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INTRODUCTION
Formal verification offers great promise for establish-

ing confidence that software implements its intended 
functionality. Although effective, Formal Methods 
(FM) techniques generally scale poorly, are difficult for 
nonexperts to learn, and impose a high up-front cost on 
development efforts. To expand their use, FM require 
additional research and development to improve their 
usability. Other techniques in source-code verification 
that trade off expressiveness or soundness for developer 

ease of use also offer great promise for enhancing the 
security posture of software and providing a low-cost 
path toward adoption of more rigorous verification 
techniques. This article describes the Software Analy-
sis Research and Applications Laboratory (SARA Lab), 
an effort to further the application of software analysis 
techniques to APL-developed technologies and to lever-
age APL’s software development capabilities to advance 
the state of the art in software analysis.

s software systems become ever more vital to all aspects 
of daily life, the risks posed by defects in critical soft-
ware become increasingly dire. Traditional software 

engineering techniques focus heavily on manual analysis and testing to discover and 
repair defects. Although this approach is valuable, modern tools for the mechanized or 
automated detection of defects have proven themselves capable of alleviating much of 
the tedium associated with manual processes while providing greater assurance in their 
coverage. In this article, we describe the strengths and weaknesses of the most common 
approaches to the automated detection of software defects: formal methods and source 
code verification. We then describe our experience applying both free and commercial 
tools based on these techniques in the Software Analysis Research and Applications 
Laboratory (SARA Lab), a new effort at APL to enhance the state of the art in software 
analysis while applying best-of-breed tools for defect detection to APL software projects. 
APL software developers can avail themselves of this research by by e-mailing +SARALab.
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This makes static analysis an important part of enforc-
ing good coding practices, but it also means that static 
analysis tools are generally unable to provide the same 
insight on specific correctness requirements of a proj-
ect that FM might provide. For example, FM techniques 
can be used to prove that a routine intended to sort a 
list actually returns its input in sorted order. Because 
static analysis tools have no notion of what algorithm a 
routine is supposed to implement, they focus on identi-
fying common classes of defects such as NULL pointer 
dereferences, memory leaks, and buffer overflows that, 
if present, are always undesirable. (A NULL pointer is 
a reference to an undefined cell of computer memory, 
typically represented by the number 0. A dereference of 
a NULL pointer produces undefined program behavior. 
A memory leak is a behavior of a program that allo-
cates memory to hold some temporary data but fails to 
properly deallocate this memory when it is no longer in 
use. A buffer overflow occurs when a program attempts 
to write data to a region of memory that is not large 
enough to hold the data being written.) To cope with 
large code bases and the often-difficult-to-understand 
nature of complex software, static analysis tools usually 
make additional compromises to ensure speedy analysis. 
No complex software analysis can provide a complete 
analysis—one that will label all valid programs as good. 
To limit false-alarm rates, most static analysis tools will 
also sacrifice soundness, causing them to report some 
invalid programs as good. Despite these limitations, 
static analysis tools are capable of consistently detecting 
a wide range of suspicious or invalid programs.

There are several common techniques implemented 
by most static analysis tools. Each technique offers a 
different trade-off of among results, precision, false-
positive rates, and computational requirements. Most 
tools include a combination of techniques to provide a 
reasonable balance between each one’s strengths. The 
major classes of static analysis are as follows:

•	 Syntactic pattern matching

•	 Type systems

•	 Data-flow analysis

•	 Abstract interpretation

Syntactic Pattern Matching
Syntactic pattern matching is the fastest and easiest 

technique for static analysis, but it provides little confi-
dence in program correctness and can result in a high 
number of false alarms. A checker based on syntactic 
pattern matching works by defining a set of program 
constructs that are potentially dangerous or invalid and 
then searching the input program’s abstract syntax tree 
for instances of any of these constructs. A common 
example for C programs is a pattern to prevent the use 

FORMAL METHODS
FM fall into one of two categories: model checking or 

deductive verification. These categories differ in terms 
of the range of different systems that a formal method 
can describe as well as the reasoning strategy.

