some advisory that, if followed correctly, will not result
in a collision. Next, using a hybrid model of the system,
combining the differential equations representing con-
tinuous motion of the aircraft with the discrete models
of advisories, APL formally proved that if the two air-
craft are in a safe zone, following the advisory associated
with that region will not result in a collision. Last, we
exhaustively compared the safe regions to the adviso-
ries given by the score table, thus transferring our formal
argument of safety to the operational ACAS X.

The results of APL’s analysis showed that ~97.5% of
the 648,591,384,375 points in the table resulted in a cor-
rect advisory (avoided a collision) or represented a case
where no advisory would help. The remaining ~2.5% of
cases were counterexamples, where following the advi-
sory resulted in a collision that would not have occurred
had the pilot remained on the original course (see Fig. 8).

250

Time (s)

Horizontal distance (ft)
0 50 100 150 200 300 350 400 450 500

13.0

12.5

12.0

11.5

11.0

10.5

10.0
–50 –30–40 –20 –10 0 10 20 30 40 50

A
lt

it
ud

e
(t

ho
us

an
d

s
o

f
fe

et
)

Ownship (coming from left, within RA limits)
Original ownship path
Intruder (coming from right)
NMAC box around ownship

Figure 8.  Induced risk counterexample: do not climb advisory puts ownship (blue) on a col-
lision course with intruder (red).

http://www.jhuapl.edu/techdigest

Trustworthy Computing at APL

Johns Hopkins APL Technical Digest, Volume 34, Number 2 (2018), www.jhuapl.edu/techdigest 245

The novel formal verifica-
tion approach used in this
work—modeling, proving, and
comparing—is generalizable
to other collision avoidance
systems or even other systems
whose design is based on opti-
mization or machine learning.

The Significance of APL’s Work
in FM

APL’s current work in real-
time or cyber-physical guar-
antees does not specifically
address cybersecurity issues;
however, similar algorithms
have been exploited to create physical damage through
cyberattacks. Stuxnet exploited weakness in the protec-
tion algorithms of centrifuges to destroy them. Likewise,
Idaho National Laboratory has exploited similar weak-
nesses to destroy a generator like those used in the elec-
tric grid.47 Because APL sponsors are highly concerned
with the cyber-physical real-time systems they depend
on, APL’s pioneering work in applying these new FM
to real-world systems positions the Lab to make critical
contributions to their future security.

The Founding of SARA
Concept

Because APL delivers software, hardware, and algo-
rithms to its sponsors—either on their own or embedded
in systems—it must do its utmost to make sure that they
are free from errors, especially those that an adversary
could maliciously exploit. To enhance APL’s ability to do
so, the Asymmetric Operations Sector established the
Software Analysis Research and Applications (SARA)
Laboratory in late FY2012. The SARA concept of oper-
ations is shown in Fig. 9. SARA is envisioned as a place
where software, hardware, and algorithm developers
across the Laboratory can bring requirements, designs,
algorithms, or code for analysis. With this analysis,
developers gain insights that improve their products, and
Asymmetric Operations Sector researchers learn the
capabilities and limitations of commercial and research
software analysis tools and advance the state of the art
in software analysis. When a tool in the SARA develop-
ment environment proves to be useful and user-friendly,
it can be moved to the production environment, from
which the tool and its documentation can be down-
loaded for use throughout APL.

SARA Lab Operations
Since its inception, the SARA Lab has accumulated

a robust inventory of commercial and open-source static

analysis tools, implementing a variety of capabilities for
analysis, including but not limited to FM. To expand
the utility of FM tools, the SARA team has mecha-
nized much of the HLRG logic for real-time guarantees
to allow less-experienced users to take advantage of this
powerful analysis tool.

The SARA team has worked with development
teams across the Laboratory to analyze software as
part of both independent research and analysis efforts
and sponsored tasks. In addition, the SARA team has
experimented with visualization techniques and other
improvements (e.g., better descriptions, fusion of results
from multiple tools, in-line code views) to create more
meaningful presentation of the analysis results.31 Anal-
ysis tools identify a large number of defects, many of
which are repetitious or trivial in nature. For example,
one SARA analysis resulted in ~10,000 defects, of which
~5,000 were repaired. Closer inspection revealed that
most of those defects were the result of just a few errors,
and fixing those errors reduced the number of defects
by one half. The other ~5,000 defects were the result of
a few more errors that were not deemed serious enough
to repair. Better automated filtering of analysis results to
the relatively few that are important will enhance their
effectiveness.

