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utonomous geolocation of RF emitters using small, 
unmanned systems is a game-changing technology for 
military, government, and commercial missions. This 

technique employs a novel application of a common RF direction-finding technique 
called pseudo-Doppler. Emergent autonomous control concepts are used to control the 
sensor platform and optimize flight trajectories for efficient and rapid geolocation of the 
target. The basic components of this concept, from sensor development to unmanned 
system autonomous behaviors, were tested in simulation and subsequently demon-
strated in flight during the Tactical Network Topology experiment.
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loop control and use sensor platforms from higher ech-
elons that may be too expensive or difficult to schedule 
and typically lack stealth.

APL has developed a technique using small, inexpen-
sive, autonomous UASs that can be organic to a squad of 
soldiers, a small team of first responders, or private com-
mercial interests. Furthermore, this approach requires 
only supervisory control but no human in the loop for 
vehicle control, sensor processing, or geolocation solu-
tions. Because the sensor platforms are small, they can 
be more easily made stealthy, and because they are air-
borne they can access areas from which ground-based 
systems may be restricted.

Small UASs are true force multipliers, providing 
soldiers or first responders organic mobile sensor plat-
forms that can provide close-in sensing while remaining 

OVERVIEW
The mission set for geolocation of RF emitters 

extends across military, governmental, scientific, and 
commercial domains. Examples include finding adver-
saries’ radios, tracking RF-tagged wildlife, and searching 
for shipboard emergency beacons. Another application, 
to be addressed with future research, is the use of this 
technique for navigation of small unmanned aircraft sys-
tems (UASs) in areas where Global Positioning System 
(GPS) is jammed. Classic methods for RF-emitter geo
location include ground-based direction-finding (DF) 
techniques and Doppler-based airborne techniques. 
However, ground-based systems can be labor intensive, 
often require long-duration sensing, and may not have 
the ability to access areas that result in a solution. Dop-
pler techniques onboard high-value airborne assets, 
whether manned or unmanned, require human-in-the-
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cles seem to be optimal for this application). This is 
especially true for moving RF emitters.

For this effort, two UAS vehicles were used as the 
sensor platforms (although not optimal, two were con-
sidered adequate for proof of concept, although one can 
also provide a solution). Each vehicle implemented an 
onboard Kalman filter for fusing LOB measurements 
into a geolocation solution. Each vehicle broadcast its 
measured LOB values, along with the time and loca-
tion of the measurements, to the wireless network. This 
allowed each vehicle to independently fuse its own mea-
surements with the measurements of the other UASs. 
No terrain elevation information was available to the 
vehicles, so a flat-earth assumption was made, and the 
target RF emitter geolocation was computed in the hori-
zontal plane only. Because the flight altitudes were low 
relative to standoff distance, altitude was assumed to be 
the same as the terrain elevation at the vehicle launch 
site. Each filter was initialized using the first available 
LOB measurement and an assumption about the maxi-
mum range at which the target might be detected. This 
information was used to construct an uncertainty region 
oriented along the LOB, with a 95% confidence interval 
in the range direction reaching from the vehicle posi-
tion to the assumed maximum range.

Because the process by which the vehicle and target 
emitter positions define a LOB (i.e., the observation 
model) involves nonlinear trigonometric functions, 
a linear Kalman filter was not suitable for the task of 
fusing LOBs. In early simulation, an extended Kalman 
filter, which linearizes a nonlinear process model about 
some operating point, was implemented and tested but 
was found to diverge egregiously under conditions of 
high noise because of the degree of nonlinearity. An 
unscented Kalman filter, which uses a limited form of 
sampling to approximate nonlinearities to second-order 
accuracy, was found to converge reliably even when the 
LOB measurement noise reached a standard deviation 
of 90º.

A constant process model was used in the Kalman 
filter because, for these experiments, the target was 
nominally stationary. However, a non-zero process 
noise matrix was used. This served two purposes: first, 
it allowed the filter to better recover from unmodeled 
biases in the LOB measurements by discounting old mea-
surements in favor of new ones; and second, it allowed 
for the tracking of moving targets, even with no prior 
assumptions about the direction or pattern of motion. 
Tests in simulation demonstrated success in tracking a 
moving target both with a constant speed and direction 
and with randomly changing direction.

