
JOHNS HOPKINS APL TECHNICAL DIGEST, VOLUME 32, NUMBER 2 (2013) 509

he Linux Kernel Integrity Measurer (LKIM) is a next-generation technology 
for the detection of malicious modifications to a running piece of software. 

Unlike traditional antivirus systems, LKIM does not rely on a database of 
known malware signatures; instead, LKIM uses a precise model of expected program 
behavior to verify the consistency of critical data structures at runtime. APL and the 
Research Directorate of the National Security Agency (NSA) developed the LKIM pro-
totype and are now working to transition the technology to a variety of critical govern-
ment applications.

LKIM: The Linux Kernel Integrity Measurer

J. Aaron Pendergrass and Kathleen N. McGill

cuting software is behaving consistently with its static 
definition. Although dynamic integrity measurement 
cannot guarantee that software is trustworthy in the 
sense of not being exploitable, it is able to establish that 
any assurance gained by static analysis is maintained by 
the executing software.

The Linux Kernel Integrity Measurer (LKIM) is an 
implementation of a dynamic measurement technique 
targeting the Linux operating system kernel. Unlike 
most other systems for malware detection, dynamic 
integrity measurement systems (IMSs) such as LKIM 
do not rely on a database of known malware signa-
tures. This means that LKIM is able to detect previ-
ously unknown “zero-day” malware. Although LKIM 
was originally developed to verify the integrity of the 
Linux kernel, researchers in the Asymmetric Operations 
Department of APL have reconfigured LKIM to target 

INTRODUCTION
Despite the techniques available to increase confi-

dence that software is correctly implemented and free 
from exploitable vulnerabilities, running software is still 
vulnerable to a variety of threats. Many of these threats 
remain relevant to executing software because of inher-
ent limitations of the static techniques, whereas others 
arise from a lack of a trust in the environment in which 
software is run. For example, even an application that 
has been proved to be free of exploitable vulnerabili-
ties may be subverted by a malicious operating system 
or hardware component. For this reason, solutions that 
provide confidence in the correct execution of software 
are an important component in the design of trustwor-
thy systems. Dynamic integrity measurement is a tech-
nique we developed in collaboration with the Research 
Directorate of the National Security Agency (NSA) for 
periodically establishing confidence that a piece of exe-



J. A.  PENDERGRASS  AND  K. N.  MCGILL

JOHNS HOPKINS APL TECHNICAL DIGEST, VOLUME 32, NUMBER 2 (2013)510

the state of a piece of software (referred to as a target). 
This evidence is presented to the DM in a process called 
attestation that supports the trustworthy evaluation of 
the target’s state. The DM is responsible for evaluating 
the presented evidence to determine whether it was col-
lected by a valid mechanism and represents a valid state 
of the target. In general, an IMS should provide the fol-
lowing properties to support a meaningful evaluation of 
the target’s state:1

•	 Complete results: An MA should be capable of pro-
ducing sufficient measurement data for the DM to 
determine whether the target is in an expected state 
for all attestation scenarios supported by the IMS.

•	 Fresh results: An MA should be capable of produc-
ing measurement data that represent the target’s 
state recently enough that the DM considers the 
represented state sufficiently close to the target’s cur-
rent state.

•	 Flexible results: An MA should be capable of pro-
ducing measurement data with adaptability to fulfill 
the requirements of all attestation scenarios sup-
ported by the IMS.

•	 Usable results: An MA should be capable of pro-
ducing measurement data in a format that the DM 
can easily evaluate to determine whether the repre-
sented state is expected.

•	 Protection from the target: An MA should be pro-
tected from the target so the target cannot corrupt 
the measurement process or measurement data with-
out the DM’s detection.

•	 Minimal impact on the target: An MA should not 
require modifications to the target, and execution 
of the MA should not diminish the target’s perfor-
mance.

In many cases, these properties represent trade-offs 
between the assurance provided by the measurement 
system and the impact the measurement system may 
have on the target. For example, LKIM can be config-
ured to perform very extensive measurements; however, 
because LKIM is competing for computational resources 
with the running client, the processing time required to 
compute these measurements may be an unreasonable 
imposition on the target.