To be analyzed by a model checker, a system must 
be amenable to modeling in a fairly limited way, often 
as some sort of state machine. The sound reasoning 
strategy for model checkers is a brute-force exploration 
of the state space of the system model, proving that it 
will never enter some user-defined undesirable state. 
Moreover, a model checker can prove that the system 
can enter some user-defined desirable state; this is called 
a liveness property. Model checkers can be automated, 
but they are limited by the size of the system (i.e., by 
the number of states to be explored within the time and 
computing power available to the analyst).

Deductive verification proves properties about a pro-
gram by first describing the valid input states of the pro-
gram as a logical predicate and then applying inference 
rules corresponding to each command in the program 
to transform this precondition into a similar predicate 
describing the program’s final state. This process is 
similar to traditional mathematical proofs, such as the 
two-column proofs familiar to many people from high 
school geometry. Most systems for applying deductive 
verification to software require a great deal of manual 
effort to select which inference rules to apply at each 
step to guide the proof toward the desired goal. “Proof 
assistants” (i.e., tools that can perform part of the work 
for the analyst) exist for some reasoning systems; how-
ever, proofs cannot be fully automated in all cases and 
require human intervention and guidance to verify that 
the property we desire is true (or not).

STATIC ANALYSIS TECHNIQUES
Numerous commercial, open-source, and research 

tools exist for automatically finding defects in source 
code. Probably the best known of these is lint, a tool 
developed in tandem with the original C compiler 
intended to flag suspicious constructs.1 The choice to 
separate this functionality from the compiler, largely 
motivated by efficiency concerns for the compiler, was 
probably one of the watershed moments that led to the 
widespread lack of adoption of such automated program 
analysis tools in the field. Now, as compiler efficiency 
concerns have taken a backseat to program correctness 
and security, static checkers have become increasingly 
popular. The SARA Lab aims to increase the appeal of 
such static checkers by improving the quality and depths 
of their analyses.

Unlike more heavyweight FM proof techniques, 
static analysis tools are designed to be automated, fast, 
and usable by a broad population of programmers. 
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example, it is illegal to attempt to treat a float as 
the address of a memory cell by applying the unary “*” 
(dereference) operator.

Type systems have application far beyond these 
simple examples. The same algorithms that are used 
to determine that attempts to dereference a float are 
illegal can be used to prevent data labeled as confiden-
tial from being written to an output channel labeled as 
public, as in Example 3. In addition to their application 
to information-flow properties such as this, type systems 

of an assignment expression, <lhs> = <expr>, as 
the condition of an if-then-else block. This pattern rep-
resents a common error in C programs, illustrated by 
Example 1, in which a programmer intends to use the 
comparison operator “==’’ to determine whether the two 
sides of the expression are equal, rather than using the 
assignment operator “=” to assign the value of the right-
hand side to the variable or memory location given by 
the left-hand side. However, this pattern does represent 
perfectly valid C code and may be used intentionally by 
a programmer, as shown in 
Example 2, to assign a vari-
able and branch based on 
whether the new value is 0.

One of the most 
common uses for syntac-
tic pattern matching is 
to automatically enforce 
coding style guidelines 
across an entire code base 
to improve the consistency 
and readability of code. 
Some syntactic pattern 
matching systems are able 
to automatically transform 
some invalid constructs 
to equivalent acceptable 
forms based on rewrite 
rules that substitute one 
pattern for another.

Type Systems
Type systems are a core 

part of programming lan-
guages and are familiar to 
most, if not all, program-
mers.2 However, the use 
of type systems to enforce 
program correctness prop-
erties may not be immedi-
ately apparent to many. A 
type system assigns a label 
to each variable in a pro-
gram and defines rules for 
how these labels can be 
combined and how they are propagated by the primi-
tives of the programming language. The types int and 
float from the C language are common examples of 
type labels representing fixed-size integers (e.g., 32-bit 
integers) and floating point numbers, respectively. The 
C type system defines the result of built-in operators with 
respect to these labels; for example, adding an int to a 
float results in a new float value. Other rules in the 
type system forbid certain operators from being applied 
to variables with types that would not make sense; for 

Example 1.  Mistaken use of <lhs> = <expr> construct.

Example 2.  Intentional use of <lhs> = <expr> in an if–else construct.

Example 3.  With additional annotations, a type system can catch security-related information-flow 
errors such as this.
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life of the variable. In Example 4, the variable “buf” is 
first assigned confidential data but is then updated with 
public data before being written to the public output 
channel. Although this example does not contain an 
actual information-flow violation, a flow-insensitive 
type system would label the variable “buf” as holding 
confidential data and thus would reject the program.