LOB measurements were retained in a buffer in 
chronological order for a short time before they were 
fused in the filter. This allowed time for the data from all 
the UASs to arrive and be inserted into the buffer in the 
correct order before being fused, eliminating the need 

stealthy. These next-generation UASs work individually 
or as autonomous, multi-vehicle collaborative units and 
can operate as “fire and forget” resources requiring very 
little human intervention for control (usually only take-
off and landing). APL’s unique physics-based approach 
to UAS autonomy has been successfully demonstrated 
in dozens of flight test experiments, with mission objec-
tives ranging from unattended ground sensor (UGS) 
data exfiltration and relay, to vision-based ground 
vehicle tracking, to chemical-biological agent plume 
characterization.1, 2

However, small UASs do not fly at velocities suffi-
cient to produce Doppler shifts that result in accurate 
geolocation solutions. One method that does not require 
a high-velocity platform is known as pseudo-Doppler, 
also called synthetic Doppler, which is employed by both 
amateur radio enthusiasts and law enforcement.3 In the 
pseudo-Doppler approach, the receive signal is switched 
rapidly between a constellation of antennas, and the 
phase difference is measured to determine line of bear-
ing (LOB).4, 5

For this effort, multiple receive antennas and a sensor 
payload were integrated onboard each UAS. COTS 
hardware was adapted to receive the signals, and custom 
hardware was developed to switch between antennas 
and to measure the phase shift that produced LOBs. 
Miniaturization of the hardware enabled implementa-
tion onboard a small UAS platform (less than 160 cm 
wingspan and less than 3.2 kg gross vehicle weight).

APL’s autonomy algorithms enable multiple UASs, 
each deriving its own LOB solution, to optimize their 
own flight trajectories. Kalman filters implemented on 
each aircraft were used in the derivation of the geo
location solution and error ellipse based on the LOBs of 
the UAS team. Thus, each UAS was equipped with its 
own processing module to implement the autonomy and 
derive the geolocation solution, as well as a communica-
tion module to exchange data with the other UASs and 
send the solution information to the user on the ground. 
Each UAS also had an onboard autopilot that supported 
true unmanned flight of the UAS solely on the basis of 
the direction provided to it by the onboard autonomy 
software; no human in the loop was required to direct 
the UAS flight.

ONBOARD KALMAN FILTER AND GEOLOCATION 
SOLUTION PROCESSING

To obtain a target geolocation solution, it is neces-
sary to combine two or more LOB measurements from 
different look angles to the target RF emitter.6 This can 
be accomplished with a single sensor platform, but the 
solution is arrived at more quickly, and the error smaller, 
using two or more platforms (balancing resource con-
straints with the geolocation solution error, three vehi-
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Software Design
The Java-based software implementation of the 

UAS autonomy was developed from a system of related 
subsystems, including the agent system and the belief 
network interface.

Agent System
At the center of the implementation is the agent 

system. This subsystem has interfaces to the sensor 
interface, the autopilot, the Kalman filer, and the belief 
network. It acts as a data conduit and processing system. 
The UAS behaviors are also implemented in this 
subsystem.

Belief Network interface
The agent system interfaces with a virtual blackboard 

known as the belief network. This blackboard is made up 
of all the belief managers spread across the network. The 
belief managers attempt to automatically and efficiently 
synchronize and update the beliefs held in the blackboard. 
For this effort, two sensor beliefs were added to the legacy 
belief network. They represent the LOB output from the 
onboard sensor package and the uncertain target geo
locations. These are called “RangeBearingSensorBelief” 
and “UncertainTargetBelief,” respectively.

RangeBearingSensorBelief represents a time-indexed 
list of all sensor readings performed by any agent. For 
efficiency, the belief drops any sensor reading older than 
a certain decay time. This decay time is configurable at 
run-time. UncertainTargetBelief holds the results of the 
sensor data beliefs and geolocation uncertainties of each 
individual agent. The geolocation uncertainty is repre-
sented by an error ellipse about the derived geolocation 
solution. This belief is used to display ellipses on a modi-
fied version of the standard display tool.

Custom Optimization Behaviors
Two custom behaviors were created for this effort: 

GhostCircularFormationBehavior and AngularDiversi-
tyTrackBehavior. Each behavior attempts to guide the 
aircraft in a certain direction. The agent system com-
bines the results of these behaviors into a single com-
mand sent to the autopilot. At certain times, the system 
weighs some behaviors more than others, on the basis 

to “roll back” the filter to an earlier time to incorporate 
older data. Fused measurements were retained in the 
buffer for another short period so they could be broad-
cast to the network multiple times, reducing the chances 
of lost data and increasing the degree of agreement 
between the vehicle target estimates. Each UAS uses its 
own LOB measurements, as well as the LOB measure-
ments of the other UAS, to estimate target location.