LKIM can be run on demand and always produces 
results reflecting the state of the target at the time it 
is run; thus, its results are potentially very fresh. This 
is in stark contrast to static or load-time IMSs, which 
can only provide evidence of the state of the target at 
the time it was loaded into memory. However, running 
LKIM frequently may cause unacceptable performance 
degradation, so caching results for some time may be 

other operating systems as well as application-level soft-
ware. Recently, work on LKIM has shifted from proto-
typing activities to real-world deployments, including 
use on APL’s enterprise network and a variety of critical 
government applications.

Traditionally, the arms race against cyber adversaries 
has been reactive. As new attacks and malicious soft-
ware are discovered “in the wild,” defensive tools are 
enhanced to defend against these threats. Often, by the 
time these enhancements are deployed, the attackers 
have moved on to new techniques that are once more 
invisible to the defender. Antivirus software is probably 
the best-known tool used to combat malicious software. 
Most antivirus software relies on a set of signatures or 
“virus definitions” that precisely identify known mal-
ware. These definitions must be updated frequently to 
protect against the latest known threats. Because of its 
dependence on known signatures, antivirus software is 
fundamentally unable to defend against novel threats.

Dynamic integrity measurement follows a different 
approach: rather than attempt to recognize malicious 
software signatures, it characterizes how legitimate 
software is expected to behave and identifies any devia-
tion as malicious. This idea is not fundamentally new; 
“anomaly detection”-based systems have frequently tried 
to model legitimate system behavior to flag anything out 
of the ordinary as malicious. LKIM differs from these 
systems in that it does not rely on statistical modeling; 
instead, it relies on the fact that software behaves in 
very predictable ways according to its source code. The 
key insight behind LKIM is that malware often changes 
the kernel’s state in a way that is inconsistent with the 
kernel’s source code. By detecting these inconsistencies, 
LKIM is able to detect previously unknown attacks.

We developed LKIM to identify modifications to 
a running Linux kernel because malware capable of 
making such modifications to the kernel, known as 
“kernel-level rootkits,” has complete control over the 
behavior of all software running on a system. Further, 
because most detection software runs as a process con-
trolled by the kernel itself, these rootkits are notoriously 
difficult to reliably detect. LKIM uses virtualization and 
a technique called virtual-machine (VM) introspection 
to analyze the state of the kernel when running outside 
of that kernel’s direct control. Kernel-level rootkits for 
other operating systems, such as Windows or Mac OS, 
present a similar security threat. Although LKIM was 
not initially designed to target these systems, the same 
techniques can be used to verify their integrity.

MEASUREMENT PROPERTIES
LKIM is designed to serve as the measurement agent 

(MA) within an IMS capable of supporting a range of 
different decision makers (DMs). Within an IMS, the 
MA is responsible for collecting evidence describing 



LINUX KERNEL INTEGRITY MEASURER

JOHNS HOPKINS APL TECHNICAL DIGEST, VOLUME 32, NUMBER 2 (2013) 511

legacy systems and does make it somewhat more difficult 
for rootkits to hide.

It is impossible to develop a measurement system with 
no impact on the target. Any measurement engine run-
ning on the same hardware as the target will have to 
compete for the finite computational resources avail-
able, such as processor time or memory. We have made 
efforts to minimize the impact LKIM poses on the target 
both by optimizing LKIM’s code to reduce its use of these 
resources and by leveraging architectural features such 
as VM snapshotting to avoid activities such as pausing 
the target for long periods of time. Beyond these perfor-
mance impacts, a measurement system may impact the 
development or deployment of updated targets. LKIM 
requires a precise description of the data structures used 
by the software it is measuring. This means that legiti-
mate updates to the target may cause LKIM to become 
confused and generate false alarms. We partially address 
this problem by separating the target-dependent aspects 
of LKIM into a configuration file that should be deployed 
in sync with updates to the target software. This solution 
imposes some management cost to deploying LKIM; we 
are working in pilot deployments to better understand 
how high this cost is and how it can be best addressed 
(see the LKIM Transition section for more detail).

