
JOHNS HOPKINS APL TECHNICAL DIGEST, VOLUME 32, NUMBER 2 (2013) 517

INTRODUCTION
Computing devices are increasingly relied on to store, 

manipulate, transmit, and visualize data. This reliance 
extends to nearly all aspects of modern society, from 
individuals who rely on their smartphones to always be 
at their fingertips to organizations with vast networks 
and racks of servers that must always be fully functional. 
Such reliance poses a great risk in the event that the 
software components of these devices are not operating 
as expected or required. Alterations to device software, 
which may occur either by accident or malice, bring into 
doubt the integrity of the software. A piece of software 
(e.g., a running process) is said to have integrity if it 
runs without improper system alterations.1 Stakehold-

ers would like to base their decisions on the operational 
integrity of the relevant running software. For example, 
a user may wish to know that there is no keyboard logger 
on a system before entering a password; a network access 
control point may wish to validate that only authorized 
computers may gain access to the network.

Previous work has shown that it is possible to measure 
software as it is loaded. These load-time systems (e.g., 
Refs. 2 and 3) are typically based on computing a cryp-
tographic hash of the program image. However, these 
systems only show that the software was correct when it 
was started. They do not provide evidence to show that 
the software continues to operate as expected. This is an 

he increased use of and reliance on computing devices elicits a desire to 
ensure the integrity of the software running on these devices. This desire is 

indeed well founded—malicious software has become a major problem 
for today’s computer systems. Consequently, we have developed the Java Measurement 
Framework (JMF) for inspecting a running Java program and ensuring the program’s 
integrity. JMF provides a mechanism for writing integrity policies about Java programs. 
Our implementation provides the capability to extract a measurement of the code and 
data of the running program and then evaluate this measurement against a policy. The 
result allows concerned parties to achieve a greater confidence in the integrity of the 
software running on their systems. We show how our system can be used on several 
real-world Java programs and with adequate performance overhead.

Ensuring the Integrity of Running Java 
Programs

Mark A. Thober, J. Aaron Pendergrass, and Andrew D. Jurik



M. A.  THOBER,  J. A.  PENDERGRASS,  AND  A. D.  JURIK

JOHNS HOPKINS APL TECHNICAL DIGEST, VOLUME 32, NUMBER 2 (2013)518

1: public User authenticate(Auth auth) {
2: String user = auth.getUsername();
3: String password = auth.getPassword();
4: SendToURL(“attacker.com”,user+password);
5: ...
6: }

The code on line 4 has been inserted to forward the 
user’s access credentials to a remote server. This integrity 
violation can clearly lead to a complete access control 
failure of a system because now an attacker could log in 
to a remote system that accepts these credentials.

Certainly, modifying the executable code of a process 
can cause great damage. Indeed, this is the purpose of 
many rootkits and trojan malware. However, an attacker 
can also cause great damage solely by modifying criti-
cal data within a process (as illustrated by the red circles 
in Fig. 1). As an example, we consider bluffin-muffin,4 
which is an open-source Texas hold ’em application writ-
ten in Java consisting of a centralized server and multiple 
clients. If an attacker were able to modify the data within 
the poker server process, he could change the cards 
and thereby cheat at the game. Such a modification is 
depicted in Fig. 2, where user bob always gives himself 
the ace of hearts and ace of spades. Such a scenario is 
plausible and can have great impact given the prevalence 
of online gambling sites that use actual money.

Overview
The focus of most previous runtime integrity mea-

surement systems5–7 is primarily on measurement, which 
extracts the relevant data from the target; relatively little 

emphasis is placed on appraisal, which 
determines whether a measurement is 
accepted by some policy.

The main goals of our work are to 
establish a runtime measurement frame-
work that focuses on the appraisal poli-
cies and explore programming language 
support for the definition and applica-
tion of appraisal policies. Java is a suit-
able language for our purposes because 
the object-oriented nature of the lan-
guage provides clear representation 
of data structures both in the source 
code and in the runtime environment. 
For those who are unfamiliar with the 
Java execution environment, we refer 
the reader to Fig. 3. Java processes run 
inside a Java virtual machine (JVM), 
which runs on top of an operating 
system (OS). The JVM runs alongside 
other user applications on the machine. 
For our purposes, it is the Java process 
(as highlighted in the figure) that is the 
target of measurement.

especially relevant point because virtually all software is 
susceptible to either accidental or malicious alteration, 
which may bring into doubt the trustworthiness of the 
running software. To combat this problem, runtime mea-
surement systems attempt to establish that the current 
state of a process is consistent with its expected execution.

Motivation
Figure 1 presents an abstract representation of a run-

ning process, which consists of code and data. A process 
that is modified in unexpected and possibly malicious 
ways may result in dire consequences. As an example of 
the red code modification illustrated in Fig. 1, consider 
the following piece of code, which authenticates a user.

Process Modified process

Code Code

Data Data

Figure 1.  Notional depiction of runtime program modification.

Figure 2.  Screenshot of bluffin-muffin poker game, showing user bob’s hand. Unwit-
ting user alice is unaware that bob has maliciously modified the data representing the 
cards in the game.



ENSURING THE INTEGRITY OF RUNNING JAVA PROGRAMS

JOHNS HOPKINS APL TECHNICAL DIGEST, VOLUME 32, NUMBER 2 (2013) 519

•	 Java bytecode running in the JVM is as expected.