MISSION-BASED AUTONOMY CONCEPT AND 
SOFTWARE DESIGN

Autonomy Concept
Previous APL research efforts pioneered the use 

of potential field theory to achieve an effects-based 
control of multiple UASs.7 This approach is based on 
insect models of cooperation and coordination. Prob-
lems are solved by heterarchically, rather than hierar-
chically, organized swarms that alter and react to the 
environment.8, 9 Instead of centralized control, decision 
making is decentralized, occurring with each member of 
the swarm.

This sharing of knowledge is the cornerstone of the 
potential fields concept. The transmitted data packets 
contain information such as the vehicle’s situational 
awareness (e.g., sensor data), operational status (e.g., 
location in space), or mission parameters (e.g., user com-
mands). These data packets are communicated over a 
wireless local area network (WLAN) and are referred 
to as “beliefs.” A communications framework was devel-
oped for belief transfer that employs a modular multi
layered architecture. This framework was designed to 
facilitate distributed collaboration over any mobile ad 
hoc network (MANET).

The potential fields are generated as a result of the 
worldview of the UAS, which is itself the totality of the 
UAS beliefs. These fields are used to influence vehicle 
action, most notably movement. The forces associated 
with these fields, which are illustrated in Fig. 1, may be 
attractive (directing the vehicle toward a point), repul-
sive (directing the vehicle away from a point), or complex 
(a combination of attractive and repulsive fields). At any 
given time, the total force on a vehicle is the summation 
of all attractive, repulsive, and complex forces due to all 
known influences.

(a) (b) (c)

Figure 1.  Fields that are (a) attractive, (b) repulsive, and (c) complex.
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assumptions, the steering commands maximize the instantaneous improvement in 
geolocation accuracy for two cooperating vehicles, and the resulting behavior gen-
eralizes in an intuitive way to more than two vehicles. The simplified geometry for 
two-vehicle geolocation is depicted in Fig. 2.

Two UASs labeled Sensor 1 and Sensor 2 are shown on the left-hand side of the 
figure independently measuring LOB to the target with some error, resulting in the 
uncertainty area, shaded blue, within which the target is most likely to be found. 
This geometry has been simplified in the right-hand side of the figure to approxi-
mate the area of uncertainty as a trapezoid, greatly simplifying the expression for 
the area of the uncertainty region, A:
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The control law will choose the direction (course) that each UAS will travel, 
denoted by 1 and 2; the UAS velocities V1 and V2 are assumed fixed (and will be 
shown later not to impact the computed course). The difference between  and  is 
defined as . This geometry is illustrated in Fig. 3.

If it is the case that the signal might be lost at any time, the best policy is, at each 
point in time, to choose to steer in the direction that maximizes the rate at which 

of position and objective. For 
this effort, two modes were 
developed, one correspond-
ing to each behavior: if the 
UAS was within a certain 
distance of its own target, it 
would enter the orbit mode; 
if the UAS was farther 
away, it would enter into 
the homing mode. The orbit 
mode weighted the output 
of GhostCircularFormation
Behavior fully, whereas 
homing mode weighted 
Angula rDiver sit yTrack
Behavior.

The GhostCircular
FormationBehavior behav-
ior attempts to orbit a target 
while maintaining ideal 
angular separation of the 
orbiters. Simulation runs 
resulted in an ideal orbiting 
angle of 90º phase difference 
for two UASs, 120º phase dif-
ference for three planes, etc. 
One way to implement this is 
to have the “ghost” of each 
vehicle reflected through 
the target and equally space 
all the planes including 
the ghosts. This method 
extends a behavior known as 
CircularFormationBehavior, 
which attempts to have a set 
of planes orbit a target with 
equal separation.