HOW LKIM WORKS
Although LKIM provides a generic measurement 

capability, the majority of work on applying LKIM has 
focused on the Linux kernel itself. This section provides 
an overview of LKIM’s measurement algorithm using 
the configuration developed for the Linux kernel as 
an example. Efforts to retarget LKIM to measure other 
software, including other operating system kernels and 
application-level software, have followed the same pro-
cess with minor changes to account for differences in file 
formats and software architecture.

LKIM divides the task of verifying the Linux kernel’s 
integrity into three distinct phases:

•	 Static baselining: the identification of valid pro-
gram states

•	 Measurement: the collection of evidence

•	 Appraisal: the evaluation of the collected evidence 
against the baseline

Figure  1 indicates how these three phases work 
together to determine the integrity of the system. The 
baselining phase combines an expert understanding of 
the Linux kernel’s behavior with information found in 
the kernel’s executable file. The measurement phase 
inspects the state of a running instance of the kernel 
to summarize those aspects of its state relevant to the 
integrity decision; this summary constitutes a “measure-
ment” of the running kernel’s state. The appraisal phase 

advantageous. The exact frequency with which to run 
LKIM is still an open research question. Because LKIM’s 
results represent only a moment in time, a long time 
period between measurements may allow an adversary 
to break into a system, accomplish his mission, and 
restore the kernel’s integrity without causing a failed 
measurement. In some sense, any window is too long 
because some adversary missions, such as stealing cryp-
tographic keys, may be accomplished in microseconds. 
A recommended practice is to perform a fresh LKIM 
measurement as part of an access control decision such 
as network access control. This scheme allows the access 
control policy to make its decision on the basis of fresh 
evidence, without unduly burdening the target.

Integrity measurement data may be as complex as a 
complete image of the target’s memory state or as simple 
as a single bit indicating whether the target has integ-
rity. These extremes capture the trade-off space between 
the flexibility and the usability of measurement results. 
Although a complete memory image may be able to sat-
isfy a wide range of DM policies, it is exceedingly diffi-
cult to process. Similarly, a single bit is trivial to process 
but offers no flexibility. LKIM strikes a balance between 
these concerns by abstracting the target’s state into a 
graph of data values and the interconnections between 
these data. The abstraction allows DMs to easily process 
LKIM’s results, whereas the maintenance of structural 
information allows for flexibility in the policies they 
may evaluate. Notably, if a new class of attacks is dis-
covered that modifies the parts of the target’s state that 
are already measured but were not detected by existing 
DM policies, archival measurements could be evaluated 
against a new policy to determine when the attack was 
first present in a set of targets.

Protection of the MA from the target is vital to estab-
lishing trust in the measurements. LKIM uses virtual-
ization to collect measurements of a target VM’s kernel 
from a separate measurement VM. Virtualization tech-
nology introduces a layer of software known as a VM 
manager or hypervisor below the standard operating 
system kernel and allows multiple operating systems to 
run simultaneously in VMs on the same physical hard-
ware. This places trust in the VM manager that it fully 
isolates the measurement VM from any attacks that 
may be launched from the target VM and also that it 
provides an accurate view of the target VM’s state. To 
minimize the trust, we have researched other features of 
the PC architecture that would allow LKIM to run out-
side the control of any operating system or VM manager. 
Because many current and legacy systems do not use vir-
tualization, LKIM can also be run in a hosted mode to 
measure the kernel on which it is running. This mode 
offers none of the trust benefits provided by the virtual-
ized solution; a clever rootkit could modify the interfaces 
that the hosted LKIM uses to inspect the kernel to hide 
itself. However, this mode is easier for deployment on 