In FY2015 and FY2016, the Laboratory developed a
self-service software assurance portal to provide user-
friendly baseline analysis capabilities for APL-wide soft-
ware development efforts. The Self-Service Portal has a
front end that allows developers to submit code for anal-
ysis and a back end for integrating analysis tools into the
portal. By the end of FY2016, users will be able to take
advantage of four static analysis tools from the portal.
Portal instrumentation will give insight into the impact
of specific tools and alerts.

The Significance of SARA
The analysis of LKIM, the integrity checker discussed

previously, is a striking example of the SARA Lab’s

APL
software
product

Production
environment

Research
environment

Development
environment

Mature
analysis tools

Analysis tool
inventory

APL software
product

inventory

Gaps

Figure 9.  SARA Laboratory concept of operations. (Reprinted from Ref. 48.)

http://www.jhuapl.edu/techdigest

S. C. Lee

Johns Hopkins APL Technical Digest, Volume 34, Number 2 (2018), www.jhuapl.edu/techdigest246

proud. More importantly, APL has the opportunity to
build on this foundation to achieve its new centennial
vision of creating defining innovations to ensure U.S.
preeminence in the 21st century.

REFERENCES
  1Ware, W. H., Security Controls for Computer Systems: Report of Defense

Science Board Task Force on Computer Security, RAND Report
R-609-1, RAND Corporation, Santa Monica, CA (1970).

  2Anderson, J. P., Computer Security Technology Planning Study, Deputy
for Command and Management Systems HQ Electronic Systems
Division (AFSC), Bedford, MA (1972).

  3Bell, D. E., and La Padula, L. J., Secure Computer Systems: Mathemati-
cal Foundations, Deputy for Command and Management Systems,
Bedford, MA (1973).

  4Sami Saydjari, O., “LOCK: An Historical Perspective,” in Proc.
18th Annual Computer Security Applications Conf., Las Vegas, NV,
pp. 96–108 (2002).

  5Neumann, P. G., and Feiertag, R. J., “PSOS Revisited,” in Proc.
19th Annual Computer Security Applications Conf., Las Vegas, NV,
pp. 208–216 (2003).

  6Department of Defense Trusted Computer System Evaluation Criteria,
DoD 5200.28-STD, U.S. Department of Defense, Washington, DC
(Dec 1985).

  7Grawrock, D., Intel Safer Computing Initiative Building Blocks for
Trusted Computing, Intel Press, Santa Clara, CA (2006).

  8IBM News Room, “Compaq, Hewlett Packard, IBM, Intel, and Micro-
soft Announce Open Alliance to Build Trust and Security into PCs
for e-Business,” 11 Oct 1999.

  9Meushaw, R., and Simard, D., “NetTop: Commercial Technology in
High Assurance Applications,” Tech Trend Notes 9(4), 1–8 (Fall 2000).

10Loscocco, P., and Smalley, S., “Meeting Critical Security Objectives
with Security-Enhanced Linux,” in Proc. 2001 Ottawa Linux Symp.,
Ottawa, pp. 1–11 (2001).

11Heine, D., and Kouskoulas, Y., NFORCE Conceptual Design Docu-
ment: Functional Decomposition and Fault Tree Enumeration, JHU/
APL, Laurel, MD (2003).

12Heine, D., and Kouskoulas, Y., N-Force Daemon Prototype Techni-
cal Description, Technical Report VS-03-21, JHU/APL, Laurel, MD
(July 2003).

13Defense Science Board Task Force, Resilient Military Systems and the
Advanced Cyber Threat, Defense Science Board Report, Washington,
DC (2013).

14LeBlanc, T. J., and Mellor-Crummey, J. M., “Debugging Parallel Pro-
grams with Instant Replay,” IEEE Trans. Comput. 36(4), 471–482
(1987).

15Chow, J., Garfinkel, T., and Chen, P. M., “Decoupling Dynamic Pro-
gram Analysis from Execution in Virtual Environments,” in Proc.
USENIX Technical Conf., Boston, MA, pp. 1–14 (2008).

16Dunlap, G. W., King, S. T., Cinar, S., Basrai, M. A., and Chen, P. M.,
“Revirt: Enabling Intrusion Analysis Through Virtual-Machine Log-
ging and Replay,” in Proc. 5th Symp. on Operating Systems Design and
Implementation, Boston, MA, pp. 1–14 (2002).

17Elbadawi, K., and Al-Shaer, E., “Timevm: A Framework for Online
Intrusion Mitigation and Fast Recovery Using Multi-Time-Lag Traffic
Replay,” in Proc. 4th International Symp. on Information, Computer,
and Communications Security, New York, pp. 135–145 (2009).

