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ABSTRACT
The Johns Hopkins University Applied Physics Laboratory (APL) is working to develop the next 
generation of test and evaluation (T&E) tools for maritime, air, and ground autonomous sys-
tems. Advancement in autonomy on unmanned vehicles is outpacing test ranges’ capability for 
effective T&E of these systems. DoD test ranges face the challenge of being able to execute a very 
limited number of live tests to validate increasingly complex systems. APL is performing research 
and development to help solve the cost and reliability issues associated with on-range T&E of 
autonomous systems. Using advanced optimization techniques to intelligently explore the highly 
complex state space in which autonomous systems operate, the Range Adversarial Planning 
Tool (RAPT) team is developing tools for test ranges to identify the most relevant tests for the full 
scope of maritime, airborne, and ground-based autonomous systems. The principal challenge 
with testing and evaluating autonomy is addressing the complex, NP-Hard (non-deterministic 
polynomial-time hard) interactions between autonomy and the environment. Decomposing the 
problem only exacerbates the situation by producing an intractable set of options in various mis-
sion conditions and internal states of an autonomous system. Therefore, autonomy can be evalu-
ated only with precise understanding of the interactions between the autonomous vehicle and 
the environment, enabling delineation of which situations are effective from a T&E perspective 
and which are not. 

duce a new method for intelligently generating test sce-
narios that inform testers on the expected performance 
of the autonomous system. 

Our approach to designing informative test cases 
differs from recent work in validating autonomous sys-
tems. We are not focusing on fault detection1 or model 
checking2 of the underlying decision engine. Instead 
of modeling the underlying behavior of a black-box 

INTRODUCTION
Designing test scenarios for validation and verifica-

tion of autonomous vehicles is currently an expensive 
and involved process. Testing requires the input of 
subject-matter experts who are thoroughly versed in 
the behaviors of both the platform and the autonomous 
decision engine under test. Performing live tests is also 
very time consuming, which severely limits the number 
of tests that can be performed. In this article, we intro-
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autonomous system,3 we try to model the relationship 
between scenario configuration and the resulting per-
formance metrics for the autonomy. This approach has 
the advantage of greatly reducing the input and output 
state-spaces from those that are used for traditional fault 
detection. The result is a model that can detect and clas-
sify anomalous behavior based on the performance met-
rics it exhibits.

A candidate test scenario is deemed interesting and 
informative if it is close in the configuration space to a 
performance boundary. In this article, we define a per-
formance boundary as a location in the configuration 
space where a discontinuity or large change in perfor-
mance occurs. For example, a performance boundary 
may occur when a slight change in obstacle position 
causes an autonomous agent to transition from succeed-
ing in its mission to failing. By identifying test cases near 
performance boundaries, we can assist test designers in 
selecting scenarios that are most likely to be informa-
tive so they can design test plans tailored to the spe-
cific autonomy in question. The method described 
in this article is divided into two primary approaches: 
the search approach and the boundary identification 
(ID) approach. During the search approach, we use 
active learning to select new test cases that are run by 
the autonomy simulation. Gaussian process regression 
(GPR)4 is used to form a model of the autonomy per-
formance and preferentially select regions that might 
indicate performance boundaries. The high dimension-
ality of the configuration space for an autonomy under 
test makes it intractable to simply perform an exhaus-
tive spread of simulations. Thus, intelligent searching of 
the configuration space is necessary to obtain adequate 
coverage of the boundary regions while minimizing the 
number of simulations. In the boundary ID approach, 
samples generated during the search approach are used 
to identify the performance modes in the resulting data 
by using unsupervised clustering algorithms. Once test 
cases have been classified by their performance mode, 
the boundaries between performance modes are identi-
fied, and the tested scenarios adjacent to boundaries can 
be used to aid in live test design.

TEST AND EVALUATION NEED
The validation and verification of autonomous sys-

tems has been an active area of research in the past few 
years, particularly in the use of active learning for test 
case generation. Here we discuss recent work in the 
fields of verification of autonomous systems and auto-
matic test case generation and how it relates to the work 
discussed in this article. 