J. A.  PENDERGRASS  AND  K. N.  MCGILL

JOHNS HOPKINS APL TECHNICAL DIGEST, VOLUME 32, NUMBER 2 (2013)512

and position its various 
sections in memory as 
well as some of the ini-
tialization procedures of 
the Linux kernel, such as 
optimization of its code 
segments for the hard-
ware. The load procedure 
also includes simulating 
the load process for any 
loadable kernel mod-
ules present in the mea-
sured system. Simulating 
module loading is similar 
to the simulation of the 
core kernel code but relies 
on some dynamic details 
that can only be deter-

mined by the client. Specifically, the Linux kernel loads 
modules by allocating a buffer containing the module 
code and data and then performing a process called relo-
cation to adjust the module on the basis of the address of 
the buffer. To simulate a module load, our baseline pro-
cess must know this address value. Fortunately, we can 
use the address values reported by the measured kernel 
without reducing our trust in the outcome. If the kernel 
misrepresents the set of loaded modules, it will cause the 
baseline process to either omit certain loaded modules 
or to load them in a way that is inconsistent with the 
kernel’s true behavior. In either case, comparison of the 
generated baseline with the measurement data will fail 
because references in the measurement to the actual 
module load location will not match the data found in 
the baseline. Because of the difficulty of handling mod-
ules, our baseline process can be split into two phases: 
one to generate a baseline for the core kernel and a 
second to extend that baseline with data on the set of 
loaded modules.

The most significant challenge in the static base-
line process is the accurate simulation of code trans-
formations that occur when the kernel’s binary image 
is loaded into memory. The Linux kernel includes a 
variety of “self-modifying” code features that provide 
enhanced functionality for the kernel software while it 
is running:

•	 Alternative instructions: instruction optimizations 
for specific processors

•	 Paravirtualized operations: optimizations for guest 
VM execution

•	 Kernel function tracers: debugging and profiling 
facilities

•	 Symmetric multiprocessing locks: software support 
for multiprocessors

consumes both the baseline data and the measurement 
to determine whether the values observed during the 
measurement phase are in the set of values identified as 
valid during the baseline. If all values found in the mea-
surement are consistent with the baseline, the kernel is 
judged to be operating correctly; if not, LKIM assumes 
that the deviation is the result of a malicious modifica-
tion and raises an alarm.

Static Baselining
The goal of the static baseline phase is to determine 

what a running instance of the software should look 
like in memory. LKIM accomplishes this by inspecting 
the kernel’s executable file and extracting information 
about the code and data structures in the image. This 
information is included in the debug information of 
Executable and Linkable Format (ELF) binary files. In 
this phase, we use expertise about both the ELF stan-
dard and the Linux source to locate the appropriate 
information within the kernel image and to transform 
that information into an accurate representation of the 
image when it is loaded into a machine’s memory. The 
process generates ground truth against which a runtime 
measurement can be compared. A key advantage of this 
strategy is that we are constructing a valid software state 
directly from the on-disk binary image. An approach 
used by other systems is to use a measurement taken at 
a time when the target is believed to be in a good state 
as the baseline. Such systems are vulnerable to a class of 
attacks in which the target is modified in memory before 
the baseline measurement is taken. Because LKIM’s 
baselines rely only on the on-disk executable file, LKIM 
is immune to such attacks.

The baselining process begins by simulating the ker-
nel’s load procedure. This simulation is based on how a 
bootloader such as the Grand Unified Bootloader would 
read the kernel from the hard disk at system boot time 

Kernel and
module 

executable
�les

Running
kernel

memory
LKIM

Measurer
Runtime

measurement

Baseline
measurement

LKIM
Baseliner

LKIM
Appraiser

Figure 1.  The LKIM system consists of three components: the baseliner, which analyzes the kernel and 
module executable files to produce a ground-truth baseline measurement; the measurer, which ana-
lyzes the runtime memory of the kernel to produce a runtime measurement; and the appraiser, which 
compares the runtime measurement against the ground truth.