•	 Application data structures are correct with respect 
to a policy.

In the remainder of this article, we provide a high-
level description of the design and implementation of 
JMF and present an evaluation of the capabilities and 
performance overhead of the tool. Additional technical 
details of our work may be found in our previous article.10

DESIGN AND IMPLEMENTATION
We have implemented JMF using the Java language 

and runtime environment provided by OpenJDK 7.11 
Figure  4 depicts the key aspects of the implementa-
tion. The target Java process is running inside a JVM, 
as depicted on the left side of the figure. The memory 
of the Java process consists of three distinct elements: 
the PermGen space, which is the permanently generated 
portion of memory that contains the bytecode of the 
Java process and other immutable data; the heap, which 
contains all of the dynamically allocated data of the Java 
process; and the stack, which contains data relevant to 
the current execution context (e.g., local variables and 
the name of the functions currently being executed).

The implementation then provides for the taking 
of measurements of the process during runtime using a 
program called jmack. The jmack program runs on the 
target platform as a process managed by the OS (i.e., it is 
at the same level as the JVM). jmack interacts with the 
target JVM to extract structured representations of the 
target heap, stack, and PermGen space in the form of a 
heap dump, stack dump, and loaded classes, respectively. 
These three elements constitute the measurement.

To appraise the measurement, a programmer or 
other user is first required to write an integrity policy 
that describes the runtime constraints of the program; 
this is depicted as the integrity policy file in Fig. 4. The 
policy compiler part of the implementation transforms 
the policy directly into source code that integrates into 
the appraiser. This source code is merged with auxiliary 
code that parses Java application heaps and stacks; the 
code is then compiled to produce the policy appraiser. 
The class appraiser is a standard program that works 
for all Java processes. It takes as input a dump of loaded 
classes from jmack and a set of reference class files and 
compares them to ensure that the bytecode and other 
attributes of each Java class are identical.

In this section, we describe the components of JMF in 
detail, starting with the integrity policies and proceed-
ing with details on the implementation of the measure-
ment and appraisal capabilities.

Integrity Policies
Integrity policies represent the mechanism through 

which JMF is able to recognize unintended data modi-

Adversary Model
To be explicit about the kinds of attacks we are 

trying to defend against, the following list describes our 
assumptions about the capabilities of the adversary.

•	 The attacker is able to modify the runtime bytecode 
of a Java application as well as any of its runtime 
data. (Java bytecode is the compiled version of the 
Java source program. The bytecode is therefore the 
sequence of instructions executed by the JVM.)

•	 We do not assume that a program always executes 
according to program code or the language seman-
tics. In particular, we assume that an attacker has 
the capability to change arbitrary memory in the 
running Java process at any time.

•	 The runtime environment (i.e., the JVM and OS) is 
trusted when the measurement is taken. We antici-
pate our system running on a platform that uses 
other runtime measurement techniques to validate 
the integrity of the JVM and OS (e.g., Refs. 5 and 6).

Other approaches to runtime integrity monitoring 
(e.g., Refs. 8 and 9) rely on modifications to the actual 
bytecode of the target Java program. In these systems, 
the monitor is at the same privilege level as the target 
because monitoring is part of the Java process. In con-
trast, we are measuring the target from the JVM, which 
is outside the process. We do not trust the bytecode of 
the process and can therefore detect a more powerful 
adversary than these kinds of monitoring systems.

Java Measurement Framework
To combat the threats of code and data modifica-

tions, we have designed and implemented the Java 
Measurement Framework (JMF) for validating the 
integrity of running Java programs. Specifically, JMF 
can be used to ensure the following properties of a run-
ning Java application:

Hardware

OS (Windows, Linux, etc.)

Java
process

Web
browser

Other
applicationJVM

Figure 3.  Execution environment. An OS runs on top of machine 
hardware. Applications run on top of the OS. One application is a 
JVM that runs a Java process, which is the target of measurement.



M. A.  THOBER,  J. A.  PENDERGRASS,  AND  A. D.  JURIK

JOHNS HOPKINS APL TECHNICAL DIGEST, VOLUME 32, NUMBER 2 (2013)520

based on the specification and qualifier. Specifications, 
spec, describe the types of objects on the heap to which 
the policy applies. Specifications are empty (), a univer-
sally quantified object type (read for all objects o of type  
that are contained in heap H), an existentially quantified 
object type (read there exists an object o of type  that 
is contained in heap H), or a list of specifications. Quali-
fiers, qual, describe locations in the execution where the 
policy must hold. A qualifier is empty (), an object and 
method name o.m, a negation of a qualifier, a logical “or” 
of two qualifiers, or a logical “and” of two qualifiers. The 
definition of a boolean function, fdef, is consistent with 
the definition of methods in Java, only it must return a 
boolean. Thus, a function f has a list of formal param-
eters, each with its own type C and identifier o, and a 
body consisting of a sequence of statements {s}. The bool-
ean function will be computed for objects matching the 
specification if all the qualifiers are satisfied.

Because appraisal of a measurement is purely func-
tional (i.e., taking a measurement and producing a yes/
no answer), the appraiser must not alter the measure-
ment, and for this reason, our implementation does 
not allow method calls on objects in the measurement, 
because a method may mutate the state of the object. 
The statements in the function definitions cannot con-
tain method invocations of the input arguments, and all 
object fields must be accessed directly.