Validation of autonomous systems for critical mis-
sions has been increasing in importance as robots have 
become more prevalent in ordnance disposal, search 
and rescue, and other systems that have very low toler-

ance for failure.5 There has been a lot of work to develop 
methods that provide performance guarantees based on 
model-checking and formal methods.2,6 These meth-
ods require that a model—which must fully describe 
the autonomy performance—be generated and exhaus-
tively tested for exceptions that break the specifications. 
Models that have been used in the past include finite 
state machines1,7 and process algebras.6 A drawback of 
this approach is that a model must first fully describe the 
autonomy, and test engineers must have full access to 
the model. Given the increasing complexity of autono-
mous systems and the black-box nature of proprietary 
software, these limitations prevent these methods from 
being applied to many systems. 

Learning-based methods for developing models of 
black-box systems for robustness testing have been the 
topic of many recent papers.8 These techniques often 
combine a model-checking strategy with an incremen-
tal model inference or learning algorithm. Typically, a 
finite-state machine built using Angluin’s algorithm L* 
has been used.9,10 Our method differs from these tech-
niques by not attempting to model the actual behavior 
of the autonomy with respect to its inputs. Rather, we 
try to model its overall performance with respect to the 
stimuli it receives from its mission and environment. One 
method similar to our approach of boundary identifica-
tion is the production of a set models used for fault detec-
tion.11 Our focus on modeling autonomy performance 
based on mission and environmental inputs allows us to 
perform black-box testing of the autonomous system.

RAPT ARCHITECTURE AND SIMULATION
The Range Adversarial Planning Tool (RAPT) gen-

erates test-planning products by using data from simu-
lations of the autonomy software. Our approach relies 
on GPR techniques to identify the boundary conditions 
of the autonomy in simulation; autonomy performance 
metrics intelligently guide our search algorithm to iden-
tify performance boundary scenarios. Our GPR search 
generates scenarios that vary environmental, mission, 
and vehicle states in an open-architecture simulation 
environment. 

As shown in Fig. 1, the RAPT system consists of three 
primary components: (1) an offline state description, 
(2)  optimization algorithms, and (3) a simulation envi-
ronment. The offline state description allows test design-
ers to define the state space for air, ground, and maritime 
systems against which the autonomy will be tested. The 
entirety of the state space cannot be executed in simula-
tion due to the sheer size, so RAPT explores this state 
space using a stochastic optimization algorithm to identify 
test scenarios for execution in simulation. Results from 
these simulations inform the optimization algorithms as 
to which subsequent simulations will be informative and 
help determine the performance bounds of the autonomy. 
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PROBLEM DEFINITION
We define the performance boundary identification 

problem as one of discovering test cases in the scenario 
configuration space that are close to discontinuities or 
large gradients in the performance space (i.e., where 
small changes in the scenario result in large changes 
in autonomy performance). Definitions include the 
following:

SYSTEM UNDER TEST
Several candidate systems were developed to evaluate 

our search and boundary ID algorithms. The first cate-
gory of candidate systems consisted of mathematical test 
functions that accept either a two- or three-dimensional 
input state and output one-dimensional scores. The 
second category of candidate systems comprised a simple 
unmanned undersea vehicle (UUV) scenario with a 
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Figure 1.  High-level architecture diagram of the RAPT system. A human-derived description of (1) the state space provides input to 
(2) an optimization algorithm, which creates tests performed in (3) simulation and assesses efficacy in defining the performance bound-
ary. TENA, Test and Training Enabling Architecture.
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six-dimensional input space and a two-dimensional 
output space.

Three custom test functions were developed in order 
to evaluate the algorithms for performance boundary 
identification. These test functions have the advantage 
that they are easy to visualize and have ground-truth 
boundaries that were known a priori. In each function, 
we defined the performance boundaries as the local 
maxima of slope based on the features of the function. 
Two of the test functions accepted a two-dimensional 
input state and returned a one-dimensional score, while 
the third accepted a three-dimensional input state. These 
test functions are named the Custom2d (Fig. 2), Plates2d 
(Fig.  3), and Plates3d test functions. The Custom2d 
function outputs a continuous score and contains 11 
artificially introduced features including peaks, valleys, 