Data Flow Analysis
Data flow analysis overcomes the challenges of type 

systems related to flow insensitivity by taking into 
account how the data referenced by a variable may 
change throughout a program.7 At each source-code 
location, data flow analysis records a set of facts about 
all variables currently in scope. These facts describe 
some property of the variables in the program at each 
source-code location; the exact kinds of facts recorded 
are unique to the specific analysis being performed. 
One common example used is a “reaching definitions” 
analysis in which the fact set at each line of code indi-
cates the location of the most recent assignment of 
each program variable. Other data flow-based analyses 
often used by optimizing compilers are summarized in 
Table 1. In addition to the set of facts to be tracked, the 
analysis defines a “kills” set and a “gens” set for each 
construct of the programming language. The “kills” set 
describes the set of facts that are invalidated by execu-
tion of the construct, and the “gens” set describes the 
set of facts that are generated by the construct. To ana-

lyze a program, the analysis tool begins 
with an initial set of facts and updates 
it according to the “kills” set and “gens” 
set for each statement of the program 
in sequence. Depending on the analysis 
being performed, the program statements 
may be processed either forward or back-
ward, and the initial fact set may assume 
that nothing is true for all variables or 
that all variables share some property.

All of these data flow analyses in 
Table 1 are used by optimizing compilers 
to eliminate redundant computation, reor-
der statements, or temporarily reuse vari-
ables. However, these same analyses can 
be used to verify program correctness (e.g., 
by identifying that a pointer being deref-
erenced was last assigned a potentially 
NULL value). A similar analysis can be 
used to solve the information-flow prob-
lem of Example 4 by tracking the informa-
tion-flow label of the reaching definition 
of “buf.” At the time “buf” is output to 
the public channel, its reaching definition 
is associated with public data, so the pro-
gram will pass the analysis.

have been applied to check for a wide range of program 
errors, including units of measurement being properly 
converted,3 format string vulnerabilities,4 and race con-
ditions in concurrent software.5 Advanced type systems 
such as the dependent types featured in the Coq proof 
assistant6 can even be used to prove arbitrary program 
correctness properties.

One of the major technologies enabling the use of 
type systems as an automated static analysis tool is type 
inference: the ability to algorithmically determine the 
correct types to give to a program’s variables. Type infer-
ence frees the programmer from having to explicitly 
annotate all of the variables in a program with addi-
tional, often complicated, type labels. Instead, the type 
inference algorithm uses the operations performed on 
each variable to constrain the set of type labels that 
make sense. If the constraints are satisfiable, then each 
program variable can be assigned a type and the pro-
gram passes analysis; if the constraints are unsatisfiable, 
then some variables may not have a corresponding type 
and the program fails the analysis. This allows the pro-
grammer to specify only a small number of type labels, 
such as the sensitivity level of input and output chan-
nels, and the analysis can then determine whether the 
program meets a specified property.

Like all static analysis techniques, type systems may 
reject a program that is actually free of errors. The most 
common reason for this is that type systems are tradi-
tionally “flow-insensitive,” meaning that once a vari-
able is given a type label, that type label persists for the 

Example 4.  Correct information flow that can confuse many type systems.
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Abstract Interpretation
Abstract interpretation is a generic term for a family 

of static analysis techniques that includes both type sys-
tems and data flow analysis, among others.8 In abstract 
interpretation, a program’s variables are assigned values 
from an abstract domain, and the program is executed 
on the basis of modified semantics for how each lan-
guage construct applies in this new domain. For exam-
ple, whereas an int variable may typically take on any 
concrete integer value in the range [-2^31, 2^31), in 
abstract interpretation the variable may be given a value 
of -, 0, +, or ? indicating only the sign of the vari-
able (where “?” indicates an unknown or indeterminate 
value). Operators such as < are given meaning for this 
new domain, as shown in Table 2.

Moving away from concrete values and operators 
allows automated analysis tools to evaluate programs’ 
meanings in terms of the higher-level abstract domains. 
This ensures that the analysis will actually terminate on 
all input programs.