LINUX KERNEL INTEGRITY MEASURER

JOHNS HOPKINS APL TECHNICAL DIGEST, VOLUME 32, NUMBER 2 (2013) 513

line to determine whether the kernel has been modified. 
LKIM decodes the memory in use by the kernel as a set 
of data values with relationships describing which data 
are reachable from other data. The full set of active data 
and their connections is known as the “object graph” of 
the kernel; LKIM actually computes an abstraction of 
this graph, eliding any information that is not relevant 
to the integrity decision of the appraisal phase.

Figure 2 shows an example of such a graph; each box 
represents some data found by LKIM, and the arrows 
connecting the boxes show how these data are connected 
in the kernel’s memory. LKIM performs this decoding 
on the basis of a set of rules describing the expected 
layout of data structures in the kernel’s memory. Table 1 
lists examples of the rules that may be used to generate 
the graph from Fig. 2. Rule 1 tells LKIM that the File
System (the Linux kernel actually calls this structure a 
super_block) data structure can be found at the memory 
address 0x1234 (expressed in hexadecimal). This struc-
ture is used by the kernel to store data about the system’s 
hard drive. In particular, the FileSystem structure main-
tains a list containing metadata for each file stored on 

These features may enhance functionality, but they 
are particularly challenging for integrity measurement. 
The transformation of self-modifying code is closely 
tied to the software and hardware configuration of a 
system. Any change in kernel source, kernel configura-
tion, or platform hardware can alter the process. LKIM 
requires information about the target system’s software 
and hardware configuration to apply this information in 
constructing the baseline. LKIM currently implements 
multiple versions of each transformation function corre-
sponding to the implementations found in different ver-
sions of the kernel. LKIM selects which version to apply 
on the basis of identifying features of the kernel being 
baselined. Mechanisms that are better able to automati-
cally identify and simulate new transformations are an 
active area of research.

Once this simulation is complete, the baseline pro-
cess first records a cryptographic hash of the kernel 
and loaded module’s executable code sections and then 
traverses the debugging information packaged with the 
kernel and its modules to locate any instances of struc-
tures that should appear in the baseline. To support a 
variety of devices and file systems, the Linux kernel has 
internal programming interfaces that driver authors 
implement to connect the details of their device to the 
generic functionality of the kernel. These interfaces 
are exposed as structure types containing pointers to 
the functions implementing device-specific behavior. 
Instances of these structures are typically defined as 
constant global data structures and passed by refer-
ence to the generic kernel code. Our baseline process is 
tuned, on the basis of expert human analysis, to locate 
instances of these structures using the debug infor-
mation and record their values. This analysis must be 
periodically updated to reflect new kernel interfaces or 
major changes in existing interfaces. Fortunately, more 
of the structures measured by LKIM are central to kernel 
operations and thus tend to be stable across versions.

The hash of the executable code sections combined 
with the values recorded for instances of key structures 
comprise the generated baseline. The measurement 
phase collects similar data representing the state of the 
executable code and data structure instances present in 
memory at the time of measurement. During appraisal, 
these two sets of data are compared to determine whether 
the executable code at runtime is identical to that found 
in the baseline and whether the recorded values in the 
measurement are consistent with those in the baseline.

Measurement
The primary challenge of the measurement phase is 

determining which aspects of the kernel’s state are impor-
tant to the integrity decision and producing a structured 
representation of these data. Later, during the appraisal 
phase, these data will be compared against the base-

Read-
Function

FileInfo

FileInfo

FileSystem

Figure 2.  A graph representing a subset of the data structures 
active at the time of measurement. LKIM records each identified 
data structure and the linkages between them. During appraisal, 
this graph may be evaluated against the constraint that all FileInfo 
structures reference the correct ReadFunction for the FileSystem.

Table 1.  The set of rules that might have given rise to the graph 
shown in Fig. 2

Rule From To Memory Offset

1 FileSystem 0x1234
2 FileSystem FileInfo 4

3 FileInfo
FileInfo
ReadFunction

4
8

Rule 1 says that a FileSystem structure can be found at memory 
address 0x1234 (expressed in hexadecimal). Rule 2 says that once 
a FileSystem has been found, a FileInfo structure can be found by 
following a pointer at offset 4 from the FileSystem. Rule 3 says that 
once a FileInfo is found, another FileInfo can be found by following 
a pointer at offset 4 and that a ReadFunction can be found by fol-
lowing a pointer at offset 8.