plateaus, and cliffs in score. The surface can be seen in 
Fig. 2a, and the truth boundaries are drawn in Fig. 2b. 
This function was chosen and developed over standard 
test functions for optimization in an attempt to represent 
the many different types of performance boundaries an 
autonomy may experience. Thus, the features included 
in the function are a mix of discontinuities, noise, and 
varying degrees of gradients. Standard test functions 
were also tested but are not discussed in this article. The 
Custom2d function tests the algorithms’ ability to dis-
cover performance boundaries of different magnitudes 
and different shapes. The Plates2d function is a represen-
tation of a nearest neighbor function and outputs a dis-
crete score based on the label of the seed point closest to 
the sampled state. The surface can be seen in Fig. 3a, and 
the truth boundaries are drawn in Fig. 3b. The purpose 
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Figure 3.  Plates2d: a two-dimensional input, one-dimensional output test function showing the (a) surface and (b) self-identified 
boundaries.
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Figure 2.  Custom2d: a two-dimensional input, one-dimensional output test function showing the (a) surface and (b) self-identified 
boundaries.
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of this function was to provide a system in which the per-
formance boundaries were clearly defined and to test the 
algorithms against a discrete output. The Plates3d func-
tion is identical to the Plates2d function; however, the 
seed points and nearest neighbor search are performed 
in a three-dimensional input space. The purpose of this 
function was to provide a higher-dimensional case that 
still had clearly defined boundaries.

In addition to test functions, the search and selec-
tion algorithms were also evaluated on an autonomous 
vehicle simulation. For our autonomous vehicle, we 
chose a simulated UUV operating under a multiobjec-
tive navigation scenario. As shown in Fig. 4, the objec-
tive of the mission was to travel from a starting point to 
a goal waypoint and then return to a separate recovery 
point (all of which are fixed) before its battery runs out 
of charge. The goal waypoint was placed on the oppo-
site side of a 2-km operational area from the start and 
recovery points. Inside the operational area, we have 
placed three square obstacles that are 400 m on a side. 
These obstacles can vary in the east and north direc-
tions. Thus, the centers for the three obstacles form our 
six input state dimensions, X = [E1, N1, E2, N2, E3, N3].

The autonomy was designed to evaluate its current 
power limitations and determine whether it should 
continue to the goal point or return to the recovery 
point. The autonomy was scored based on whether it 
reaches the goal waypoint (deemed a mission success) 
and whether it returns to the recover point successfully 
(deemed a safety success). These two mission criteria 
give the output score dimensions, Y = [MS, SS], both of 
which are binary values based on success or failure to 
meet the requirements. 

To experiment further, we also created an alternative 
scoring method based on continuous metrics includ-
ing the closest distance of approach to the goal point 

and the recovery point, as well as the remaining fuel at 
closest approach, Yalt  =  [Drecovery,  Frecovery,  Dgoal,  Fgoal]. 
This alternative score was used to determine whether 
our algorithms could detect any additional performance 
modes that were not captured by the broader generaliza-
tions of mission success and safety success. The vehicle 
was also given a forward-looking sonar with a range of 
1000 m and a 60° field of view for detecting obstacles. 

The autonomy under test is an implementation of 
the Tangent Bug algorithm, which estimates the total 
distance remaining in its mission. If it estimates that 
the total distance exceeds its remaining battery charge, 
it immediately begins navigating back to its recovery 
point. Note that the autonomy intelligence and decision-
making was not meant to be optimal. Rather, the naive 
autonomy described above was implemented so as to 
create performance boundaries that could be identified.

OPTIMIZATION APPROACH
In this section, we present the first of a two-part 

approach for generating test scenarios. A search algo-
rithm first preferentially samples from regions near per-
formance boundaries to create a sample set of states and 
scores. The next section describes a clustering algorithm 
used to identify performance modes and boundaries 
from the results and classify the sampled states.

While software-in-the-loop testing of autonomy 
using a simulated environment allows for a large number 
of test cases to be run, there are still limitations in the 
number of samples that can be collected. The simu-
lated mission duration could be several hours, and if the 
autonomy under test cannot be run faster than real time, 
the number of samples that can be run will be similarly 
restricted. Because of these constraints, we require a 
search strategy that preferentially samples from the 
regions of interest. To achieve this, we follow an active 
learning strategy for generating the sample set. 