18Grizzard, J. B., and Gardner, R. W., “Analysis of Virtual Machine
Record and Replay for Trustworthy Computing,” Johns Hopkins APL
Tech. Dig. 32(2), 528–535 (2013).

19DiRossi, M., Enhancing Platform and Application Security, IR&D Com-
pleted Project Report, JHU/APL, Laurel, MD (2007).

20DiRossi, M., “Towards a High Assurance Secure Computing Plat-
form,” in Proc. 10th IEEE High Assurance Systems Engineering Symp.,
Dallas, TX, pp. 381–382 (2007).

21Osborn, J. D., and Challener, D. C., “Trusted Platform Module Evolu-
tion,” Johns Hopkins APL Tech. Dig. 32(2), 536–543 (2013).

22Trusted Computing Group, “Mobile,” https://trustedcomputinggroup.
org/work-groups/mobile/ (accessed 16 Feb 2017).

23Trusted Computing Group, “Embedded Systems Working Group,”
https://trustedcomputinggroup.org//work-groups/embedded-systems
(accessed 16 Feb 2017).

impact. Despite literally years of intense scrutiny and
testing of its codebase, SARA analysis revealed a serious
flaw that could be exploited to compromise the secu-
rity of the entire network. This example clearly dem-
onstrates the need for applying assurance techniques to
trustworthy computing mechanisms. By creating better
tools, and making them readily available to developers,
SARA will greatly enhance the trustworthiness of com-
puting systems.

Originally, SARA analysis was regarded with some
skepticism by those who thought it was superfluous to
testing. As SARA analysts compiled a significant record
of important successes, program managers began fund-
ing SARA analysis as well as testing for their programs.
Today, SARA Lab resources are stretched to meet
demand. Rather than simply advising sponsors to use
assurance technology for cybersecurity or performing
assurance research only when requested by sponsors,
APL is actively applying its own cybersecurity principles.
This not only assures the best result possible today for
Lab sponsors, but it also gives APL a deeper insight into
the technology that will lead to important innovations
for the future.

LOOKING FORWARD
Work on trustworthy computing is just beginning.

Many research challenges remain, not the least of which
is recognition of both the need for and the immense
potential of trustworthy computing. For example, moni-
toring software execution for adherence to a rigorous
specification of correct operation, rather than for signs
of specific misbehavior, is the only means of escaping
the menace of the zero-day exploit. Today, extract-
ing the specification of correct behavior from code (as
needed for LKIM, for example) requires a considerable
degree of manual analysis. Yet research into automat-
ing this process takes a backseat to creating high-profile
techniques for defeating today’s threats even though
these techniques quickly become obsolete. Trustworthy
computing requires a long-term focus and commitment.

There are positive signs. The groundbreaking work
on ACAS X was the first sponsor-funded work at
APL using FM after a decade of independently funded
research. The work was enabled by a farsighted APL
program manager who presented the possibility to an
equally farsighted sponsor. Today, APL is assessing the
safety and security of the Unmanned System Common
Control System (UxS CCS). Because of the complexity
and criticality of the software, APL is applying formal
model verification to the UxS CCS design. A few years
ago, this would not even have been considered. The
increasing demand for SARA services is another har-
binger of progress, at least on the assurance front.

Today, APL has a history and record of achieve-
ment in trustworthy computing of which it can be justly

http://www.jhuapl.edu/techdigest
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.O.%20Sami%20Saydjari.QT.&newsearch=true
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=1176283&queryText=(%22Publication%20Title%22:Proceedings%20Computer%20Security%20Applications)&matchBoolean=true&searchWithin=LOCK&searchField=Search_All
http://techdigest.jhuapl.edu/TD/td3202/32_02-Grizzard.pdf
http://techdigest.jhuapl.edu/TD/td3202/32_02-Grizzard.pdf
http://techdigest.jhuapl.edu/TD/td3202/32_02-Grizzard.pdf
https://trustedcomputinggroup.org/work-groups/mobile
https://trustedcomputinggroup.org/work-groups/mobile
https://trustedcomputinggroup.org//work-groups/embedded-systems

Trustworthy Computing at APL

Johns Hopkins APL Technical Digest, Volume 34, Number 2 (2018), www.jhuapl.edu/techdigest 247

41Platzer, A., “Differential Dynamic Logic for Hybrid Systems,” J.
Autom. Reasoning 41(2), 143–189 (2008).

42Kouskoulas, Y., Renshaw, D., Platzer, A., and Kazanzides, P., “Certi-
fying the Safe Design of a Virtual Fixture Control Algorithm for a
Surgical Robot,” in Proc. 16th International Conf. on Hybrid Systems:
Computation and Control, pp. 263–272 (2013).