Abstract interpretation is a powerful tool in program 
analysis because it can be used to verify many impor-
tant program correctness properties, including memory, 
type, and information-flow safety. The primary chal-

Table 1.  Four common examples of data flow analysis used in optimizing compilers

Analysis Facts Tracked Direction Common Application Example

Reaching 
definitions

Location of most recent 
assignment to each variable

Forward Reordering of code to improve (1) x = y + 1;
(2) x = x + 1;
(3) w = z + 1;
Statements (3) and (2) may be reor-
dered because the reaching definition 
of z is before statement (1). This may 
improve pipelining behavior.

Live vari-
ables

Variables whose values will be 
used later in the code

Backward Elimination of unused assign-
ments, reuse of memory to 
represent different variables

(1) x = 3;
(2) exit;
Statement (1) may be eliminated 
because the value of x is never used.

Available 
expressions

Arithmetic expressions that 
have been recently computed

Forward Elimination of redundant 
arithmetic expressions

(1) x = 12*7;
(2) y = 12*7;
The computation of 12*7 in statement 
(2) is redundant and can be eliminated.

Very busy 
expressions

Arithmetic expressions that 
will be computed later in the 
code on any paths through 
the program

Backward Hoisting of arithmetic expres-
sions computed on multiple 
paths through the program

(1) if(x < 0){
(2) y = (z*3)+1;
(3) }else{
(4) y = (z*3)+2;
(5) }
The expression (z*3) is computed at 
lines (2) and (4). It may make sense to 
move the computation before line (1).

Table 2.  Abstract interpretation rules for the < operator over 
the domain {–, 0, +, ?}

Input 1 Operator Input 2 Is Result

– < –  ?

– < 0  True

– < +  True

– < ?  ?

0 < –  False

0 < 0  False

0 < +  True

0 < ?  ?

+ < –  False

+ < 0  False

+ < +  ?

+ < ?  ?

? < –  ?

? < 0  ?

? < +  ?

? < ?  ?
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five popular open-source projects: dnsmasq, util-linux, 
libxml2, openssl, and glib. These projects vary widely 
in scope and size but are all fairly mature. Although 
dnsmasq’s 20 reported defects may be easily triaged and 
addressed, the 2,981 defects reported for util-linux are 
quite daunting.

Like most static analysis tools, Klocwork Insight 
assigns each defect a severity based on the type of error 
reported; for example, buffer overflows are labeled as 
“Critical” because of the likely security implications, 
whereas memory leaks are labeled as “Errors” because, 
although undesirable, they are unlikely to result in secu-
rity issues. However, the true criticality of a buffer over-
flow depends on context. For example, a buffer overflow 
in the configuration parsing code of a web server is 
probably less severe than a similar error in its URL pars-
ing. Because the configuration file being processed is 
assumed to be owned by the system administrator run-
ning the server, an error in this parsing code would not 
lead to a privilege execution vulnerability (although it is 
still a problem and should certainly be corrected). Con-
versely, the URLs parsed by a web server are provided 
by an unknown and potentially malicious third party. 
Thus, a flaw in this code could result in a remote code 
execution vulnerability that must be addressed at once. 
Without an understanding of the software’s architecture 
and usage model, static analysis tools are unable to make 
these kinds of determinations.

The SARA Lab hopes to address these shortcomings 
of static analysis tools by developing enrichment and 
visualization tools to help quickly determine the impact 
of reported defects on an overall software architecture. A 
first attempt at this is the use of the Dagger visualization 

lenge to applying abstract interpretation is the design 
of the abstract domain of reasoning. If the domain is 
too abstract, then precision is lost, resulting in valid pro-
grams being rejected. If the domain is too concrete, then 
analysis may become computationally infeasible.

From Alerts to Alarms
Although automated analysis tools provide a powerful 

approach to finding potential defects in a large software 
project, they may easily overwhelm the user with alert 
messages of questionable importance. For a large code 
base, a tool may report hundreds or even thousands of 
alerts, many of which may be spurious or of little impact 
to the mission of the software. Further, many of the 
alerts reported may be symptoms of the same underlying 
error. Table 3 shows the lines of code, number of defects, 
and lines of code per defect reported by a commercial 
static analysis tool, Klocwork Insight, that uses a com-
bination of syntax matching and data flow analysis on 

Figure 1.  Visualization of the util-linux software architecture and the impact of defects reported by Klocwork Insight.