An iterative process is used consisting of model gen-
eration followed by the submission of additional queries 
to the SUT. Our objective is to find areas with high gra-
dients that might indicate the presence of a performance 
boundary (i.e., where small changes to the state space 
lead to large changes in performance). However, we 
also need to continue exploring the space rather than 
oversampling regions of interest that have already been 
covered. We achieve this by using GPR to provide both 
a model of the mean value, the gradient of the mean, 
and an estimated variance for each prediction point. 
The covariance of the Gaussian process adjusts a point’s 
distance from a previously sampled point. Thus, a metric 
based entirely on the covariance would eventually lead 
to a uniformly sampled state space. To balance explo-
ration of uncertain areas of the space versus refined 
searching of previously found boundaries, we developed 
the following information metric to guide the search: 

Launch

Goal

Recovery

(E1, N1)

(E2, N2)

(E3, N3)

Figure 4.  An autonomous UUV scenario. The simulated UUV’s 
navigation mission is to travel to a fixed goal waypoint and return 
to a separate fixed recovery point—avoiding three obstacles (red 
boxes)—before its battery loses charge.
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I(X) = dY
dX(X)P(X)D, where D and P are turning param-

eters for the algorithm. Figure 5 illustrates the informa-
tion metric for a search of the Custom2d function. The 
final method, shown in Fig. 5, for generating the sample 
set is given in Algorithm 1, Gaussian Process Search.

BOUNDARY IDENTIFICATION APPROACH
The process of boundary detection is a classification 

problem. While we can potentially quantify the number 
of performance modes an SUT might exhibit, we do not 
know where they will occur. We consider a performance 
boundary as a contiguous region in the state space 
that exists between two regions exhibiting differing 
performance modes. Therefore, an SUT that has only 
two performance modes could still have an unlimited 
number of boundaries if it exhibits a periodic behavior. 
In addition, there is no way of knowing the shapes of 
the performance boundaries for a given SUT. There-
fore, a technique is needed that is capable of identifying 
an unknown number of boundaries that can have an 
unknown shape in potentially sparse data. 

To solve this, unsupervised clustering techniques were 
used to group samples that are likely on the same perfor-
mance boundaries. We chose the Density-Based Spatial 
Clustering of Applications with Noise (DBSCAN) algo-
rithm12 because it does not require a user to define the 
number of boundaries a  priori and because of its abil-
ity to cluster contiguous regions. In cases in which the 
SUT outputs discrete values (i.e., the binary criteria for 
mission success and safety success described earlier), it 
is trivial to identify distinct performance modes from 
the resulting scores. To apply our techniques to systems 
that provide continuous outputs, we have implemented 
two methods for identifying the performance modes. 
The first method filters out all cases whose gradients are 
below the 90th percentile in magnitude of all the sam-
pled states. This results in isolated sets of test cases that 
can then be clustered in state space using the DBSCAN 
algorithm and directly identified as performance bound-
aries. One drawback of this approach is that it does not 
identify the performance mode associated with each 
case in the boundary, only that each case exists in a 

distinct region of interest. The second method is to use 
mean-shift13 clustering in the score space to identify the 
performance modes and classify the samples. Once the 
samples have been classified with respect to their per-
formance mode, they are then subjected to DBSCAN 
clustering in state space to identify distinct regions of 
interest. To obtain the boundaries from these clusters, 
we perform a pairwise comparison between every cluster 
with a differing performance mode. We use a k-nearest 
neighbor detection algorithm to determine the closest 
neighbor in the adjacent cluster for each sample. Any 
samples that are within B distance of their nearest 
neighbor in the opposite cluster are added to the final 
boundary set. The pair distances in the boundary set are 
then used to determine how close the samples are to the 
performance boundary. This approach is defined further 
in Algorithm 2, Boundary Identification.