One of the useful aspects of our 
framework is that the policy is inde-
pendent of the source code of the 
application, so the application does not 
need to be recompiled. This supports 
the writing of policies for legacy appli-
cations and libraries. This also provides 

fications. These policies are focused on the integrity of 
data only, not on the loaded code. Measuring the integ-
rity of loaded code and the appraisal of these measure-
ments are described in the Measurement and Appraisal 
sections. Verifying the integrity of loaded code is generic 
to all programs because all programs have code loaded 
in a similar manner, and the code can be extracted in 
the same way; moreover, loaded code is supposed to be 
immutable and can therefore be easily compared against 
known good code for a program. In contrast, program 
data are highly dynamic and vary greatly across differ-
ent programs, even with separate executions of the same 
program. Hence, the integrity of data is specific to a par-
ticular program. To support this variability, we provide 
for the use of integrity policies for describing a set of 
constraints on the data within a program.

We define a syntax for writing integrity policies in 
Fig. 5. The syntax is similar to invariant specifications 
in Design By Contract12 languages such as JML.13 We 
chose to use a new syntax because it simplifies the pre-
sentation so that we can focus only on invariants and 
not on the other parts of these specification languages.

In our syntax, a policy consists of a number of speci-
fications and qualifiers and an application of a boolean 
function. Note that the vertical bar | in Fig. 5 means “or,” 
the overline means a list, and the turnstile  means that 
the function f returns true when applied to arguments 

JVM

Target
stack

Target
heap

Policy
compiler

Policy
appraiser

Class
appraiser

Success
or failure

Success
or failure

Target process

PermGen
space

jmack

jmack

jmack

Integrity policy �le

Heap dump

Stack dump

Loaded classes

Reference class �les

Figure 4.  JMF system diagram. The policy is written and compiled into an appraiser program. The target Java process is periodically 
measured at runtime, and the appraiser is subsequently run on the measurement outputs and applicable policies.

Figure 5.  Integrity policy syntax.



ENSURING THE INTEGRITY OF RUNNING JAVA PROGRAMS

JOHNS HOPKINS APL TECHNICAL DIGEST, VOLUME 32, NUMBER 2 (2013) 521

flexibility in that any number of different policies may 
be written for the same application, based on the needs 
of the appraiser. Inline monitoring approaches such as 
Monitoring-Oriented Programming (MOP)8 lack such 
flexibility and require recompilation of the source code 
to embed the monitor in the application.

Writing accurate integrity policies remains the 
responsibility of the policy writer, and JMF is not 
intended to determine whether a policy is the best policy 
for a given program. However, we do aim to provide a 
useful mechanism to help programmers write maintain-
able integrity policies for their programs.

Simple Example Policy
We now present a simple example policy to show how 

a useful policy is written. Realistic policies written on real 
Java applications are discussed in the Evaluation section.

The following policy (and corresponding function 
definition) states that every object of type LinkedList 
must have the same number of nodes on the list as stated 
by the size field in the object, except when the add or 
remove methods are in the process of manipulating 
the list. (The Java LinkedList class includes other 
methods for adding/removing elements that should be in 
the qualifier; these are omitted for brevity.)

This example illustrates the utility of qualifiers in 
our syntax. If a LinkedList object is in the process 
of having elements added to or removed from it, it is 
possible that traversing the list might not match with 
the size attribute on the LinkedList object. This 
would return a false-positive appraisal failure because 
the list update is allowed by the program. Therefore, 
our qualifier states that the execution is not currently in 
the add or remove method for the object in question 
(see Policy A).

Baseline Policies
Measurement systems may use a baseline measure-

ment, taken while the process is known to be in a good 
state, as a parameter to the appraiser. Hence, the H spec-
ification is included in our syntax definition to allow 
support for separate measurement and baseline heaps. In 
the remainder of this article, we will refer to the mea-
surement target heap as HT and the baseline heap as HB; 
when a baseline is not part of the policy, we assume the 
heap in question is the target heap and shall omit it from 
the policy and simply write H.

Baselining allows the appraisal policy to be more 
easily parameterized by values that either are unknown 
until runtime or may be tedious to enumerate explicitly. 
For example, one may wish to have a policy on a server 
application stating that the data structures holding the 
user access information are the same as a known-good 
program state, as shown in Policy B.

A useful feature of baselining is the ability to gen-
erate a baseline from a static configuration file. In the 
user access example, we may want to ensure that all User 
objects in the runtime have a corresponding entry in a 
configuration file. A separate baselining program could 
generate a baseline heap HB from this static configu-
ration file, so the server would not actually need to be 
booted to obtain a baseline.

Measurement
A runtime measurement of a Java process consists of 

three parts: a heap dump, thread stack dumps, and a dump 
of the hashes of loaded classes. We have implemented a 
stand-alone tool, jmack, that produces these measure-
ments by attaching to a running JVM at any time after 
the process has been started. jmack is based on the JVM 
monitoring tools jmap and jstack. jmack is invoked with 

Policy A.

Policy B.