Table 3.  The lines of code, number of defects reported, and 
average number of lines per defect for five popular open-source 
projects as reported by the Klocwork Insight static analysis tool 
with default settings

Project
Lines of 

Code
Defects 

Reported
Lines of Code 

per Defect

dnsmasq2.51 15,838 20 791.9
util-linux 70,069 2,981 23.5
libxml2 178,406 291 613.1
openssl 189,032 488 387.4
glib 333,884 678 492.5
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The SARA Lab Vision
Figure  2 depicts a vision for the SARA Lab as a 

mature facility at APL. It shows three environments 
that will coexist and mutually support one another. The 
research environment at the far left will accommodate 
the development of novel tools to improve our ability to 
find defects in complex software and enhance the user 
experience. Researchers will be inspired by the gaps they 
experience while working with existing tools; they will 
draw on an extensive library of real-life, complex APL 
software products that have been analyzed in the SARA 
Lab at some previous time. These will provide both a 
realistic challenge to any new tool and at least partial 
ground truth because the analysis results for all of the 
samples in the inventory will available for comparison.

Once a research tool proves its worth on the basis of 
test data and has achieved some level of development 
stability, it will be moved to the development environ-
ment. The development environment is the heart of the 
SARA Lab. In this environment, current software proj-
ects at APL will be subject to analysis by one or more 
commercial, open-source, or mature research tools. In 
the development environment, the software develop-
ers work together with SARA Lab researchers to learn 
how to apply analysis tools and interpret the results. We 
expect that the SARA researchers will often learn as 
much as the developers about the tool use and capa-
bilities. This experience will feed the software analysis 
research that is done in the SARA Lab.

Although many commercial and open-source tools 
work only on code, FM can verify executable specifica-
tions or designs of algorithms cast in a logic language. 
An APL software product may appear in the SARA Lab 
multiple times at different points in its development—
requirements gathering, design, or implementation—to 
undergo the appropriate analysis for that stage of develop-
ment. The lessons learned from the analysis go back into 
the project to improve the product. The product itself 
becomes part of the SARA Lab inventory of test samples.

software, developed for the APL LiveLab to visualize the 
mission impact of cyber events on a large network, to 
visualize the dependencies of a piece of software, and 
to show how defects propagate through the architecture. 
Figure 1 is a screenshot of the Dagger tool being used to 
visualize the architecture of the util-linux project and 
the impact of the defects reported by Klocwork Insight.

The architecture model is automatically generated 
from an instrumented build of the project and represents 
the architecture in four tiers: functions, source files, 
object files, and executables. Any subroutines called by 
a function are modeled as dependencies of the caller. 
Source files depend on the function they define, object 
files depend on the sources that are compiled to create 
them, and executables depend on the object files linked 
into them. This model was chosen to provide a coarse, 
but fully automated, approximation of the conceptual 
hierarchy of dependencies in the target program. Auto-
matic and user-guided extraction of richer and more 
semantically meaningful software architecture informa-
tion is an ongoing area of research in the SARA Lab. 
The user can refine this architecture by taking advan-
tage of Dagger’s built-in functionality for editing the 
visualized dependency model.

Understanding how best to make use of static analy-
sis results to improve the efficiency of developers in cre-
ating correct software is a key part of the SARA Lab’s 
mission to improve the usefulness of static analysis. 
Analytics and visualizations that incorporate developer 
understanding can help reflect the security and reliabil-
ity impact of defects. The context and quick feedback 
that these tools provide give developers a better chance 
of managing the sometimes overwhelming sets of alerts 
for their projects.

THE SARA LAB
In this day and age, when adversaries are searching 

for any error they might use to their advantage, APL 
needs to employ every tool at 
its disposal to prevent deliv-
ery of vulnerable software to 
its sponsors. The SARA Lab 
was created in summer 2012 
to bring existing tools such 
as those described in the pre-
ceding section to APL and to 
help APL software developers 
apply them to our software 
products. As a by-product of 
this endeavor, we expect that 
APL will begin to add to the 
repertoire of technologies 
and techniques that will ulti-
mately lead to more robust, 
adversary-proof products.

