
JOHNS HOPKINS APL TECHNICAL DIGEST, VOLUME 32, NUMBER 2 (2013) 499

INTRODUCTION
Formal verification offers great promise for establish-

ing confidence that software implements its intended
functionality. Although effective, Formal Methods
(FM) techniques generally scale poorly, are difficult for
nonexperts to learn, and impose a high up-front cost on
development efforts. To expand their use, FM require
additional research and development to improve their
usability. Other techniques in source-code verification
that trade off expressiveness or soundness for developer

ease of use also offer great promise for enhancing the
security posture of software and providing a low-cost
path toward adoption of more rigorous verification
techniques. This article describes the Software Analy-
sis Research and Applications Laboratory (SARA Lab),
an effort to further the application of software analysis
techniques to APL-developed technologies and to lever-
age APL’s software development capabilities to advance
the state of the art in software analysis.

s software systems become ever more vital to all aspects
of daily life, the risks posed by defects in critical soft-
ware become increasingly dire. Traditional software

engineering techniques focus heavily on manual analysis and testing to discover and
repair defects. Although this approach is valuable, modern tools for the mechanized or
automated detection of defects have proven themselves capable of alleviating much of
the tedium associated with manual processes while providing greater assurance in their
coverage. In this article, we describe the strengths and weaknesses of the most common
approaches to the automated detection of software defects: formal methods and source
code verification. We then describe our experience applying both free and commercial
tools based on these techniques in the Software Analysis Research and Applications
Laboratory (SARA Lab), a new effort at APL to enhance the state of the art in software
analysis while applying best-of-breed tools for defect detection to APL software projects.
APL software developers can avail themselves of this research by by e-mailing +SARALab.

Theory and Practice of Mechanized Software
Analysis

J. Aaron Pendergrass, Susan C. Lee, and C. Durward McDonell

J. A.  PENDERGRASS,  S. C.  LEE,  AND  C. D.  MCDONELL

JOHNS HOPKINS APL TECHNICAL DIGEST, VOLUME 32, NUMBER 2 (2013)500

This makes static analysis an important part of enforc-
ing good coding practices, but it also means that static
analysis tools are generally unable to provide the same
insight on specific correctness requirements of a proj-
ect that FM might provide. For example, FM techniques
can be used to prove that a routine intended to sort a
list actually returns its input in sorted order. Because
static analysis tools have no notion of what algorithm a
routine is supposed to implement, they focus on identi-
fying common classes of defects such as NULL pointer
dereferences, memory leaks, and buffer overflows that,
if present, are always undesirable. (A NULL pointer is
a reference to an undefined cell of computer memory,
typically represented by the number 0. A dereference of
a NULL pointer produces undefined program behavior.
A memory leak is a behavior of a program that allo-
cates memory to hold some temporary data but fails to
properly deallocate this memory when it is no longer in
use. A buffer overflow occurs when a program attempts
to write data to a region of memory that is not large
enough to hold the data being written.) To cope with
large code bases and the often-difficult-to-understand
nature of complex software, static analysis tools usually
make additional compromises to ensure speedy analysis.
No complex software analysis can provide a complete
analysis—one that will label all valid programs as good.
To limit false-alarm rates, most static analysis tools will
also sacrifice soundness, causing them to report some
invalid programs as good. Despite these limitations,
static analysis tools are capable of consistently detecting
a wide range of suspicious or invalid programs.

There are several common techniques implemented
by most static analysis tools. Each technique offers a
different trade-off of among results, precision, false-
positive rates, and computational requirements. Most
tools include a combination of techniques to provide a
reasonable balance between each one’s strengths. The
major classes of static analysis are as follows:

•	 Syntactic pattern matching

•	 Type systems

•	 Data-flow analysis

•	 Abstract interpretation

Syntactic Pattern Matching
Syntactic pattern matching is the fastest and easiest

technique for static analysis, but it provides little confi-
dence in program correctness and can result in a high
number of false alarms. A checker based on syntactic
pattern matching works by defining a set of program
constructs that are potentially dangerous or invalid and
then searching the input program’s abstract syntax tree
for instances of any of these constructs. A common
example for C programs is a pattern to prevent the use

FORMAL METHODS
FM fall into one of two categories: model checking or

deductive verification. These categories differ in terms
of the range of different systems that a formal method
can describe as well as the reasoning strategy.