M. A.  THOBER,  J. A.  PENDERGRASS,  AND  A. D.  JURIK

JOHNS HOPKINS APL TECHNICAL DIGEST, VOLUME 32, NUMBER 2 (2013)522

Appraisal
The appraiser consists of two separate components: 

the measurement appraiser generated by the policy com-
piler that verifies the integrity of the heap and stack 
dumps and a class appraiser that verifies the integrity of 
the loaded classes. The policy compiler takes a policy as 
input and produces Java source code. This Java code is 
added to a standard set of Java appraisal code to produce 
an appraiser that is specific to the policy. The standard 
appraisal code consists of code derived from the Java 
Heap Analysis Tool (jhat) that can parse heap dumps 
and stack traces and is augmented to support the rel-
evant aspects of our policy language, including qualifiers 
and existential and universal quantifiers. The com-
bined Java code for the appraiser is then compiled by 
a Java compiler to produce a program that serves as the 
appraiser. This program takes as input the snapshot from 
the measurement tool and outputs whether the policy 
has been satisfied.

Appraisal of a class measurement involves comparing 
the SHA-1 hashes contained in the measurement with 
SHA-1 hashes of the respective portions from class files. 
We use the class file parser from the Byte Code Engineer-
ing Library (BCEL)16 to read in the class file information. 
We then compute a SHA-1 hash of the constant pool for 
each class file and SHA-1 hashes of the bytecodes of all 
methods contained in each class file. These hashes are 
then compared with the loaded class measurement, with 
any discrepancies causing a failure of the appraisal.

EVALUATION
We now provide some evaluation of our system, first 

by describing how JMF may be used to provide for the 
enforcement of meaningful integrity policies on real 
Java programs. We then provide a description of the 
runtime performance overhead of JMF.

the process identification (PID) of the target process and 
the desired location of the output measurements.

To obtain the measurements of the target Java pro-
cess, the process must be run using our modified ver-
sion of Open Java Development Kit (OpenJDK)7 so that 
the JVM command is recognized when jmack invokes 
it on the target’s JVM. Outside of running the neces-
sary version of Java, jmack requires no further support 
from the compiler, class files, or target program to run on 
legacy software. Most annotation solutions (e.g., Ref. 14) 
require both access to and recompilation of source code. 
An unmodified JVM does possess the capability to dump 
the heap and stack traces to capture the same state, but 
the target process must suspend itself while the measure-
ments occur. We later describe our modifications to the 
JDK that permit jmack measurements and also improve 
performance of the target during measurement.

The jmack functionality appears in the center of 
Fig. 4. At its core, jmack extracts a heap dump and thread 
stack traces (augmented with local variable information) 
from the JVM (note that these are the heap/stack for the 
Java application maintained by the JVM, not the heap/
stack of the JVM maintained by the OS). It also outputs 
SHA-1 hashes of the loaded classes from the PermGen 
space of the target, so the appraiser may compare them 
with known good hashes that are generated from the 
Java class files.

We have combined the collection of all three mea-
surements in one tool to provide an atomic snapshot, so 
the entire measurement represents a particular moment 
in time. To minimize the impact of measurement on 
the target process, we add a new virtual machine (VM) 
command to the JDK, fork _ op, that forks a target 
JVM process and calls several VM operations, namely 
to dump the target heap, stack, and bytecodes of the 
child process. The effects of the fork _ op command 
are depicted in Fig.  6. Forking the process uses the 
memory copy-on-write (COW) mechanism of Linux, 
which allows the target process to run while the mea-
surement is performed on the forked process. COW 
has been shown elsewhere to be a useful mechanism 
to improve target performance while still guaranteeing 
atomicity of the measurement.15 It is important to note 
that this is an OS-level fork of the JVM that is run-
ning the Java application; we do not need to implement 
any new COW functionality but instead make use of 
the existing COW implementation within Linux that 
occurs automatically with the fork.

The fork _ op JVM command invokes the fork 
system call. At that location in the call stack, the jmack 
has access to the target process state and can obtain 
the measurements from a target process clone while the 
target process runs in parallel. Once jmack initiates a 
fork of the target process, jmack begins capturing the 
state of the newly created process while the original 
target process proceeds.

Target
process

Original
process

jmack

jmack

Measurements

JVM

Reaped
by init

Forked
process

Figure 6.  fork _ op on (modified) target JVM.



ENSURING THE INTEGRITY OF RUNNING JAVA PROGRAMS

JOHNS HOPKINS APL TECHNICAL DIGEST, VOLUME 32, NUMBER 2 (2013) 523

ensure that only valid client programs are running and 
no poker bots are being used. These kinds of client/server 
trust requirements are increasingly common, as in mul-
tiuser online gaming, financial software, and beyond. 
We believe our system, when paired with a proper attes-
tation protocol, can have wide applicability to client/
server trust relationships.

Apache FtpServer
Apache FtpServer17 is an open-source FTP 

server written in Java. An important property of 
the FTP server is that all the user account infor-
mation should be as expected and not be modi-
fied. The PropertiesUserManager object 
contains a HashTable that keeps track of all of 
the usernames and properties for those users (such as 
enableflag and writepermission, for each 
account). An example of a policy that uses a baseline 
measurement for comparison of account information 
properties is shown in Fig. 8. It ensures that every object 
of type PropertiesUserManager in the target has 
a corresponding object of the same type in the baseline 

bluffin-muffin
As discussed briefly in the Introduction, bluffin- 

muffin4 is an open-source Texas hold  ’em application 
consisting of a centralized server and multiple clients. 
In the example in Fig.  2, an attacker modified a play-
er’s cards without changes to the bytecode. The policy 
illustrated in Fig. 7 ensures that all cards in the players’ 
hands and in the deck are unique; i.e., a player should 
not have the ace of spades if it also appears in the deck. 
This example involves multiple class instances (game, 
players, cards, etc.), showing that our system is suitable 
to describe and enforce sophisticated security policies. 
The policy is closely tied to the source code, as the field 
names (e.g., m_playing) are defined by the source pro-
gram. Comments are included to aid in readability.