The AngularDiversity-
TrackBehavior is intended 
to have two or more planes 
approach a target and main-
tain a balance between 
maximum angular diver-
sity and target proximity. 
This behavior detects other 
planes that are also in this 
mode and steering a course 
that depends on the angu-
lar separation between the 
two planes. The relationship 
between the angular separa-
tion and each vehicle’s steer-
ing command is developed 
from a simplified representa-
tion of the geolocation geom-
etry. Within the simplifying 
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Figure 2.  LOB from two airborne sensors.
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Figure 3.  Steering geometry definitions.
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the uncertainty shrinks, because the next sensor reading may be the last. At each iteration of the 
control law, the courses will be chosen so as to maximize the rate at which A shrinks, that is, we 
wish to minimize Ao , the time rate of change of A, with respect to 1 and 2. First we must derive 
an expression for Ao :
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To choose 1, we set /A 012 2 =o  and solve for 1: 
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The steering command is then:
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An analogous process is used to find 2. When  = 0, the vehicles will each choose at random 
whether to use i =  + /2 or i =  – /2. This situation is extremely unlikely to arise in real-
world applications, however, and is really a concern only in simulation where the vehicles can be 
initialized to exactly the same position.

Notice that 1 depends only on , so the velocities, distances from the target, and uncertainty 
in the LOBs do not affect the course command.

This control policy for two vehicles can easily be generalized to more than two vehicles by using 
a potential field approach. In concept, the procedure is to express the influence of each vehicle on 
every other as a potential field, sum the fields, and steer each vehicle down the gradient of the poten-
tial field. In practice, however, it is easier not to explicitly construct the potential field but to work 
directly with the gradients from the start; because gradient is a linear operator, the gradients result-
ing from the influence of each vehicle on a given teammate can be found individually and summed.

If the potential field gradient due to the influence of vehicle j on vehicle i is ,i jd , then the 
potential field equivalent of the above control law is:

	 cos sinx y, , ,i j i j i jd  = +t t ,	 (5)

where –,i j i j  = .
The influence of all N – 1 other vehicles on vehicle i is:
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HARDWARE DEVELOPMENT AND SYSTEMS 
INTEGRATION

Aerial Vehicle and Autopilot
The UAS platforms that were employed for this effort 

were Unicorns with 153-cm wingspans from Procerus 
Technologies (see Fig. 4). The small size, low power, and 
light weight of the sensor and control payload developed 
for these platforms demonstrate that this technique could 
be implemented on a fielded military or commercial UAS 
of similar, or even smaller, size. The UAS autopilot is a 
Kestrel Autopilot v.2.22, also from Procerus Technolo-
gies. These autopilots contain three-axis angular rate 

and acceleration sensors, a 
three-axis magnetometer, a 
barometric altimeter, 20-point 
sensor temperature compensa-
tion, GPS, wind estimation, 
and a dead-reckoning filter for 
GPS-denied operation. For this 
effort, the autopilot was con-
trolled over a serial interface by 
the onboard autonomy module. 
The ground station was used 
only to collect position data for 
posttest analysis, as well as to 
provide flight safety.

Sensor Payload and Control 
System

The sensor payload consists 
of the antenna system, the RF 
receiver, the antenna switch 
circuit integrated with the 
LOB processor module, and 
a PIC-based interface board. 
The control system consists 
of a COTS XScale Reduced 
Instruction Set Computer 
(RISC) processor board with 
integrated WLAN plug-in 
card. The onboard architec-
ture is shown in Fig. 5.

Sensor Payload
The sensor payload consists 

of an array of four custom-
built antennas, a COTS radio 
receiver, and custom process-
ing and switching electron-
ics.10 The radio is a multiband, 
900-channel handheld Yaesu 
VX-6 transceiver that was 
operated in receive mode only. 
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Figure 4.  Procerus Unicorn research airplane.
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specifically for both high scalability and high mobility. 
The Wave Relay system functions at the data link layer, 
allowing seamless integration with Ethernet-based net-
works and devices. The onboard protocols use distrib-
uted online learning algorithms to continuously track 
the highest throughput paths in the network in order to 
maximize capacity and minimize interference.

Because the Wave Relay routing algorithms take up 
only a fraction of the processing power and onboard 
memory, APL used the remaining processing and 
memory space for its autonomy and geolocation soft-
ware. The Wave Relay board communicated with the 
sensor payload and autopilot through the board’s serial 
ports. Communications with other UAS nodes and with 
the ground node were accomplished using the Wave 
Relay wireless network capability.

PROOF-OF-CONCEPT SIMULATIONS
Models of two core concept pieces were developed, 

and simulations were performed to establish proof of con-
cept. One model represented the autonomy and was used 
both to test and to help develop the autonomy software. 
The other model represented the geolocation sensor pay-
load, the Kalman filter, and the geolocation algorithms.