To be analyzed by a model checker, a system must
be amenable to modeling in a fairly limited way, often
as some sort of state machine. The sound reasoning
strategy for model checkers is a brute-force exploration
of the state space of the system model, proving that it
will never enter some user-defined undesirable state.
Moreover, a model checker can prove that the system
can enter some user-defined desirable state; this is called
a liveness property. Model checkers can be automated,
but they are limited by the size of the system (i.e., by
the number of states to be explored within the time and
computing power available to the analyst).

Deductive verification proves properties about a pro-
gram by first describing the valid input states of the pro-
gram as a logical predicate and then applying inference
rules corresponding to each command in the program
to transform this precondition into a similar predicate
describing the program’s final state. This process is
similar to traditional mathematical proofs, such as the
two-column proofs familiar to many people from high
school geometry. Most systems for applying deductive
verification to software require a great deal of manual
effort to select which inference rules to apply at each
step to guide the proof toward the desired goal. “Proof
assistants” (i.e., tools that can perform part of the work
for the analyst) exist for some reasoning systems; how-
ever, proofs cannot be fully automated in all cases and
require human intervention and guidance to verify that
the property we desire is true (or not).

STATIC ANALYSIS TECHNIQUES
Numerous commercial, open-source, and research

tools exist for automatically finding defects in source
code. Probably the best known of these is lint, a tool
developed in tandem with the original C compiler
intended to flag suspicious constructs.1 The choice to
separate this functionality from the compiler, largely
motivated by efficiency concerns for the compiler, was
probably one of the watershed moments that led to the
widespread lack of adoption of such automated program
analysis tools in the field. Now, as compiler efficiency
concerns have taken a backseat to program correctness
and security, static checkers have become increasingly
popular. The SARA Lab aims to increase the appeal of
such static checkers by improving the quality and depths
of their analyses.

Unlike more heavyweight FM proof techniques,
static analysis tools are designed to be automated, fast,
and usable by a broad population of programmers.

THEORY AND PRACTICE OF MECHANIZED SOFTWARE ANALYSIS

JOHNS HOPKINS APL TECHNICAL DIGEST, VOLUME 32, NUMBER 2 (2013) 501

example, it is illegal to attempt to treat a float as
the address of a memory cell by applying the unary “*”
(dereference) operator.

Type systems have application far beyond these
simple examples. The same algorithms that are used
to determine that attempts to dereference a float are
illegal can be used to prevent data labeled as confiden-
tial from being written to an output channel labeled as
public, as in Example 3. In addition to their application
to information-flow properties such as this, type systems

of an assignment expression, <lhs> = <expr>, as
the condition of an if-then-else block. This pattern rep-
resents a common error in C programs, illustrated by
Example 1, in which a programmer intends to use the
comparison operator “==’’ to determine whether the two
sides of the expression are equal, rather than using the
assignment operator “=” to assign the value of the right-
hand side to the variable or memory location given by
the left-hand side. However, this pattern does represent
perfectly valid C code and may be used intentionally by
a programmer, as shown in
Example 2, to assign a vari-
able and branch based on
whether the new value is 0.

One of the most
common uses for syntac-
tic pattern matching is
to automatically enforce
coding style guidelines
across an entire code base
to improve the consistency
and readability of code.
Some syntactic pattern
matching systems are able
to automatically transform
some invalid constructs
to equivalent acceptable
forms based on rewrite
rules that substitute one
pattern for another.

Type Systems
Type systems are a core

part of programming lan-
guages and are familiar to
most, if not all, program-
mers.2 However, the use
of type systems to enforce
program correctness prop-
erties may not be immedi-
ately apparent to many. A
type system assigns a label
to each variable in a pro-
gram and defines rules for
how these labels can be
combined and how they are propagated by the primi-
tives of the programming language. The types int and
float from the C language are common examples of
type labels representing fixed-size integers (e.g., 32-bit
integers) and floating point numbers, respectively. The
C type system defines the result of built-in operators with
respect to these labels; for example, adding an int to a
float results in a new float value. Other rules in the
type system forbid certain operators from being applied
to variables with types that would not make sense; for

Example 1.  Mistaken use of <lhs> = <expr> construct.