RESULTS
Using the three mathematical test functions defined 

in the “System Under Test” section, we evaluated our 
search and selection algorithms’ ability to discover and 
identify the known boundaries. We then applied these 
algorithms to the generation of test scenarios for the 
UUV simulation and compared the ability of our system 
to discover interesting test cases compared to a standard 
Latin hypercube sample set. We evaluated the perfor-
mance of our iterative GPR search based on its ability to 
identify features in known data sets and compared it to 
other sampling methods. 
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We chose two commonly used statistical sampling 
techniques as our baseline: Latin hypercube and metrop-
olis sampling. We compared these against the iterative 
GPR search algorithm by using the following metrics 
for each of the mathematical test functions: precision, 
coverage, and convergence. Precision is measured as 

percentage of samples that are within 5% of a known 
boundary after a set number of samples. Coverage is the 
percentage of known boundary with a sample within 
1% after a set number of samples. Convergence is the 
number of samples required to reach 90% coverage of all 
known boundaries. 

(a) Variance (b) Slope (c) Information

Figure 5.  Heatmap of the variance (a), slope (b), and the resulting information metric (c) for a GPR model of the 2d test function after 
200 samples.
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Figure 6.  Scatter plot of a GPR search vs. Latin hypercube sampling of the Custom2d (top) and Plates2d test function (bottom). Scenario 
samples taken are in blue and the true locations of the boundaries are in red.
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for the fact that the search and identification steps are 
highly coupled. Poor performance by the search algo-
rithm in sampling regions near performance boundaries 
will inevitably lead to poor performance in boundary 
identification. For example, if none of the samples 
returned by the search algorithm are near a truth 
boundary, it is a hopeless task for the identification 
algorithm to extract successful boundaries from the 
data. For this reason, the boundary ID methods were 
evaluated on a data set consisting of a large number of 
Latin hypercube samples. In this manner, the identi-
fication algorithms can be evaluated independently of 
the search algorithms, where the number of samples for 
each test function provides sufficient coverage of the 
boundaries. Additionally, the precision and recall of 
the identified boundaries was calculated based on the 
samples from the data set that were near the a  priori 
truth boundaries. These precision and recall results are 
presented in Figs. 6 and 7 and Table 1.

The GPR-based search outperformed the Latin 
hypercube sampling method in all of our chosen metrics, 
particularly in cases in which the boundaries are sharply 
defined as in our Plates2d test function. As shown in 
Fig.  5, the GPR-based search concentrated nearly all 
of its samples in the regions near the boundaries, with 
minimal cases selected in the uninteresting regions. 
More importantly, it also managed to obtain near full 
coverage of the boundary in under half the cases of the 
uniform sampling of the Latin hypercube method. One 
thing that becomes apparent immediately in the perfor-
mance comparison between the Plates2d and Plates3d 
functions is that the added dimension greatly increases 
the number of cases necessary to obtain coverage of 
the boundaries.

Evaluation of the two boundary ID methods 
(DBSCAN and mean-shift clustering) was performed 
on the three mathematical test functions. Metrics to 
evaluate the performance of boundary ID must account 
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Figure 7.  Boundary ID results for a 5000-sample data set. Colors of sample points indicate a unique boundary.
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This research is still ongoing, and many avenues have 
yet to be explored. In particular, we are interested in 
methods for scaling up our system to handle even larger 
numbers of dimensions and test cases. One approach is 
using localized GPR techniques to speed up model gen-
eration and prediction time as the number of samples 
increases. We are also interested in investigating non-
stationary covariance functions for the GPR to handle 
varying resolution of features. 
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CONCLUSIONS
In this work, we introduce a process for discovering 

and identifying test cases near performance boundaries, 
in which a small change in the scenario configuration 
would cause a large change in the system’s performance. 
By using an active learning approach and a GPR model, 
we can reduce the number of queries required to find the 
features of interest. 

We also introduce two methods for unsupervised 
clustering of the resulting samples that group all test 
cases that exhibit the same transition in performance. 
We tested the ability of each of our techniques against 
mathematical test functions where the true boundaries 
in performance are well known. These test functions are 
designed to test both our ability to preferentially sample 
in the regions of interest near a boundary and our ability 
to correctly identify cases that should be added to the 
boundary set. 

In our tests of the GPR-based search approach, we 
demonstrate that it can significantly outperform a 
random search of the state space and can fully describe 
a boundary in considerably fewer queries. Our tests 
into higher-dimension test functions demonstrate that 
although the GPR search cannot solve the underlying 
problems that come as the number of cases necessary 
becomes exponentially larger, it still performs better 
than a uniform random search method such as Latin 
hypercube sampling. 