The autonomy model demonstrated the theoretical 
trajectories flown by each vehicle given a stable geo
location solution process. Figure 6 shows convergence to 
the target for different numbers of UASs and UAS start-
ing position. Once in proximity to the target, they set 
up circular orbits around the target at fixed phase differ-
ences depending on the team size. For instance, for two 
airplanes, the phase difference is 90º, and for three air-
planes it is 120º. (An example of a simulated two-vehicle 
team orbit is shown in Fig. 11b.)

The geolocation and Kalman filter algorithms were 
simulated using the second model. A single UAS was 
used, with the payload sensor resolution and errors 
included in the model. Figure 7 shows four snapshots of 
the simulation. At t1, data collection has only recently 
begun, and there is little angular diversity in the data, so 
the error ellipse is quite large. Nevertheless, the center of 
the ellipse is in close proximity to the actual target. At 

In the UHF band that was used to test this geolocation 
concept, the radio has a sensitivity of 0.2–0.5  V for 
12 dB signal-to-noise and distortion ratio.

The radio receiver output is characterized using a 
custom circuit that compares the phase of the incom-
ing signal from the four antennas and, from that phase 
comparison, generates an LOB value. This measurement 
provides the LOB in discrete steps of 0.3927  radians 
(22.5º). A separate PIC processor-based board converts 
this output to the proper format and sends the data over 
a serial interface to the main control system proces-
sor board. The LOB processor board also contains the 
antenna switch circuit that sends the antenna switching 
signals to a very small antenna controller board that is 
collocated with the antennas.

The antenna system is an array of four wire antennas, 
each with a small ground plane, arranged in a square 
pattern. The greatest challenges in the payload systems 
integration effort were the spacing, tuning, ground plane 
fabrication, impedance matching, and orientation of the 
antennas. Most of these challenges are a result of the 
small size of the platform. The size constraints on the 
antenna system ground plane resulted in the most sig-
nificant effects to system performance.

Although a COTS transceiver was used for this 
proof-of-concept effort, future enhancements may 
include the development of a much smaller receive-only 
module with similar receive performance to the Yaesu 
radio. Four of these modules could be used to receive the 
RF emissions from each antenna simultaneously. Other 
possible future enhancements include the use of digital 
signal processing technology in the LOB processor and 
including the PIC processor data interface on the same 
board. These enhancements will not only reduce the 
size, weight, and power budget of the sensor payload but 
will also significantly improve performance.

Control and Communications Payload
All autonomy control software, Kalman filtering, 

geolocation algorithms, and communications control 
are implemented on a Wave Relay Quad Radio 2.4-GHz 
router.11 The Wave Relay board was developed by Persis-
tent Systems, LLC. The Wave Relay system is designed 

Figure 6.  Two, three, and 10 UASs converge to target in simulation.
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each airplane on the basis of 
self-knowledge and communi-
cations from the other UAS. 
That is, all geolocation and 
autonomy algorithms were 
performed independently of 
ground processing.

The experiment that was 
demonstrated at Camp Rob-
erts consisted of two parts: (i) 
geolocation of an actual RF 
emitter with two airplanes 
flying preset loiter patterns 
and (ii) demonstration of the 
converge and orbit behav-
iors using a virtual RF emit-
ter (location hard-coded in 
the onboard autonomy code). 
Ultimately, it is the combina-
tion of these parts that results 
in realization of the full geo
location concept—that is, 
geolocation of the actual RF 
emitter, and vehicle conver-
gence to and orbit of, that 

emitter. However, this requires real-time calibration of 
the LOB with the vehicle bearing, and the constrained 
demonstration schedule did not allow for this calibra-
tion step. A posttest calibration was performed for one 
of the UASs, which resulted in the red line shown in 
Fig.  8. This calibration was derived by plotting true 
LOB versus measured LOB collected over two and a 
half loiter orbits; the loiter point was approximately 

t2 and t3, more data and more angular diversity result in 
a shrinking of the error ellipse. Finally, at t4, the ellipse 
has collapsed to a very small error centered very near to 
the true target location.

A series of geolocation solution simulations using mul-
tiple vehicles were also conducted. These showed that the 
accuracy of the solution increased, and the time required 
for a good solution decreased, with the number of swarm 
members. However, greater than four vehicles produced 
diminishing returns, and two vehicles were shown to be 
adequate for a reasonably fast and accurate solution.