Example 2.  Intentional use of <lhs> = <expr> in an if–else construct.

Example 3.  With additional annotations, a type system can catch security-related information-flow
errors such as this.

J. A.  PENDERGRASS,  S. C.  LEE,  AND  C. D.  MCDONELL

JOHNS HOPKINS APL TECHNICAL DIGEST, VOLUME 32, NUMBER 2 (2013)502

life of the variable. In Example 4, the variable “buf” is
first assigned confidential data but is then updated with
public data before being written to the public output
channel. Although this example does not contain an
actual information-flow violation, a flow-insensitive
type system would label the variable “buf” as holding
confidential data and thus would reject the program.

Data Flow Analysis
Data flow analysis overcomes the challenges of type

systems related to flow insensitivity by taking into
account how the data referenced by a variable may
change throughout a program.7 At each source-code
location, data flow analysis records a set of facts about
all variables currently in scope. These facts describe
some property of the variables in the program at each
source-code location; the exact kinds of facts recorded
are unique to the specific analysis being performed.
One common example used is a “reaching definitions”
analysis in which the fact set at each line of code indi-
cates the location of the most recent assignment of
each program variable. Other data flow-based analyses
often used by optimizing compilers are summarized in
Table 1. In addition to the set of facts to be tracked, the
analysis defines a “kills” set and a “gens” set for each
construct of the programming language. The “kills” set
describes the set of facts that are invalidated by execu-
tion of the construct, and the “gens” set describes the
set of facts that are generated by the construct. To ana-

lyze a program, the analysis tool begins
with an initial set of facts and updates
it according to the “kills” set and “gens”
set for each statement of the program
in sequence. Depending on the analysis
being performed, the program statements
may be processed either forward or back-
ward, and the initial fact set may assume
that nothing is true for all variables or
that all variables share some property.

All of these data flow analyses in
Table 1 are used by optimizing compilers
to eliminate redundant computation, reor-
der statements, or temporarily reuse vari-
ables. However, these same analyses can
be used to verify program correctness (e.g.,
by identifying that a pointer being deref-
erenced was last assigned a potentially
NULL value). A similar analysis can be
used to solve the information-flow prob-
lem of Example 4 by tracking the informa-
tion-flow label of the reaching definition
of “buf.” At the time “buf” is output to
the public channel, its reaching definition
is associated with public data, so the pro-
gram will pass the analysis.

have been applied to check for a wide range of program
errors, including units of measurement being properly
converted,3 format string vulnerabilities,4 and race con-
ditions in concurrent software.5 Advanced type systems
such as the dependent types featured in the Coq proof
assistant6 can even be used to prove arbitrary program
correctness properties.

One of the major technologies enabling the use of
type systems as an automated static analysis tool is type
inference: the ability to algorithmically determine the
correct types to give to a program’s variables. Type infer-
ence frees the programmer from having to explicitly
annotate all of the variables in a program with addi-
tional, often complicated, type labels. Instead, the type
inference algorithm uses the operations performed on
each variable to constrain the set of type labels that
make sense. If the constraints are satisfiable, then each
program variable can be assigned a type and the pro-
gram passes analysis; if the constraints are unsatisfiable,
then some variables may not have a corresponding type
and the program fails the analysis. This allows the pro-
grammer to specify only a small number of type labels,
such as the sensitivity level of input and output chan-
nels, and the analysis can then determine whether the
program meets a specified property.

Like all static analysis techniques, type systems may
reject a program that is actually free of errors. The most
common reason for this is that type systems are tradi-
tionally “flow-insensitive,” meaning that once a vari-
able is given a type label, that type label persists for the

Example 4.  Correct information flow that can confuse many type systems.

THEORY AND PRACTICE OF MECHANIZED SOFTWARE ANALYSIS

JOHNS HOPKINS APL TECHNICAL DIGEST, VOLUME 32, NUMBER 2 (2013) 503

Abstract Interpretation
Abstract interpretation is a generic term for a family

of static analysis techniques that includes both type sys-
tems and data flow analysis, among others.8 In abstract
interpretation, a program’s variables are assigned values
from an abstract domain, and the program is executed
on the basis of modified semantics for how each lan-
guage construct applies in this new domain. For exam-
ple, whereas an int variable may typically take on any
concrete integer value in the range [-2^31, 2^31), in
abstract interpretation the variable may be given a value
of -, 0, +, or ? indicating only the sign of the vari-
able (where “?” indicates an unknown or indeterminate
value). Operators such as < are given meaning for this
new domain, as shown in Table 2.