The two boundary ID methods are both capable of 
obtaining high precision and recall for correctly classify-
ing samples as being near a boundary. Using the gradi-
ent percentile filtering method has a significantly higher 
precision when identifying boundaries in continuous 
output space compared to the mean-shift classification 
method, while the mean-shift method has better preci-
sion and recall when identifying boundaries in a space 
with discrete output values. One issue we encountered 
is that the performance boundary as a feature in a high-
dimensional and sparse data set is not one that has been 
explored before in the literature. 

Table 1.  Comparison of boundary ID methods

Test 
System

Gradient 
Percentiles (%)

Mean-Shift 
(%)

Custom2d Based on 5,000 Latin hypercube samples
  Precision 75.6 50.2
  Recall 57.6 86.1
Plates 2d Based on 5,000 Latin hypercube samples
  Precision 96.6 100
  Recall 33.4 87.7
Plates 3d Based on 15,000 Latin hypercube samples
  Precision 83.8 100
  Recall 89.2 60.5

http://www.jhuapl.edu/techdigest
http://mlg.eng.cam.ac.uk/tutorials/06/es.pdf


G. E. Mullins et al.

Johns Hopkins APL Technical Digest, Volume 33, Number 4 (2017), www.jhuapl.edu/techdigest288

Galen E. Mullins, Research and Develop-
ment Department, Johns Hopkins University 
Applied Physics Laboratory, Laurel, MD

Galen E. Mullins is a roboticist in APL’s 
Research and Development Department. 
He received bachelor’s degrees in mechani-
cal engineering and mathematics from 
Carnegie Mellon University and a master’s 

degree in applied physics from Johns Hopkins University. He 
is the Algorithm Lead for the Range Adversarial Planning 
Tool (RAPT) program and has research interests in robotics, 
autonomy, machine learning, and numerical optimization. His 
e-mail address is galen.mullins@jhuapl.edu.

Paul G. Stankiewicz, Force Projection 
Sector, Johns Hopkins University Applied 
Physics Laboratory, Laurel, MD

Paul G. Stankiewicz is an engineer in the 
Ocean Systems and Engineering Group of 
APL’s Force Projection Sector. He received 
an M.S. and a B.S. in mechanical engi-
neering from Penn State in 2015 and 2013, 

respectively. His research background is in dynamic systems 
and control, with a focus on autonomous systems. Paul sup-
ported the Range Adversarial Planning Tool (RAPT) algo-
rithm development for intelligent search and boundary iden-
tification. His e-mail address is paul.stankiewicz@jhuapl.edu.

R. Chad Hawthorne, Force Projection 
Sector, Johns Hopkins University Applied 
Physics Laboratory, Laurel, MD

R. Chad Hawthorne is the Assistant Group 
Supervisor of the Ocean Systems and 
Engineering Group in APL’s Force Projec-
tion Sector and the Principal Investigator 
for the Range Adversarial Planning Tool 

(RAPT). His e-mail address is chad.hawthorne@jhuapl.edu.

Jordan D. Appler, Force Projection Sector, 
Johns Hopkins University Applied Physics 
Laboratory, Laurel, MD

Jordan Appler is an electrical engineer in 
the Ocean Systems and Engineering Group 
in APL’s Force Projection Sector and con-
tributed to the development of the Range 
Adversarial Planning Tool (RAPT) auton-

omy and simulator. He received a B.S. in electrical engineering 
from the University of Maryland, College Park, in 2015. His 
e-mail address is jordan.appler@jhuapl.edu.

Michael H. Biggins, Force Projection 
Sector, Johns Hopkins University Applied 
Physics Laboratory, Laurel, MD

Mike Biggins is a software engineer in the 
Ocean Systems and Engineering Group in 
APL’s Force Projection Sector and led the 
autonomy software development for the 

Range Adversarial Planning Tool (RAPT). His background is 
in multivehicle autonomous control system development, for 
which he has been recognized twice as an R. W. Hart Prize 
recipient. He received a B.S. in computer science from the 
University of Maryland, College Park, in 2012 and an M.S. 
from Johns Hopkins University in 2016. His e-mail address is 
michael.biggins@jhuapl.edu.