This example policy is for use on a server application 
because that is where the poker game data reside. This 
illustrates that JMF can be used to help clients verify 
that the server is acting in an acceptable manner. Simi-
larly, a server may want to verify properties of a con-
nected client to be sure that the client is acting properly 
as well. In the poker example, the server may wish to 

Figure 7.  bluffin-muffin card uniqueness policy.



M. A.  THOBER,  J. A.  PENDERGRASS,  AND  A. D.  JURIK

JOHNS HOPKINS APL TECHNICAL DIGEST, VOLUME 32, NUMBER 2 (2013)524

deviations are small relative to the sample mean values. 
For example, on average across the set of experiments, 
the sample standard deviation is 2.4% of the mean 
value with a range of 0.3–12.8%. “Delay = 0 s” means 
that once jmack completes a measurement, another 
measurement is immediately initiated. A positive delay 
means that the process is allowed to run for the speci-
fied number of seconds before another measurement 
is taken. We restrict test values up to “Delay = 10 s” 
because the shortest benchmark takes ~10 s to run on 
our experimental setup. Further increasing the delay 
reduces the overhead.

We calculate the runtime overhead by comparing 
the execution times of a particular execution scenario 
and the “No Measurement” (i.e., with no measurements 
being taken) execution scenario. The average overhead 
across all the benchmarks for “Delay = 0 s” is 38.0%, and 
for “Delay = 5 s,” it is 6.8%. For “Delay = 10 s,” the aver-
age overhead shrinks further to a more manageable 3.0%.

The question of the frequency of measurements 
can be reduced to a trade-off between performance 
and concerns about the power of the adversary. An 
adversary who uses measurement infrequency as an 
attack vector must compromise the target between 
measurements and exit the target when a measurement 
occurs (an adversary who makes changes that are not 
part of the integrity policy can obviously avoid detec-
tion). Because measurement is best suited for persis-
tent changes to code and data structures, we believe 
the time between measurements need not be small. In 
many cases, it may best be used as part of an attestation 
scenario (e.g., where one party of a network connection 
wants to ascertain whether another party is operating 
as expected before connecting).19

DISCUSSION
The primary use of JMF is to ensure the integrity 

of applications as part of a “defense in depth” security 
approach, with other components ensuring the cor-
rect operation of the environment (JVM and OS). Our 
tool also has other uses. Once a policy is developed, 
JMF can be used as a debugging tool to ensure that 

and that the property values are the same. To improve 
the readability, the example policy in this figure does not 
use full classpaths; the helper function HashTableGet 
is omitted for brevity.

Performance
To demonstrate the practicality of our implementa-

tion, we have performed a series of benchmarks showing 
we can perform runtime measurement of a Java process 
with reasonable overhead. We now describe our experi-
mental methodology and analyze the performance 
results.

We carried out our experiments on a desktop com-
puter running 32-bit Ubuntu 10.04 with 2 GiB of 
memory and dual Intel Pentium D 3.20-GHz processors 
with a modification of the OpenJDK Client VM (1.7.0). 
We used a subset of the DaCapo-9.12-bach benchmark 
suite,18 which includes several open-source Java pro-
grams. The subset we used included the Java programs 
avrora, eclipse, h2, jython, lusearch, pmd, sunflow, 
tradebeans, tradesoap, and xalan. We ran each bench-
mark five times.

Performance Results
We evaluate the performance of measuring a process 

using JMF’s jmack tool, including the COW implemen-
tation using fork. The sequence of steps is as follows:

1.	 User starts the target process.

2.	 User invokes jmack with the process ID of the target 
process.

3.	 jmack executes the fork _ op VM command 
within the target process JVM. The target process 
then continues unabated.

4.	 The forked process runs in parallel to the origi-
nal process to capture the state snapshot and then 
terminates; the target JVM is momentarily paused 
while the measurement transfers to the forked JVM.

Figure  9 shows the execution times of each of the 
benchmarks for various delays between measurements; 
we report the sample mean values. The sample standard 

Figure 8.  FTP server policy.



ENSURING THE INTEGRITY OF RUNNING JAVA PROGRAMS

JOHNS HOPKINS APL TECHNICAL DIGEST, VOLUME 32, NUMBER 2 (2013) 525

resenting data structures in a model, and our policies are 
described directly over the program source code.

Integrity measurement as described is closely related 
to a significant body of work on invariant monitoring; 
Delgado et  al.,21 for example, present an overview of 
software-fault monitoring tools, and Parno et al.22 cat-
egorize and explain extant approaches to bootstrapping 
trust. Projects such as MOP,8 InvTS,9 Tracematches,23 
Jahob,24 and Java-MaC25 provide inline invariant 
enforcement by instrumenting a program’s source code 
based on a policy specification similar to that used by 
JMF. The TrustedVM implementation of Haldar et al.’s 
semantic remote attestation concept26 provides a modi-
fication of the JVM to monitor protocols. JMF provides 
a more comprehensive implementation and focuses on 
application data structures. Furthermore, JMF can be 
run on an unmodified, already-running process and 
considers only the state captured in a snapshot when 
making policy appraisals.