J. A.  PENDERGRASS  AND  K. N.  MCGILL

JOHNS HOPKINS APL TECHNICAL DIGEST, VOLUME 32, NUMBER 2 (2013)514

Appraisal
The appraisal phase consumes these data and com-

pares them with data computed from the on-disk rep-
resentation of the kernel to determine whether the 
observed state is consistent with the original file. This 
determination relies on an expert understanding of how 
the kernel operates. Ultimately, LKIM provides a result 
indicating either that no modifications were detected or 
exactly which data in the kernel have been modified in 
an unexpected way.

LKIM’s appraisal phase is specified as a series of logi-
cal predicates that are evaluated over both the baseline 
and measurement graphs. These predicates can refer to 
the graph node representing data at a particular address 
in memory, all nodes representing data of a particular 
type, or the relationships among multiple graph nodes. 
In the example given in Fig. 2, an example constraint 
is that “all read function nodes that descend from the 
given file system node must point to the correct execut-
able code for reading a file from that FileSystem.”

During LKIM appraisal, we apply a collection of con-
straints that we have defined for a healthy Linux kernel. 
Each constraint is applied to one or more measurement 
variables to detect unexpected modifications. Table  2 
displays the typical constraints in an LKIM appraisal 
and the variables that they constrain.

IMPACT OF LKIM
In most cases, LKIM detects the impacts of a mali-

cious attack rather than the attack itself. Generally, an 
attack will use some vulnerability in the system to gain 
privileges with the goal of establishing persistence on the 
system. To persist in the kernel, the attack must be able 
to inject an implant or modify the image in memory. 
LKIM detects precisely these implants and modifications.

the hard drive. The second rule tells 
LKIM how, given the file system it 
located using the first rule, it can 
find the first FileInfo (this structure 
is actually called an inode or “index 
node” in the Linux kernel) structure 
in this list by examining the value 
at offset 4 from the base of the File-
System. The FileInfo structure pro-
vides information for a file on the 
hard drive, such as who created it, 
when it was last modified, and who 
may access it, and a reference to 
the code that the kernel should use 
to read the file from the drive. The 
final rule tells LKIM how to use the 
data in one FileInfo to find the next 
FileInfo and a ReadFunction (this is 
actually a whole table of functions 
called inode_operations, including open, read, write, 
close, and other standard operations on files) by exam-
ining the data at offset 4 and offset 8 from the original 
FileInfo. The last two rules show how LKIM uses the 
information identified in one step to find more informa-
tion. LKIM will repeatedly attempt to apply these rules 
until no new data remain to be discovered. This allows 
LKIM to traverse the kernel’s object graph and record 
critical information for each datum, or node, it visits. 
We have developed automated tools to help craft these 
rules for different kernels. Unfortunately, the determi-
nation of which data are important to kernel integrity 
requires an understanding of how the kernel operates, so 
tuning these rules is still a largely manual process.

The LKIM rules define the measurement variables 
of interest and how to measure them. These variables 
include data structures as well as memory segments, 
such as the kernel text section. The measurement begins 
with a short list of top-level variables. For each variable, 
LKIM measures data to ascribe value to the variable 
and/or locate other variables to measure.

The complete list of variables that are measured 
depends on the target platform, but a typical LKIM mea-
surement includes the following:

•	 Kernel and kernel module code

•	 Architectural entry points such as the Interrupt 
Descriptor Table

•	 System call table

•	 Task structures that store information on Linux pro-
cesses

•	 Jump tables containing pointers to executable code, 
such as the ReadFunction in the example depicted 
in Fig. 2.

Table 2.  Common appraisal constraints, and their associated measurement data, used 
by LKIM

Constraint Constrained variables

All code sections in the measurement 
have a matching code section in the 
baseline.

Kernel core and kernel module code sec-
tions

Data structures in the measurement 
have a matching data structure in the 
baseline.