43Federal Aviation Administration, Introduction to TCAS II, Ver-
sion 7.1, U.S. Department of Transportation, Washington, DC (2011).

44Holland, J. E., Kochenderfer, M. J., and Olson, W. A., “Optimizing
the Next Generation Collision Avoidance System for Safe, Suitable,
and Acceptable Operational Performance,” Air Traffic Cont. Quart.
21(3), 275–297 (2014).

45Kochenderfer, M. J., Holland, J. E., and Chryssanthacopoulos, J. P.,
“Next Generation Airborne Collision Avoidance System,” Lincoln
Lab. J. 19(1), 17–33 (2012).

46Kochenderfer, M. J., and Chryssanthacopoulos, J. P., Robust Airborne
Collision Avoidance Through Dynamic Programming, Technical Report
ATC-371, MIT Lincoln Laboratory, Lexington, MA (Jan 2010).

47Salmon, D., Zeller, M., Guzman, A., Mynam, V., and Donolo, M.,
“Mitigating the Aurora Vulnerability with Existing Technology,” in
Proc. 6th Georgia Tech Protective Relaying Conf., Atlanta, GA, pp. 1–7
(2010).

48Pendergrass, J. A., Lee, S. C., and McDonell, C. D., “Theory and Prac-
tice of Mechanized Software Analysis,” Johns Hopkins APL Tech. Dig.
32(2), 499–508 (2013).

24Trusted Computing Group, “Virtualized Platform,” https://
trustedcomputinggroup.org/work-groups/virtualized-platform/
(accessed 16 Feb 2017).

25ARM, Inc., “ARM TrustZone,” http://www.arm.com/products/
security-on-arm/trustzone (accessed 16 Feb 2017).

26McGill, K. N., “Trusted Mobile Devices: Requirements for a Mobile
Trusted Platform Module,” Johns Hopkins APL Tech. Dig. 32(2), 544–
554 (2013).

27Microsoft Corporation, Windows Certification Program: Hardware
Certification Program, https://msdn.microsoft.com/en-us/library/
windows/hardware/jj125187.aspx (accessed 16 Feb 2017).

28National Security Agency, HAP Technology Overview: Trusted Com-
puting Technologies Used in the High Assurance Platform, National
Security Agency/Central Security Service (2011).

29User TCGadmin, “Byres Security Demonstrates Industrial Con-
trol System (SCADA),” YouTube, https://www.youtube.com/
watch?v=4UJis7Ud89I (16 July 2009).

30Fink, R. A., Sherman, A. T., and Carback, R., “TPM Meets DRE:
Reducing the Trust Base for Electronic Voting Using Trusted Plat-
form Modules,” IEEE Trans. Inf. Forensic. Secur. 4(4), 628–637 (2009).

31Pendergrass, J. A., “Verification of Stack Manipulation in the Scal-
able Configurable Instrument Processor,” Johns Hopkins APL Tech.
Dig. 32(2), 465–475 (2013).

32Fu, M., Li, Y., Feng, X., Shao, Z., and Zhang, Y., “Reasoning About
Optimistic Concurrency Using a Program Logic for History,” Lecture
Notes in Computer Science, Vol. 6269, P. Gastin and F. Laroussinie
(eds.), Springer, Berlin/Heidelberg, pp. 388–402 (2010).

33Ishtiaq, S. S., and O’Hearn, P. W., “BI as an Assertion Language for
Mutable Data Structures,” in Proc. 28th ACM SIGPLAN-SIGACT
Symp. on Principles of Programming Languages, New York, pp. 14–26
(2001).

34Reynolds, J. C., “Separation Logic: A Logic for Shared Mutable Data
Structures,” in Proc. 17th Annual IEEE Symp. on Logic in Computer
Science, Copenhagen, Denmark, p. 55 (2002).

35Kouskoulas, Y., and Kazanzides, P., “Applying Mathematical Logic to
Create Zero-Defect Software,” Johns Hopkins APL Tech. Dig. 32(2),
476–489 (2013).

36Kazanzides, P., Kouskoulas, Y., Deguet, A., and Shao, Z., “Proving the
Correctness of Concurrent Robot Software,” in Proc. IEEE Interna-
tional Conf. on Robotics and Automation, St. Paul, MN, pp. 4718–4723
(2012).