Kevin Chiou, Asymmetric Operations 
Sector, Johns Hopkins University Applied 
Physics Laboratory, Laurel, MD

Kevin Chiou is a software engineer in the 
Enterprise Systems Group in APL’s Asym-
metric Operations Sector. His e-mail 
address is kevin.chiou@jhuapl.edu.

Melissa A. Huntley, Force Projection 
Sector, Johns Hopkins University Applied 
Physics Laboratory, Laurel, MD

Melissa Huntley is the Assistant Section 
Supervisor of the Autonomous Systems 
Section in the Ocean Systems and Engi-
neering Group in APL’s Force Projection 
Sector. She led the test range software 

development effort for the Range Adversarial Planning Tool 
(RAPT). She received a B.S. in computer engineering from 
University of Maryland, Baltimore County, in 2013 and an 
M.S. in systems engineering from Johns Hopkins University in 
2016. Her e-mail address is melissa.huntley@jhuapl.edu.

Johan D. Stewart, Force Projection Sector, 
Johns Hopkins University Applied Physics 
Laboratory, Laurel, MD

Johan Stewart is a Senior Professional Staff 
member of the Ocean Systems and Engi-
neering Group in APL’s Force Projection 
Sector. He led the design, installation, 
and deployment of the Range Adversarial 

Planning Tool (RAPT) at the Naval Undersea Warfare Center, 
Keyport. His e-mail address is johan.stewart@jhuapl.edu.

Adam S. Watkins, Force Projection 
Sector, Johns Hopkins University Applied 
Physics Laboratory, Laurel, MD

Adam Watkins is the Section Supervi-
sor of the Intelligent Sensor Technologies 
Section in the Ocean Systems and Engi-
neering Group in APL’s Force Projection 
Sector. He provided leadership in the con-

ceptual development of the Range Adversarial Planning Tool 
(RAPT). Adam holds a Ph.D. in aerospace engineering from 
the University of Florida. His research is focused on autono-
mous system control and image processing. His e-mail address 
is adam.watkins@jhuapl.edu.

http://www.jhuapl.edu/techdigest
mailto:galen.mullins@jhuapl.edu
mailto:paul.stankiewicz@jhuapl.edu
mailto:chad.hawthorne@jhuapl.edu
mailto:jordan.appler%40jhuapl.edu?subject=
mailto:michael.biggins@jhuapl.edu
mailto:kevin.chiou@jhuapl.edu
mailto:melissa.huntley@jhuapl.edu
mailto:johan.stewart@jhuapl.edu
mailto:adam.watkins@jhuapl.edu

	Delivering Test and Evaluation Tools for Autonomous Unmanned Vehicles to the Fleet
	Galen E. Mullins, Paul G. Stankiewicz, R. Chad Hawthorne, Jordan D. Appler, Michael H. Biggins, Kevin Chiou, Melissa A. Huntley, Johan D. Stewart, and Adam S. Watkins
	ABSTRACT
	INTRODUCTION
	TEST AND EVALUATION NEED
	RAPT ARCHITECTURE AND SIMULATION
	PROBLEM DEFINITION
	SYSTEM UNDER TEST
	OPTIMIZATION APPROACH
	BOUNDARY IDENTIFICATION APPROACH
	RESULTS
	CONCLUSIONS
	REFERENCES
	Bios
	Table 1. Comparison of boundary ID methods
	Algortihm 1
	Algorithm 2
	Figure 1. High-level architecture diagram of the RAPT system. 
	Figure 2. Custom2d: a two-dimensional input, one-dimensional output test function showing the (a) surface and (b) self-identified boundaries.
	Figure 3. Plates2d: a two-dimensional input, one-dimensional output test function showing the (a) surface and (b) self-identified boundaries. 
	Figure 4. An autonomous UUV scenario. 
	Figure 5. Heatmap of the variance (a), slope (b), and the resulting information metric (c) for a GPR model of the 2d test function after 200 samples. 
	Figure 6. Scatter plot of a GPR search vs. Latin hypercube sampling of the Custom2d (top) and Plates2d test function (bottom). 
	Figure 7. Boundary ID results for a 5000-sample data set. 