Jump tables (super_operations, inode_
operations, etc.) and the system call 
table

Function pointers point to valid code 
sections in the baseline.

Miscellaneous function pointers, includ-
ing dynamically allocated function 
pointers

All tasks, or processes, in the system’s 
run queues and wait queues descend 
from the init task.

Task structures



LINUX KERNEL INTEGRITY MEASURER

JOHNS HOPKINS APL TECHNICAL DIGEST, VOLUME 32, NUMBER 2 (2013) 515

of challenges to LKIM, and we hope to ease the integra-
tion of LKIM as we gain operational experience.

We have identified several characteristics of the 
target environment that impact LKIM integration. 
These characteristics drive design decisions and preven-
tative maintenance for LKIM deployment in the field:

•	 Stability: Changes in the target environment 
require updates to LKIM tools and the manage-
ment framework. Typically, each new software or 
hardware configuration requires a reconfiguration of 
the LKIM tools. Managing LKIM tends to be much 
easier in carefully administered environments with 
homogenous configurations and infrequent updates. 
In any environment, updates to LKIM must be man-
aged in conjunction with updates to the measured 
mission software.

•	 Diversity: All levels of diversity within the target 
environment affect integrity measurement. In par-
ticular, target diversity requires robustness of the 
LKIM static baseline process and leaves little room 
for errors in the deployed prototype implementation. 
Testing and evaluation of LKIM should be commen-
surate with the anticipated diversity of the deploy-
ment environment.

•	 Scale: As the number of target machines increases, 
the management framework utilization increases. 
Demands on the appraisal server(s) for target com-
munications and appraisals may increase drastically. 
In addition, the efficient management of the data-
base of the inputs and integrity measurement results 
becomes nontrivial. The management framework 
should be sized appropriately to accommodate the 
projected scale of deployment for the term of service.

•	 Resource constraints: The resource constraints 
of the target environment may have great impact 
on the integration of LKIM. In cases in which the 
target machines are user desktops, a typical 3-s 
LKIM measurement is barely noticeable. However, 
as we explore mission-critical targets, which experi-
ence stricter resource constraints, we may need to 
optimize LKIM and the management framework for 
the mission.

CONCLUSIONS AND FUTURE WORK
LKIM is a dynamic MA capable of providing detailed 

evidence of the operating state of a running piece of 
software. The techniques implemented by LKIM enable 
the detection of a wide range of long-lived in-memory 
software modifications and in particular target kernel-
level rootkits that pose a significant threat to the trust-
worthiness of a computing system. Because LKIM does 
not rely on signatures of known malware, it is able to 

There are two kinds of attacks that LKIM targets 
in particular: kernel code injection (or modification) 
attacks and kernel control flow attacks. A code injection 
attack attempts to introduce new code into the kernel or 
modify existing code to alter the intended execution of 
the system. LKIM detects these attacks by checking all 
code in the executing kernel against the static baseline. 
Any code that does not have a match in the baseline 
will be detected as corrupt.

Control flow attacks attempt to modify data struc-
tures, such as the system call table and function point-
ers, which direct the execution flow in the kernel. These 
modifications may be used to redirect execution to the 
attacker’s code for some malicious means or to the wrong 
code in the kernel to cripple an intended service. LKIM 
detects control flow attacks by verifying that the system 
call table and function pointers have a corresponding 
match in the baseline and point to valid code.

A key advantage that LKIM has over static integ-
rity measurement is its ability to measure and appraise 
dynamically allocated data structures. As the kernel is 
executing, it services requests from various system com-
ponents. These service requests may require generation 
of new instances of data structures and function pointers. 
These new structures do not exist in the binary image 
of the kernel, so static integrity measurement does not 
measure them. The LKIM measurement algorithm uses 
runtime information to walk the kernel object graph. 
LKIM discovers these dynamically allocated structures 
during measurement and includes them in the measure-
ment data for appraisal.