Moving away from concrete values and operators
allows automated analysis tools to evaluate programs’
meanings in terms of the higher-level abstract domains.
This ensures that the analysis will actually terminate on
all input programs.

Abstract interpretation is a powerful tool in program
analysis because it can be used to verify many impor-
tant program correctness properties, including memory,
type, and information-flow safety. The primary chal-

Table 1.  Four common examples of data flow analysis used in optimizing compilers

Analysis Facts Tracked Direction Common Application Example

Reaching
definitions

Location of most recent
assignment to each variable

Forward Reordering of code to improve (1) x = y + 1;
(2) x = x + 1;
(3) w = z + 1;
Statements (3) and (2) may be reor-
dered because the reaching definition
of z is before statement (1). This may
improve pipelining behavior.

Live vari-
ables

Variables whose values will be
used later in the code

Backward Elimination of unused assign-
ments, reuse of memory to
represent different variables

(1) x = 3;
(2) exit;
Statement (1) may be eliminated
because the value of x is never used.

Available
expressions

Arithmetic expressions that
have been recently computed

Forward Elimination of redundant
arithmetic expressions

(1) x = 12*7;
(2) y = 12*7;
The computation of 12*7 in statement
(2) is redundant and can be eliminated.

Very busy
expressions

Arithmetic expressions that
will be computed later in the
code on any paths through
the program

Backward Hoisting of arithmetic expres-
sions computed on multiple
paths through the program

(1) if(x < 0){
(2) y = (z*3)+1;
(3) }else{
(4) y = (z*3)+2;
(5) }
The expression (z*3) is computed at
lines (2) and (4). It may make sense to
move the computation before line (1).

Table 2.  Abstract interpretation rules for the < operator over
the domain {–, 0, +, ?}

Input 1 Operator Input 2 Is Result

– < –  ?

– < 0  True

– < +  True

– < ?  ?

0 < –  False

0 < 0  False

0 < +  True

0 < ?  ?

+ < –  False

+ < 0  False

+ < +  ?

+ < ?  ?

? < –  ?

? < 0  ?

? < +  ?

? < ?  ?

J. A.  PENDERGRASS,  S. C.  LEE,  AND  C. D.  MCDONELL

JOHNS HOPKINS APL TECHNICAL DIGEST, VOLUME 32, NUMBER 2 (2013)504

five popular open-source projects: dnsmasq, util-linux,
libxml2, openssl, and glib. These projects vary widely
in scope and size but are all fairly mature. Although
dnsmasq’s 20 reported defects may be easily triaged and
addressed, the 2,981 defects reported for util-linux are
quite daunting.

Like most static analysis tools, Klocwork Insight
assigns each defect a severity based on the type of error
reported; for example, buffer overflows are labeled as
“Critical” because of the likely security implications,
whereas memory leaks are labeled as “Errors” because,
although undesirable, they are unlikely to result in secu-
rity issues. However, the true criticality of a buffer over-
flow depends on context. For example, a buffer overflow
in the configuration parsing code of a web server is
probably less severe than a similar error in its URL pars-
ing. Because the configuration file being processed is
assumed to be owned by the system administrator run-
ning the server, an error in this parsing code would not
lead to a privilege execution vulnerability (although it is
still a problem and should certainly be corrected). Con-
versely, the URLs parsed by a web server are provided
by an unknown and potentially malicious third party.
Thus, a flaw in this code could result in a remote code
execution vulnerability that must be addressed at once.
Without an understanding of the software’s architecture
and usage model, static analysis tools are unable to make
these kinds of determinations.

The SARA Lab hopes to address these shortcomings
of static analysis tools by developing enrichment and
visualization tools to help quickly determine the impact
of reported defects on an overall software architecture. A
first attempt at this is the use of the Dagger visualization

lenge to applying abstract interpretation is the design
of the abstract domain of reasoning. If the domain is
too abstract, then precision is lost, resulting in valid pro-
grams being rejected. If the domain is too concrete, then
analysis may become computationally infeasible.