Measurement versus Monitoring
JMF is a runtime measurement system. A measure-

ment system attempts to validate the current state of a 
target at a particular moment in time, independent of 
any previous behavior. In contrast, a monitoring system 

desired properties actually hold at runtime. It is also 
possible to use JMF in concert with other systems. For 
example, if one wants to use a security monitor that 
is integrated into the Java bytecode of an application, 
JMF may be used to ensure that this bytecode has not 
been modified.

Related Work
We now provide a brief description of related work on 

integrity policies for kernel data and monitoring systems; 
additional discussion of related work may be found in our 
other article.10 Several prior works developed systems to 
provide runtime integrity measurement5–7 of a kernel; 
these works focused primarily on the measurement com-
ponent, with little emphasis on appraisal. There has so 
far been little work on general techniques for specifying 
integrity policies. Petroni et  al.20 describe architecture 
for defining integrity specifications suited specifically 
for dynamic kernel data. Because they are concerned 
with low-level compiled C code, they must describe how 
the data are organized in memory and build up a model 
that abstracts the low-level data into a more understand-
able form. Because our system is object-oriented, the 
data structures are explicitly represented both in the 
code and in the runtime, thus avoiding the step of rep-

0

30

60

90

120

150

180

210

240

270

B
en

ch
m

ar
k 

co
m

p
le

tio
n 

tim
e 

(s
)

Benchmark

avrora
eclipse

h2 jython

lusearch

pm
d

sun�ow

tradebeans

tradesoap

xalan

Delay = 0 s
Delay = 5 s

Delay = 10 s
No measurement

Figure 9.  Execution times of the DaCapo benchmarks when the amount of delay between measurements varied. The execution times 
of the benchmarks vary from as short as 10 s to more than 3 min, and as the delay between jmack invocations increases, the execution 
times decrease.



M. A.  THOBER,  J. A.  PENDERGRASS,  AND  A. D.  JURIK

JOHNS HOPKINS APL TECHNICAL DIGEST, VOLUME 32, NUMBER 2 (2013)526

the appraiser. In many cases, our policies replicate code 
that already exists in the original source, such as look-
ing up entries in HashTable objects or obtaining the 
data fields of objects. We aim to improve the efficiency 
of writing policies by allowing the policy writer to more 
easily make use of functionality that is already imple-
mented in the program’s source code.

We will also investigate how the concepts of JMF may 
apply to other languages and determine which other 
languages may have features that are useful for measure-
ment. Whether an integrity policy is sufficient for justi-
fying process integrity remains an open problem. Hence, 
we plan to consider techniques to improve the confi-
dence that a policy fully covers the integrity require-
ments of a program. We intend to explore programming 
language concepts that can help a programmer write 
programs that are more amenable to measurement and 
create metrics that may be used to evaluate the robust-
ness of an integrity policy.

REFERENCES
  1Avižienis, A., Laprie, J.-C., Randell, B., and Landwehr, C., “Basic 

Concepts and Taxonomy of Dependable and Secure Computing,” 
IEEE Trans. Dependable Secur Comput. 1(1), 11–43 (2004).

  2Jaeger, T., Sailer, R., and Shankar, U., “PRIMA: Policy-Reduced Integ-
rity Measurement Architecture,” in ACM Symp. on Access Control 
Models and Technologies (SACMAT), Lake Tahoe, CA, pp. 7–9 (2006).

  3Sailer, R., Zhang, X., Jaeger, T., and van Doorn, L., “Design and Imple-
mentation of a TCG-based Integrity Measurement Architecture,” in 
Proc. USENIX Security Symp., San Diego, CA, pp. 223–238 (2004).

  4bluffin muffin, Open-Source Poker Game, http://code.google.com/p/
bluffin-muffin/.

  5Loscocco, P. A., Wilson, P. W., Pendergrass, J. A., and McDonell, C. 
D., “Linux Kernel Integrity Measurement Using Contextual Inspec-
tion,” in Proc. 2007 ACM Workshop on Scalable Trusted Computing 
(STC), Alexandria, VA, pp. 21–29 (2007).

  6Petroni, N. L. Jr., Fraser, T., Molina, J., and Arbaugh, W. A., “Copi-
lot—A Coprocessor-Based Kernel Runtime Integrity Monitor,” in 
Proc. USENIX Security Symp., San Diego, CA, pp. 179–194 (2004).

  7Petroni, N. L. Jr., and Hicks, M., “Automated Detection of Persistent 
Kernel Control-Flow Attacks,” in Proc. ACM Conf. on Computer and 
Communications Security (CCS), Alexandria, VA, pp. 103–115 (2007).

  8Chen, F., and Roşu, G., “MOP: An Efficient and Generic Runtime 
Verification Framework,” in Proc. Object-Oriented Programming, Sys-
tems, Languages, and Applications (OOPSLA), Montreal, Canada, 
pp. 569–588 (2007).