LKIM TRANSITION
LKIM has evolved from an early proof of concept to 

a full research prototype. We are committed to transi-
tioning LKIM from a research prototype to a deployed 
system with a valuable operational impact.

The LKIM prototype is a collection of tools that 
perform static baseline measurement, runtime measure-
ment, and appraisal of target systems. LKIM requires 
a management framework to integrate it with existing 
enterprise or tactical networks. This framework pro-
vides measurement initiation and scheduling; com-
munication between target systems and the appraisal 
server; data management for the required LKIM inputs 
and storage of measurements, baselines, and appraisal 
results; and an interface with an alert management 
and response system. We believe it is ideal to integrate 
LKIM within existing management tools in targeted 
deployment networks to smooth integration and adap-
tation for end users.

We started the LKIM transition with a pilot deploy-
ment on the APL enterprise network. We continue to 
explore broader deployment in a variety of government 
applications. Each new deployment presents a unique set 



J. A.  PENDERGRASS  AND  K. N.  MCGILL

JOHNS HOPKINS APL TECHNICAL DIGEST, VOLUME 32, NUMBER 2 (2013)516

to be quickly retargeted at new versions of the Linux 
kernel as well as at totally new software targets, such as 
other operating systems or application software. Work 
on automated software invariant generation, as well as 
next-generation “measurement-oriented programming 
languages,” may enable software developers to integrate 
the development of a MA such as LKIM into their exist-
ing process for developing mission-oriented software.

REFERENCE
  1Loscocco, P. A., Wilson, P. W., Pendergrass, J. A., and McDonell, C. 

D., “Linux Kernel Integrity Measurement Using Contextual Inspec-
tion,” in Proc. 2007 ACM Workshop on Scalable Trusted Computing, 
New York, NY, pp. 21–29 (2007).

detect zero-day infections, making it ideal for countering 
the “advanced persistent threats” of concern to many of 
APL’s sponsors. Together with the Research Directorate 
of the NSA, APL has developed LKIM from a concept to 
a prototype solution and is now working toward deploy-
ing LKIM in high-impact environments for our broader 
sponsor base.

The major challenges to broad deployment of LKIM 
are automating the analysis of which data structures must 
be recorded in the baseline and how structures should be 
measured and appraised. This currently relies heavily on 
an expert understanding of the system being measured. 
Automating this process would enable the LKIM engine 

J. Aaron Pendergrass is a member of the Senior Professional Staff in the Cyberspace Technologies Branch of APL’s 
Asymmetric Operations Department. His work focuses on enhancing software assurance via formal methods for mecha-
nized program analysis, automating reverse engineering, and dynamic software integrity measurement. Kathleen N. 
McGill is a member of the Senior Professional Staff in APL’s Asymmetric Operations Department. She represents APL in 
the Trusted Computing Group’s Mobile Platform Working Group and acts as a liaison between the greater trusted mobile 
computing community and researchers at APL. Her work at APL focuses on dynamic integrity measurement of desktop, 
server, and mobile devices to ensure the integrity of target software. For further information on the work reported here, 
contact J. Aaron Pendergrass. His e-mail address is aaron.pendergrass@jhuapl.edu.

 The Authors

The Johns Hopkins APL Technical Digest can be accessed electronically at www.jhuapl.edu/techdigest.

mailto:aaron.pendergrass@jhuapl.edu

	LKIM: The Linux Kernel Integrity Measurer
	J. Aaron Pendergrass and Kathleen N. McGill
	INTRODUCTION
	MEASUREMENT PROPERTIES
	HOW LKIM WORKS
	Static Baselining
	Measurement
	Appraisal

	IMPACT OF LKIM
	LKIM TRANSITION
	CONCLUSIONS AND FUTURE WORK
	REFERENCE
	The Authors
	Figures and Tables
	Figure 1. The LKIM system consists of three components.
	Figure 2. A graph representing a subset of the data structures active at the time of measurement.
	Table 1. The set of rules that might have given rise to the graph shown in Fig. 2
	Table 2. Common appraisal constraints, and their associated measurement data, used by LKIM