From Alerts to Alarms
Although automated analysis tools provide a powerful

approach to finding potential defects in a large software
project, they may easily overwhelm the user with alert
messages of questionable importance. For a large code
base, a tool may report hundreds or even thousands of
alerts, many of which may be spurious or of little impact
to the mission of the software. Further, many of the
alerts reported may be symptoms of the same underlying
error. Table 3 shows the lines of code, number of defects,
and lines of code per defect reported by a commercial
static analysis tool, Klocwork Insight, that uses a com-
bination of syntax matching and data flow analysis on

Figure 1.  Visualization of the util-linux software architecture and the impact of defects reported by Klocwork Insight.

Table 3.  The lines of code, number of defects reported, and
average number of lines per defect for five popular open-source
projects as reported by the Klocwork Insight static analysis tool
with default settings

Project
Lines of

Code
Defects

Reported
Lines of Code

per Defect

dnsmasq2.51 15,838 20 791.9
util-linux 70,069 2,981 23.5
libxml2 178,406 291 613.1
openssl 189,032 488 387.4
glib 333,884 678 492.5

THEORY AND PRACTICE OF MECHANIZED SOFTWARE ANALYSIS

JOHNS HOPKINS APL TECHNICAL DIGEST, VOLUME 32, NUMBER 2 (2013) 505

The SARA Lab Vision
Figure 2 depicts a vision for the SARA Lab as a

mature facility at APL. It shows three environments
that will coexist and mutually support one another. The
research environment at the far left will accommodate
the development of novel tools to improve our ability to
find defects in complex software and enhance the user
experience. Researchers will be inspired by the gaps they
experience while working with existing tools; they will
draw on an extensive library of real-life, complex APL
software products that have been analyzed in the SARA
Lab at some previous time. These will provide both a
realistic challenge to any new tool and at least partial
ground truth because the analysis results for all of the
samples in the inventory will available for comparison.

Once a research tool proves its worth on the basis of
test data and has achieved some level of development
stability, it will be moved to the development environ-
ment. The development environment is the heart of the
SARA Lab. In this environment, current software proj-
ects at APL will be subject to analysis by one or more
commercial, open-source, or mature research tools. In
the development environment, the software develop-
ers work together with SARA Lab researchers to learn
how to apply analysis tools and interpret the results. We
expect that the SARA researchers will often learn as
much as the developers about the tool use and capa-
bilities. This experience will feed the software analysis
research that is done in the SARA Lab.

Although many commercial and open-source tools
work only on code, FM can verify executable specifica-
tions or designs of algorithms cast in a logic language.
An APL software product may appear in the SARA Lab
multiple times at different points in its development—
requirements gathering, design, or implementation—to
undergo the appropriate analysis for that stage of develop-
ment. The lessons learned from the analysis go back into
the project to improve the product. The product itself
becomes part of the SARA Lab inventory of test samples.

software, developed for the APL LiveLab to visualize the
mission impact of cyber events on a large network, to
visualize the dependencies of a piece of software, and
to show how defects propagate through the architecture.
Figure 1 is a screenshot of the Dagger tool being used to
visualize the architecture of the util-linux project and
the impact of the defects reported by Klocwork Insight.

The architecture model is automatically generated
from an instrumented build of the project and represents
the architecture in four tiers: functions, source files,
object files, and executables. Any subroutines called by
a function are modeled as dependencies of the caller.
Source files depend on the function they define, object
files depend on the sources that are compiled to create
them, and executables depend on the object files linked
into them. This model was chosen to provide a coarse,
but fully automated, approximation of the conceptual
hierarchy of dependencies in the target program. Auto-
matic and user-guided extraction of richer and more
semantically meaningful software architecture informa-
tion is an ongoing area of research in the SARA Lab.
The user can refine this architecture by taking advan-
tage of Dagger’s built-in functionality for editing the
visualized dependency model.