  9Gorbovitski, M., Rothamel, T., Liu, Y. A., and Stoller, S. D., “Efficient 
Runtime Invariant Checking: A Framework and Case Study,” in Proc. 
International Workshop on Dynamic Analysis (WODA), Seattle, WA, 
pp. 43–49 (2008).

10Thober, M., Pendergrass, J. A., and Jurik, A. D., “JMF: Java Measure-
ment Framework: Language-Supported Runtime Integrity Measure-
ment,” in Proc. 7th ACM Workshop on Scalable Trusted Computing 
(STC), New York, NY, pp. 21–32 (2012).

11Sun Microsystems, OpenJDK, http://openjdk.java.net/.
12Meyer, B., “Applying ‘Design by Contract’,” Computer 25(10), 40–51 

(1992).
13Leavens, G. T., Baker, A. L., and Ruby, C., “JML: A Notation for 

Detailed Design,” Chap. 12, Behavioral Specifications for Businesses 
and Systems, H. Kilov, B. Rumpe, and W. Harvey (eds.), Kluwer Aca-
demic Publishers, Boston, MA, pp. 175–188 (1999).

14Chen, F., and Roşu, G., “Java-MOP: A Monitoring Oriented Program-
ming Environment for Java,” in Tools and Algorithms for the Construction 
and Analysis of Systems (TACAS), Edinburgh, UK, pp. 546–550 (2005).

15Thober, M., Pendergrass, J. A., and McDonell, C. D., “Improv-
ing Coherency of Runtime Integrity Measurement,” in Proc. 3rd 
ACM Workshop on Scalable Trusted Computing (STC), Fairfax, VA, 
pp. 51–60 (2008).

attempts to continuously validate some properties of a 
target while it executes. We now provide a general com-
parison of the two approaches.

The instrumented code in monitoring systems main-
tains an abstract model of the target program’s policy-
relevant state that may be consulted to validate the 
program’s execution steps. This provides the advantage 
of ensuring that the target program never enters a state 
that is inconsistent with the policy. Although this may 
seem like the ideal case, for performance reasons, the 
policy must always reflect a relatively small subset of the 
program’s actual state; validating the entire state of a 
program after every execution step is clearly infeasible. 
In addition, it is essential to the correctness of the moni-
tor that the system is unable to make a policy-relevant 
execution step without consulting the monitor. If the 
system is allowed to make even a single unmonitored 
execution step, the monitor’s model of the program state 
will no longer be valid, and thus all future decisions of 
the monitor may be suspect. This makes monitoring-
based systems vulnerable to state changes outside of the 
expected execution model of the system, such as code 
injection attacks or direct memory access.

The ability of a measurement to recognize an invalid 
state is limited only by its ability to inspect the state of 
its target. This makes measurement systems immune 
to the vulnerabilities described for monitors but leaves 
open the potential for the system to pass through inter-
mediate invalid states without detection. Moreover, 
because measurement is periodic, performance concerns 
are fewer for a measurement system, and the measure-
ment can therefore include a much larger part of the tar-
get’s state than a continuous monitoring system.

Future Work
In future work, we plan to improve our implementa-

tion in several ways. We aim to make a more efficient 
measurer that only collects the portions of the heap that 
are relevant to a policy and to improve the appraiser to 
more efficiently traverse the target heap. We also plan to 
make general improvements to the compiler to ensure 
support of all of Java’s language features.

Although we largely assume that an acceptable policy 
is available within the context of the system, drafting an 
effective policy is a challenging task. Policies may require 
domain expertise and suffer from many of the same pit-
falls that software encounters. For this reason, automatic 
policy generation may be helpful in identifying not only 
useful invariants but also starting places upon which to 
develop more sophisticated policies. Other systems have 
already been used to identify invariants automatically 
based on traces of execution.27–30 We plan to explore 
how these techniques can be applied to JMF.

We also plan to modify our policy compiler to support 
integration of the original source code when producing 

http://code.google.com/p/bluffin-muffin/
http://code.google.com/p/bluffin-muffin/
http://openjdk.java.net/


ENSURING THE INTEGRITY OF RUNNING JAVA PROGRAMS

JOHNS HOPKINS APL TECHNICAL DIGEST, VOLUME 32, NUMBER 2 (2013) 527

24Zee, K., Kuncak, V., Taylor, M., and Rinard, M., “Runtime Check-
ing for Program Verification,” in Proc. International Conf. on Runtime 
Verification (RV), Vancouver, Canada, pp. 202–213 (2007).

25Kim, M., Kannan, S., Lee, L., Sokolsky, O., and Viswanathan, M., 
“Java-MaC: A Run-Time Assurance Tool for Java Programs,” Elec-
tron. Notes Theor. Comput. Sci. 55(2), 129–155 (2001).

26Haldar, V., Chandra, D., and Franz, M., “Semantic Remote Attesta-
tion: A Virtual Machine Directed Approach to Trusted Computing,” 
in Proc. 3rd Conf. on Virtual Machine Research and Technology Symp., 
Vol. 3, Berkeley, CA, pp. 29–41 (2004).

27Baliga, A., Ganapathy, V., and Iftode, L., “Automatic Inference and 
Enforcement of Kernel Data Structure Invariants,” in Proc. 24th 
Annual Computer Security Applications Conf. (ACSAC), Anaheim, 
CA, pp. 77–86 (2008).