APL 
software
product

Production
environment

Research
environment

Development
environment

Mature 
analysis tools

Analysis tool
inventory

APL software
product

inventory

Gaps

Figure 2.  Mature SARA Lab vision.
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to a defect. Figure 4 is a small part of a graph generated 
from the output of the same four tools shown in Fig. 3. 
The parallelogram-shaped nodes represent a SLOC 
where a defect was detected. The triangular nodes are 
SLOCs that are not themselves defects but that are on 
the control path to the defect. The directionality of the 
edges represents the direction of the control flow. The 
color of the nodes reflects which tool identified that 
particular line of code. Although this subgraph shows 
six defects, the relatively small number of control paths 
leading to them suggests that the “unique” defects are 

Finally, when a tool in the development environment 
proves to be so useful and user-friendly that the support 
of the SARA Lab researchers is no longer needed, the 
tool is moved to the production environment. From the 
production environment, the tool and its documentation 
can be downloaded for use throughout APL, rather than 
just in the SARA Lab. While SARA researchers will still 
support the product, it is envisioned that any tool in the 
production environment will have a sufficiently large set 
of practitioners outside of the SARA Lab who can mentor 
less-experienced users on their team. New tools devel-
oped at APL could be open-sourced, to engage the soft-
ware analysis community in their further improvement.

The First Year of Operation
During its first year of operation, the SARA Lab 

team focused on building the development environ-
ment. Today, it has a significant inventory of tools and 
an impressive set of early successes.

Tools in the SARA Lab
To kick off operations in the SARA Lab, the SARA 

Lab researchers explored the available open-source and 
commercial software analysis tools. A number of these 
tools were brought into the SARA Lab for experimenta-
tion. Figure 3 depicts the result of comparing the output 
(number of defects found) from four different static analy-
sis tools analyzing the same piece of software. Notably, 
the overlap in defects found is much smaller than the 
number of unique defects found by each tool. Two of 
the tools in this study (the products from Coverity and 
Parasoft) both use combinations of pattern matching and 
data flow analysis but had no overlap in the defects found.

To investigate this further, the SARA researchers 
used a graphical analysis tool (Pointillist) that displays 
the relationships among various nodes; in this applica-
tion, the nodes are source lines of code (SLOCs) leading 

Figure 3.  Comparison of bugs found by various static analysis 
tools.

Coverity

Coverity and Parasoft

Coverity and Klocwork

Klocwork

Figure 4.  A Pointillist view of defects generated by four analysis 
tools.
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Of note are the first four products in Table 5. These 
four products are intended to perform security func-
tions; that is, that is, they are being trusted to ensure 
the correct operation of a platform or network that may 
come under attack. To achieve trustworthy computing, 
the security applications, at a minimum, must be dem-
onstrated to be error free (where an error may introduce 
a vulnerability).

Using the SARA Lab
Because one of the goals of the SARA Lab is to 

improve the software products delivered by APL to 
its sponsors, analysis in the SARA Lab is open to all 
APL staff. A self-serve web portal where developers can 
submit software products for analysis is under construc-
tion. Today, the best approach to getting a product into 
the SARA Lab is to make contact with the researchers 
by sending an e-mail to +Saralab. SARA Lab research-
ers will then schedule a meeting to discuss the project 
needs and suggest an approach for meeting those needs.

Interested software developers at APL are also invited 
to join the SARA Lab Cooler group “Software Analysis 
Research and Applications.” In this group, participants 
share information about topics pertaining to static analy-
sis, including tool surveys, screenshots of tools to dem-
onstrate their use, descriptions of research advances in 
static analysis, and postmortems of software vulnerabili-
ties that could have been detected by using static analysis.

CONCLUSION
Securing computing resources against malicious 

attack is not simply a research topic at APL. Instead, it is 
a goal that we wish to achieve throughout the national 

really different manifestations of the same questionable 
programming construct in the control path.

In addition to the static analysis tools, the SARA Lab 
has two tools that implement FM analysis approaches. 
The first is a model checker call SPIN. The second is 
the Infer tool developed by Monoidics Inc. that applies 
deductive verification techniques to detect memory vio-
lations in C/C++ programs. Unlike most deductive veri-
fiers, the Infer tool is fully automated but only considers, 
or in FM terminology “reasons about,” memory viola-
tions; it does not consider other hypotheses that the 
analyst may wish to explore.