Understanding how best to make use of static analy-
sis results to improve the efficiency of developers in cre-
ating correct software is a key part of the SARA Lab’s
mission to improve the usefulness of static analysis.
Analytics and visualizations that incorporate developer
understanding can help reflect the security and reliabil-
ity impact of defects. The context and quick feedback
that these tools provide give developers a better chance
of managing the sometimes overwhelming sets of alerts
for their projects.

THE SARA LAB
In this day and age, when adversaries are searching

for any error they might use to their advantage, APL
needs to employ every tool at
its disposal to prevent deliv-
ery of vulnerable software to
its sponsors. The SARA Lab
was created in summer 2012
to bring existing tools such
as those described in the pre-
ceding section to APL and to
help APL software developers
apply them to our software
products. As a by-product of
this endeavor, we expect that
APL will begin to add to the
repertoire of technologies
and techniques that will ulti-
mately lead to more robust,
adversary-proof products.

APL
software
product

Production
environment

Research
environment

Development
environment

Mature
analysis tools

Analysis tool
inventory

APL software
product

inventory

Gaps

Figure 2.  Mature SARA Lab vision.

J. A.  PENDERGRASS,  S. C.  LEE,  AND  C. D.  MCDONELL

JOHNS HOPKINS APL TECHNICAL DIGEST, VOLUME 32, NUMBER 2 (2013)506

to a defect. Figure 4 is a small part of a graph generated
from the output of the same four tools shown in Fig. 3.
The parallelogram-shaped nodes represent a SLOC
where a defect was detected. The triangular nodes are
SLOCs that are not themselves defects but that are on
the control path to the defect. The directionality of the
edges represents the direction of the control flow. The
color of the nodes reflects which tool identified that
particular line of code. Although this subgraph shows
six defects, the relatively small number of control paths
leading to them suggests that the “unique” defects are

Finally, when a tool in the development environment
proves to be so useful and user-friendly that the support
of the SARA Lab researchers is no longer needed, the
tool is moved to the production environment. From the
production environment, the tool and its documentation
can be downloaded for use throughout APL, rather than
just in the SARA Lab. While SARA researchers will still
support the product, it is envisioned that any tool in the
production environment will have a sufficiently large set
of practitioners outside of the SARA Lab who can mentor
less-experienced users on their team. New tools devel-
oped at APL could be open-sourced, to engage the soft-
ware analysis community in their further improvement.

The First Year of Operation
During its first year of operation, the SARA Lab

team focused on building the development environ-
ment. Today, it has a significant inventory of tools and
an impressive set of early successes.

Tools in the SARA Lab
To kick off operations in the SARA Lab, the SARA

Lab researchers explored the available open-source and
commercial software analysis tools. A number of these
tools were brought into the SARA Lab for experimenta-
tion. Figure 3 depicts the result of comparing the output
(number of defects found) from four different static analy-
sis tools analyzing the same piece of software. Notably,
the overlap in defects found is much smaller than the
number of unique defects found by each tool. Two of
the tools in this study (the products from Coverity and
Parasoft) both use combinations of pattern matching and
data flow analysis but had no overlap in the defects found.

To investigate this further, the SARA researchers
used a graphical analysis tool (Pointillist) that displays
the relationships among various nodes; in this applica-
tion, the nodes are source lines of code (SLOCs) leading

Figure 3.  Comparison of bugs found by various static analysis
tools.

Coverity

Coverity and Parasoft

Coverity and Klocwork

Klocwork

Figure 4.  A Pointillist view of defects generated by four analysis
tools.

THEORY AND PRACTICE OF MECHANIZED SOFTWARE ANALYSIS

JOHNS HOPKINS APL TECHNICAL DIGEST, VOLUME 32, NUMBER 2 (2013) 507

Of note are the first four products in Table 5. These
four products are intended to perform security func-
tions; that is, that is, they are being trusted to ensure
the correct operation of a platform or network that may
come under attack. To achieve trustworthy computing,
the security applications, at a minimum, must be dem-
onstrated to be error free (where an error may introduce
a vulnerability).

Using the SARA Lab
Because one of the goals of the SARA Lab is to

improve the software products delivered by APL to
its sponsors, analysis in the SARA Lab is open to all
APL staff. A self-serve web portal where developers can
submit software products for analysis is under construc-
tion. Today, the best approach to getting a product into
the SARA Lab is to make contact with the researchers
by sending an e-mail to +Saralab. SARA Lab research-
ers will then schedule a meeting to discuss the project
needs and suggest an approach for meeting those needs.