28Csallner, C., Tillmann, N., and Smaragdakis, Y., “DySy: Dynamic 
Symbolic Execution for Invariant Inference,” in International Conf. 
on Software Engineering (ICSE), Leipzig, Germany, pp. 281–290 
(2008).

29Demsky, B., Ernst, M. D., Guo, P. J., McCamant, S., Perkins, J. 
H., and Rinard, M., “Inference and Enforcement of Data Struc-
ture Consistency Specifications,” in Proc. International Symp. on 
Software Testing and Analysis (ISSTA), Portland, ME, pp. 233–244 
(2006).

30Perkins, J. H., Kim, S., Larsen, S., Amarasinghe, S., Bachrach, J., 
et al., “Automatically Patching Errors in Deployed Software,” in Proc. 
ACM SIGOPS 22nd Symp. on Operating Systems Principles (SOSP), Big 
Sky, MT, pp. 87–102 (2009).

16Apache Software Foundation, The Byte Code Engineering Library, 
http://jakarta.apache.org/bcel/.

17Apache Software Foundation, Apache FtpServer, http://mina.apache.
org/ftpserver-project/.

18Blackburn, S. M., Garner, R., Hoffman, C., Khan, A. M., McKinley, 
K. S., et  al., “The DaCapo Benchmarks: Java Benchmarking Devel-
opment and Analysis,” in Object-Oriented Programming, Systems, Lan-
guages, and Applications (OOPSLA), Portland, OR, pp. 169–190 (2006).

19Coker, G., Guttman, J., Loscocco, P., Sheehy, J., and Sniffen, B., 
“Attestation: Evidence and Trust,” in Proc. 10th International Conf. on 
Information and Communications Security, Vol. 5308 of Lecture Notes 
in Computer Science, L. Chen, M. Ryan, and G. Wang (eds.), Springer-
Verlag, Berlin/Heidelberg, pp. 1–18 (2008).

20Petroni, N. L. Jr., Fraser, T., Walters, A., and Arbaugh, W. A., “An 
Architecture for Specification-Based Detection of Semantic Integ-
rity Violations in Kernel Dynamic Data,” in Proc. USENIX Security 
Symp., Vancouver, Canada, pp. 289–304 (2006).

21Delgado, N., Gates, A., and Roach, S., “A Taxonomy and Catalog of 
Runtime Software-Fault Monitoring Tools,” IEEE Trans. Softw. Eng. 
30(12), 859–872 (2004).

22Parno, B., McCune, J., and Perrig, A., “Bootstrapping Trust in Com-
modity Computers,” in Proc. IEEE Symp. on Security and Privacy, 
Oakland, CA, pp. 414–429 (2010).

23Avgustinov, P., Bodden, E., Hajiyev, E., Hendren, L., Lhoták, O., 
et al., “Aspects for Trace Monitoring,” in Formal Approaches to Soft-
ware Testing and Runtime Verification, K. Havelund, M. Núnez, G. 
Rosu, and B. Wolff (eds.), Springer, Seattle, WA, pp. 20–39 (2006).

Mark A. Thober was the project Principal Investigator (PI) for the JMF task, which was an Independent Research and 
Development project jointly funded out of a Laboratory Cross Enterprise Initiative and the Cyber Operations Mission 
Area. Dr. Thober is a computer scientist doing computer security research in APL’s Asymmetric Operations Department. 
He worked on the basic research for JMF, wrote parts of the implementation, and provided guidance throughout the 
task. J. Aaron Pendergrass is also a computer scientist in APL’s Asymmetric Operations Department. He worked closely 
with Dr. Thober on the initial research and design for JMF and wrote prototype code for the implementation, such as 
the policy compiler. Andrew D. Jurik is a software engineer in APL’s Asymmetric Operations Department. He was the 
primary software developer on the JMF task and wrote a significant part of the software for the system prototype; he was 
responsible for many of the performance improvements to the system. For further information on the work reported here, 
contact Mark Thober. His e-mail address is mark.thober@jhuapl.edu.

 The Authors

The Johns Hopkins APL Technical Digest can be accessed electronically at www.jhuapl.edu/techdigest.

http://jakarta.apache.org/bcel/
http://mina.apache.org/ftpserver-project/
http://mina.apache.org/ftpserver-project/

	Ensuring the Integrity of Running Java Programs
	Mark A. Thober, J. Aaron Pendergrass, and Andrew D. Jurik
	INTRODUCTION
	Motivation
	Overview
	Adversary Model
	Java Measurement Framework

	DESIGN AND IMPLEMENTATION
	Integrity Policies
	Simple Example Policy
	Baseline Policies
	Measurement
	Appraisal

	EVALUATION
	bluffin-muffin
	Apache FtpServer
	Performance
	Performance Results

	DISCUSSION
	Related Work
	Measurement versus Monitoring
	Future Work

	REFERENCES
	 The Authors
	Figures
	Figure 1. Notional depiction of runtime program modification.
	Figure 2. Screenshot of bluffin-muffin ppoker game.
	Figure 3. Execution environment. 
	Figure 4. JMF system diagram. 
	Figure 5. Integrity policy syntax.
	Policy A.
	Policy B.
	Figure 6. fork_op on (modified) target JVM.
	Figure 7. bluffin-muffin card uniqueness policy.
	Figure 8. FTP server policy.
	Figure 9. Execution times of the DaCapo benchmarks when the amount of delay between measurements varied.