37Kouskoulas, Y., Fu, M., Shao, Z., and Kazanzides, P., Certifying the
Concurrent State Table Implementation in a Surgical Robotic System
(Extended Version), Yale University Technical Report, http://flint.
cs.yale.edu/flint/publications/statevec-tr.pdf (2011).

38Fränzle, M., and Herde, C., “HySAT: An Efficient Proof Engine for
Bounded Model Checking of Hybrid Systems,” Form. Method. Sys.
Des. 30(2), 179–198 (2007).

39Platzer, A., “Differential-Algebraic Dynamic Logic for Differential-
Algebraic Programs,” J. Log. Comput. 20(1), 309–352 (2010).

40Kouskoulas, Y., Platzer, A., and Kazanzides, P., “Formal Methods for
Robotic System Control Software,” Johns Hopkins APL Tech. Dig.
32(2), 490–498 (2013).

Susan C. Lee, National Security
Analysis Department, Johns Hopkins
University Applied Physics Labora-
tory, Laurel, MD

Susan Lee is an analyst in the National
Security Analysis Department. She
received a B.A. in physics at Duke
University and an M.S. in computer

science and an M.S. in technical management, both at the
Whiting School of Engineering at Johns Hopkins Univer-
sity. During her long career at APL, she has contributed
to building satellites performing scientific missions, data
acquisition and analysis systems to measure the magnetic
signatures of SSBNs, and implantable biomedical devices.
As chief scientist of the Asymmetric Operations Sector,
where the work in this article was performed, she was
instrumental in creating, shaping, and maintaining the
research program on trustworthy computing. Her e-mail
address is sue.lee@jhuapl.edu.

http://www.jhuapl.edu/techdigest
https://trustedcomputinggroup.org/work-groups/virtualized-platform/
https://trustedcomputinggroup.org/work-groups/virtualized-platform/
http://www.arm.com/products/security-on-arm/trustzone
http://www.arm.com/products/security-on-arm/trustzone
http://techdigest.jhuapl.edu/TD/td3202/32_02-Grizzard.pdf
https://msdn.microsoft.com/en-us/library/windows/hardware/jj125187.aspx
https://msdn.microsoft.com/en-us/library/windows/hardware/jj125187.aspx
https://www.youtube.com/watch?v=4UJis7Ud89I
https://www.youtube.com/watch?v=4UJis7Ud89I
http://flint.cs.yale.edu/flint/publications/statevec-tr.pdf
http://flint.cs.yale.edu/flint/publications/statevec-tr.pdf
mailto:sue.lee@jhuapl.edu

	Trustworthy Computing at APL
	Susan C. Lee
	ABSTRACT
	INTRODUCTION
	The Challenge of Trustworthy Computing
	Creating Trust

	A SHORT HISTORY OF TRUSTWORTHY COMPUTING
	DESIGNING TRUSTWORTHY SYSTEMS AT APL
	NetTop Failed Operation Recovery and Correction Element
	The N-FORCE Design
	The Significance of N-FORCE

	The Linux Kernel Integrity Measurer
	Development for Secure Virtual Platform
	The Significance of LKIM
	LKIM Deployment

	Record and Replay
	RnR Design
	The Significance of RnR
	RnR Applications

	Separation
	Independent Research and Development
	The Trusted Platform Module
	The Significance of the TPM

	ASSURANCE OF CORRECT FUNCTIONALITY
	Formal Methods
	Real-Time Guarantees
	Cyber-Physical Guarantees
	The Skull-Base Surgery Robot
	Next-Generation Airborne Collision Avoidance System
	The Significance of APL’s Work in FM

	The Founding of SARA
	Concept
	SARA Lab Operations
	The Significance of SARA

	LOOKING FORWARD
	REFERENCES
	Figure 1. NetTop concept with in-line encryptor.
	Figure 2. NetTop trustworthy operation with N-FORCE.
	Figure 3. (a) Resource access attestation. (b) LKIM measurement of the Linux kernel visualized as a graph.
	Figure 4. Basic RnR operation.
	Figure 5. Measured Boot chain of trust.
	Figure 6. (a) Data structures used in communicating state among concurrent threads. (b) The state table circular buffer with read and write pointers. (Reprinted from Ref. 35.)
	Figure 7. SBS system control regimes. (Reprinted from Ref. 40.)
	Figure 7. SBS system control regimes. (Reprinted from Ref. 40.)
	Figure 8. Induced risk counterexample: do not climb advisory puts ownship (blue) on a collision course with intruder (red).
	Figure 9. SARA Laboratory concept of operations. (Reprinted from Ref. 48.)
	Figure 9. SARA Laboratory concept of operations. (Reprinted from Ref. 48.)
	Author Bio