Interested software developers at APL are also invited
to join the SARA Lab Cooler group “Software Analysis
Research and Applications.” In this group, participants
share information about topics pertaining to static analy-
sis, including tool surveys, screenshots of tools to dem-
onstrate their use, descriptions of research advances in
static analysis, and postmortems of software vulnerabili-
ties that could have been detected by using static analysis.

CONCLUSION
Securing computing resources against malicious

attack is not simply a research topic at APL. Instead, it is
a goal that we wish to achieve throughout the national

really different manifestations of the same questionable
programming construct in the control path.

In addition to the static analysis tools, the SARA Lab
has two tools that implement FM analysis approaches.
The first is a model checker call SPIN. The second is
the Infer tool developed by Monoidics Inc. that applies
deductive verification techniques to detect memory vio-
lations in C/C++ programs. Unlike most deductive veri-
fiers, the Infer tool is fully automated but only considers,
or in FM terminology “reasons about,” memory viola-
tions; it does not consider other hypotheses that the
analyst may wish to explore.

The complete set of static analysis tools available in
the SARA Lab at the time of this publication is given
in Table 4. Within budgetary constraints (some com-
mercial tools are quite expensive), the SARA
researchers attempted to get the best cover-
age of techniques within the tool set.

Completed Analyses
To date, both the Asymmetric Operations

Department and the Space Department have
submitted products for analysis. Over the
time of the SARA Lab’s operation, the lab’s
researchers have analyzed thirteen software
products and the Trusted Computing Group’s
Trusted Platform Module 2.0 executable
specification. This analysis has uncovered
a grand total of 12,008 defects and resulted
in updates to five of the analyzed products.
All of the developers who have had their
products analyzed in the SARA Lab had a
very positive reaction to the process. The
individual software products that have been
analyzed are given in Table 5, along with the
results of the analysis.

Table 4.  The SARA Lab complement of static analysis tools at
the time of publication

Tool (source) Capability

Cppcheck
(open source)

Static analysis based on syntactic pattern
matching for C and C++ programs

FindBugs
(open source)

Static analysis based on pattern matching
for Java programs

CQual (open
source)

Type system for C programs, enhanced with
annotations to provide flow guarantees

Klocwork
Insight
(commercial)

Static analysis based on both pattern
matching and data flow analysis for C,
C++, and Java programs

Monoidics Infer
(commercial)

Safety analysis based on automated deduc-
tive reasoning for C and C++ programs

SPIN
(open source)

Model checker

Table 5.  Results for software products analyzed in the SARA Lab

Software Product Language
No. of
Defects

No. of Defect
Fixes Due to

Analysis
Linux Kernel Integrity Monitor C 996 896
Userspace Measurement C 910 723
Libspd-userspace C 894 888
TPM 2.0 Executable Specification C 67 30
Network Control Software Java 536 0
Ruby Mirror C++ 34 0
Alien Autopsy Java 122 0
LAMP Java 6,724 2,100
gmaplib C++ 597 0
TDSS C 42 0
Mission-based analysis Java 62 0
Pointillist Java 1,024 0

J. A.  PENDERGRASS,  S. C.  LEE,  AND  C. D.  MCDONELL

JOHNS HOPKINS APL TECHNICAL DIGEST, VOLUME 32, NUMBER 2 (2013)508

  2Pierce, B. C., Types and Programming Languages, MIT Press, Cam-
bridge, MA (2002).

  3Novak, G. S., “Conversion of Units of Measurement,” IEEE Trans.
Softw. Eng. 21(8), 651–661 (1995).

  4Shankar, U., Talwar, K., Foster, J. S., and Wagner, D., “Detecting
Format String Vulnerabilities with Type Qualifiers,” in Proc. 10th
Conf. on USENIX Security Symp., Berkeley, CA, Vol. 10, p. 16 (2001).

  5Pratikakis, P., Foster, J. S., and Hicks, M., “Locksmith: Context-Sen-
sitive Correlation Analysis for Race Detection,” in Proc. 2006 ACM
SIGPLAN Conf. on Programming Language Design and Implementa-
tion, New York, pp. 320–331 (2006).