The complete set of static analysis tools available in 
the SARA Lab at the time of this publication is given 
in Table  4. Within budgetary constraints (some com-
mercial tools are quite expensive), the SARA 
researchers attempted to get the best cover-
age of techniques within the tool set.

Completed Analyses
To date, both the Asymmetric Operations 

Department and the Space Department have 
submitted products for analysis. Over the 
time of the SARA Lab’s operation, the lab’s 
researchers have analyzed thirteen software 
products and the Trusted Computing Group’s 
Trusted Platform Module 2.0 executable 
specification. This analysis has uncovered 
a grand total of 12,008 defects and resulted 
in updates to five of the analyzed products. 
All of the developers who have had their 
products analyzed in the SARA Lab had a 
very positive reaction to the process. The 
individual software products that have been 
analyzed are given in Table 5, along with the 
results of the analysis.

Table 4.  The SARA Lab complement of static analysis tools at 
the time of publication

Tool (source) Capability

Cppcheck 
(open source)

Static analysis based on syntactic pattern 
matching for C and C++ programs

FindBugs  
(open source)

Static analysis based on pattern matching 
for Java programs

CQual (open 
source)

Type system for C programs, enhanced with 
annotations to provide flow guarantees

Klocwork 
Insight 
(commercial)

Static analysis based on both pattern 
matching and data flow analysis for C, 
C++, and Java programs

Monoidics Infer 
(commercial)

Safety analysis based on automated deduc-
tive reasoning for C and C++ programs

SPIN  
(open source)

Model checker

Table 5.  Results for software products analyzed in the SARA Lab

Software Product Language
No. of 
Defects

No. of Defect 
Fixes Due to 

Analysis
Linux Kernel Integrity Monitor C 996 896
Userspace Measurement C 910 723
Libspd-userspace C 894 888
TPM 2.0 Executable Specification C 67 30
Network Control Software Java 536 0
Ruby Mirror C++ 34 0
Alien Autopsy Java 122 0
LAMP Java 6,724 2,100
gmaplib C++ 597 0
TDSS C 42 0
Mission-based analysis Java 62 0
Pointillist Java 1,024 0



J. A.  PENDERGRASS,  S. C.  LEE,  AND  C. D.  MCDONELL

JOHNS HOPKINS APL TECHNICAL DIGEST, VOLUME 32, NUMBER 2 (2013)508

  2Pierce, B. C., Types and Programming Languages, MIT Press, Cam-
bridge, MA (2002).

  3Novak, G. S., “Conversion of Units of Measurement,” IEEE Trans. 
Softw. Eng. 21(8), 651–661 (1995).

  4Shankar, U., Talwar, K., Foster, J. S., and Wagner, D., “Detecting 
Format String Vulnerabilities with Type Qualifiers,” in Proc. 10th 
Conf. on USENIX Security Symp., Berkeley, CA, Vol. 10, p. 16 (2001).

  5Pratikakis, P., Foster, J. S., and Hicks, M., “Locksmith: Context-Sen-
sitive Correlation Analysis for Race Detection,” in Proc. 2006 ACM 
SIGPLAN Conf. on Programming Language Design and Implementa-
tion, New York, pp. 320–331 (2006).

  6The Coq Development Team, The Coq Reference Manual version 8.4, 
http://coq.inria.fr/distrib/current/refman/.

  7Kildall, G., “A Unified Approach to Global Program Optimization,” 
in Proc. 1st Annual ACM SIGACT-SIGPLAN Symp. on Principles of 
Programming Languages, New York, pp. 194–206 (1973).

  8Cousot, P., and Cousot, R., “Abstract Interpretation: A Unified 
Lattice Model for Static Analysis of Programs by Construction or 
Approximation of Fixpoints,” in Conf. Record of the Fourth ACM 
Symp. on Principles of Programming Languages, pp. 238–252 (1977).

security community. We can begin that process “at 
home,” by bringing APL software products into an envi-
ronment where the best, state-of-the-art tools for ferret-
ing out potential errors—and the vulnerabilities they 
may create—are used. The SARA Lab is providing that 
environment. Although the SARA Lab has not been in 
existence for very long, it has already made a difference 
in APL software products. When the full vision for the 
SARA Lab is realized, it should be a unique resource 
for APL and a model for others in the national security 
research and development community.
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