FLIGHT DEMONSTRATIONS
To test this geolocation concept, a series of bench 

tests, hardware-in-the-loop tests, and field tests were 
conducted at APL facilities, a nearby leased field, and 
the U.S.  Army’s Aberdeen Proving Ground. A final 
concept demonstration was conducted at Camp Roberts, 
California, during a Tactical Network Topology exer-
cise; Tactical Network Topology is a quarterly series of 
experiments hosted by the Naval Postgraduate School 
and U.S. Special Operations Command.

Two airplanes were used during these tests. As shown 
in simulation, two airplanes provide a good geolocation 
solution in a reasonable time period. Each vehicle 
was outfitted with the full sensor and control payload 
described previously. Also as previously described, 
derivation of a geolocation solution and determina-
tion of flight behaviors were achieved separately on 
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Figure 8.  Calibration line (red) derived by plotting true LOB 
versus measured LOB.
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snapshots are roughly equally spaced throughout the 
data collection time period, so t0 is the initial reading at 
0 s, t1 is at t0 + 145 s, t2 is at t0 + 290 s, and t3 is the final 
error ellipse at t0 + 435 s.

The plot in Fig. 10 also shows convergence to a geo
location solution over time. At the end of the 435-s data 
collection period, the error between estimated target 
location and true target location was 60 m.

Because of the calibration issue, the data in Fig. 10 
and the 60-m error vector were derived from data fused 
from only a single aircraft loitering 550 m from the target. 
The flight path provided little angular diversity (a maxi-
mum of 29º with respect to the target), and data collec-
tion was over a relatively short time period (435 s). On 
the basis of simulation, when this data set is extended to 
three airplanes circling the target at the 550 m distance 
but 120º out of phase with respect to each other, the 
error collapses to 12 m and the error settling time illus-
trated in Fig. 9 is reduced to 30 s. Enhancements to the 
sensor payload and real-time calibration are expected to 
result in even smaller errors. Also, bringing the three 
airplanes closer to the target further reduces error. For 
instance, if the three airplanes circle the target at a dis-
tance of 100  m, the geolocation error is theoretically 
reduced to 2.2 m.

The second part of this experiment demonstrated 
the vehicle behaviors that were shown in simulation. 
A “virtual” RF emitter location was sent over the wire-
less network from a ground node to both UASs. That is, 
both UASs were provided the geolocation solution. This 
experiment, therefore, was intended to demonstrate the 
autonomous behaviors.

Just as in simulation, both UASs converged on the 
target and set up orbit around the target 90º out of phase 
from each other. These behaviors are shown in Figs. 11a 
and 11b, with the simulation trajectories shown on the 
left-hand sides next to the corresponding flight trajec-
tories shown on the right. As can be seen, the actual 
flight paths are virtually identical to the simulation tra-
jectories. This experiment presents strong evidence that 
the onboard autonomy and belief management system 
directed the UASs to behave as expected.

SUMMARY
These simulations and flight experiments demon-

strate the feasibility of using RF sensors onboard mul-
tiple individual aircraft operating cooperatively as a 
quick, inexpensive, and reliable method of geolocat-
ing radio signal emitters. The technology behind the 
RF sensors was adapted from a technique known as 
pseudo-Doppler: the target signal was received on a 
constellation of four rapidly switched onboard anten-
nas, and the phase difference was measured onboard to 
derive LOB. The LOB values from multiple airplanes 
were combined to estimate the geolocation solution. 

550 m from the calibration source, and the orbit radius 
was approximately 50 m. Future enhancements to the 
system are planned to quickly and efficiently provide 
this calibration in real time.

For the first part of the experiment, an RF emitter 
transmitting a 350-MHz continuous wave signal was 
located near the vehicle launch area. Both airplanes 
were launched with waypoints preset for loiter points 
approximately 550 m from the emitter.

Error with respect to time was evaluated using the 
data from one of the UASs. As shown in the plot in 
Fig.  9, the error drops significantly as a function of 
time, with the error settling down to a reasonable value 
approximately 260 s after the start of data collection.

Figure  10 illustrates the reduction in error with 
respect to the error ellipse. The plots in Fig. 10 show the 
error ellipse from one airplane at t0, t1, t2, and t3. The 
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Figure 9.  Reduction in solution error as a function of time.
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