  6The Coq Development Team, The Coq Reference Manual version 8.4,
http://coq.inria.fr/distrib/current/refman/.

  7Kildall, G., “A Unified Approach to Global Program Optimization,”
in Proc. 1st Annual ACM SIGACT-SIGPLAN Symp. on Principles of
Programming Languages, New York, pp. 194–206 (1973).

  8Cousot, P., and Cousot, R., “Abstract Interpretation: A Unified
Lattice Model for Static Analysis of Programs by Construction or
Approximation of Fixpoints,” in Conf. Record of the Fourth ACM
Symp. on Principles of Programming Languages, pp. 238–252 (1977).

security community. We can begin that process “at
home,” by bringing APL software products into an envi-
ronment where the best, state-of-the-art tools for ferret-
ing out potential errors—and the vulnerabilities they
may create—are used. The SARA Lab is providing that
environment. Although the SARA Lab has not been in
existence for very long, it has already made a difference
in APL software products. When the full vision for the
SARA Lab is realized, it should be a unique resource
for APL and a model for others in the national security
research and development community.

REFERENCES
  1Johnson, S. C., “Lint, a C Program Checker,” in Bell Laboratories

Computer Science Technical Report 65, pp. 78–1273 (1977).

J. Aaron Pendergrass is the Principal Investigator (PI) for the SARA Lab and a computer scientist in the APL’s Asym-
metric Operations Department (AOD). He began development of the SARA Lab in order to centralize APL efforts to
improve the software engineering process and the assurance of critical software correctness. As the Chief Scientist of
AOD, Susan C. Lee develops system concepts, technology roadmaps, and sponsor engagement strategies across the cyber
operations, special operations, national security, and homeland protection domains. Her domain knowledge includes
intelligence, information operations, radar propagation, spacecraft development and operation, and medical devices. Her
vision for the future of software assurance and understanding of the real-world challenges have shaped the short-term
and long-term strategies for development of the SARA Lab. C. Durward McDonell is a computer scientist in AOD with
a background in mathematics. As a direct technical contributor to the SARA Lab, Dr. McDonell’s primary interest is in
formal methods and the mathematics of software. The SARA Lab is intended as a resource to advance the state of the art
and improve software assurance both within APL and beyond. For further information on the work reported here, contact
J. Aaron Pendergrass. His e-mail address is aaron.pendergrass@jhuapl.edu.

 The Authors

The Johns Hopkins APL Technical Digest can be accessed electronically at www.jhuapl.edu/techdigest.

http://coq.inria.fr/distrib/current/refman/
mailto:aaron.pendergrass@jhuapl.edu
www.jhuapl.edu/techdigest

	Theory and Practice of Mechanized Software Analysis
	J. Aaron Pendergrass, Susan C. Lee, and C. Durward McDonell
	INTRODUCTION
	FORMAL METHODS
	STATIC ANALYSIS TECHNIQUES
	Syntactic Pattern Matching
	Type Systems
	Data Flow Analysis
	Abstract Interpretation
	From Alerts to Alarms

	THE SARA LAB
	The SARA Lab Vision
	The First Year of Operation
	Tools in the SARA Lab
	Completed Analyses

	Using the SARA Lab

	CONCLUSION
	REFERENCES
	The Authors
	Figures and Tables
	Example 1. Mistaken use of <lhs> = <expr> construct.
	Example 2. Intentional use of <lhs> = <expr> in an if–else construct.
	Example 3. With additional annotations, a type system can catch security-related information-flow errors such as this.
	Example 4. Correct information flow that can confuse many type systems.
	Figure 1. Visualization of the util-linux software architecture and the impact of defects reported by Klocwork Insight.
	Figure 2. Mature SARA Lab vision.
	Figure 3. Comparison of bugs found by various static analysis tools.
	Figure 4. A Pointillist view of defects generated by four analysis tools.
	Table 1. Four common examples of data flow analysis used in optimizing compilers.
	Table 2. Abstract interpretation rules for the < operator over the domain {–, 0, +, ?}.
	Table 3. The lines of code, number of defects reported, and average number of lines per defect for five popular open-source projects.
	Table 4. The SARA Lab complement of static analysis tools.
	Table 5. Results for software products a

