
JOHNS HOPKINS APL TECHNICAL DIGEST, VOLUME 32, NUMBER 2 (2013)490

INTRODUCTION

Motivation
In many instances, programs are concerned only with

processing or manipulating data and displaying them
to a user, who becomes the agent that ends up taking
physical action. However, in some instances, we create
software to control other analog devices or machin-
ery directly. We call these hybrid systems because they
exhibit a mixture of discrete behavior from the software
and continuous behavior from the analog physics of the
device being controlled.

From an engineering perspective, creating zero-
defect control software for hybrid systems has unique
challenges. On one hand, for an engineering system
consisting only of analog devices, we can use continu-
ous mathematics to model it and prove that its design
satisfies our requirements. On the other hand, for soft-
ware that only processes data, we can begin to apply
the formal methods (i.e., program logics) that we have
developed to prove properties about software-only sys-

reating software for controlling robotic machinery has unique
challenges. This article describes a formal method called

differential-dynamic logic (dL) that can help produce zero-defect
algorithms for robotic systems. We take the reader through an example of applying
dL to a version of a control algorithm used in an experimental surgical robot. This
case study is a simplif ied variant of an existing control algorithm. It shows how this tool
can be useful and illustrates general principles that readers can use when applying
this technique to other systems. We describe how to model a control algorithm for the
robot and are able to prove that it safely enforces tool movement for a single boundary.
Our proof provides a guarantee of the control algorithm’s safe behavior for all possible
inputs and is far more comprehensive than what is possible by using testing alone.

Formal Methods for Robotic System
Control Software

Yanni Kouskoulas, André Platzer, and Peter Kazanzides

JOHNS HOPKINS APL TECHNICAL DIGEST, VOLUME 32, NUMBER 2 (2013) 491

tems. However, a hybrid system contains the interface
between these two domains and requires new logics.

Formal Methods
To guarantee that the control algorithm predictably

influences the machinery with which it interacts, we
need to develop hybrid logics that are tailored to include
both models of discrete programs as well as the continu-
ous equations that govern the analog components.

Engineers can write code to model a hybrid system
and then run these models with particular inputs to see
how the system behaves. However, at best, this approach
affords only the equivalent of evaluating individual test
cases, which cannot guarantee the exploration of impor-
tant corner cases, nor always eliminate unexpected
behavior.

In some sense, a hybrid system can be more challeng-
ing to model than a software-only system. A software-
only system exists as a logical entity that can be directly
translated, without loss of detail, into a representation
useful for modeling. A hybrid system description needs
to carefully incorporate the continuous behavior of
physical components into the system’s model.

There have been a series of developments recently,
allowing us to apply formal methods to model and rigor-
ously reason about hybrid systems, both in the context
of model-checking1 and deductive verification.2, 3 In this
article, we will describe a hybrid logic called differential-
dynamic logic (dL).4 This logic allows us to rigorously
prove, using sound inference rules, properties about the
behavior of a hybrid system for all possible inputs.

We will walk through an example of creating a model
so that we can apply dL to certify the safety of a control
algorithm for a surgical robot. In this article, our main
emphasis is on the process of building a model, which
is a central step to proving a hybrid system’s safety. We
approach building a model with a multistep process that
begins with a simplified model, to which we progressively
add detail. We express this model as a “hybrid program”
(HP), using the programming language available in dL.
As we add detail, we will highlight common idioms and
strategies for modeling using this approach.

SKULL-BASE SURGERY ROBOT
The target of this analysis is an experimental robot

developed by the Johns Hopkins University Center for
Integrated Surgical Systems and Technology Group.5
It was designed to support physicians by helping them
move and navigate precisely during surgical procedures
on the base of a patient’s skull.

The surgical robot was created by integrating three
subsystems: a StealthStation navigation system that
tracks the position and orientation of sets of optical mark-

ers on a rigid body; 3DSlicer, software used for visualiz-
ing and analyzing medical image data; and a Neuromate
robot, a Food and Drug Administration (FDA)-cleared
image-guided 6-degree-of-freedom robotic arm designed
for use in neurosurgery.

MODELING A SURGICAL ROBOT CONTROL
ALGORITHM

The skull-base surgery (SBS) robot is an example of
a cooperatively controlled system. Both the robot and
the physician simultaneously hold a surgical tool, and as
the surgeon puts force on the tool, the robot allows it to
move according to the equation

	 dt
dp

G f=
r ^ h,	 (1)

where f is the force exerted by the physician, and p is
the position of the tool in space. The overall equation
is a continuous differential equation that represents
the effect of a negative feedback control circuit with an
admittance control design. This sort of control circuit is
designed to convert forces and torques to velocity and
is described in Ref. 5. We assume that the admittance
control circuit is designed with a sufficiently quick and
accurate response so that its imperfections are negligible
compared to the response of the system as a whole. The
function G is the discrete part of the system; it repre-
sents the software that sets the parameters to control
the system.

The control algorithm we are evaluating is designed
to prevent the surgical tool from crossing a preopera-
tively defined planar boundary, so as to prevent the
tool from moving into an undesirable location. Most of
the time, the surgeon can move the tool freely around
the surgical site, without interference from the robot.
In this region, called the free zone, G is some constant
multiple of f . However, as the tool approaches the
boundary, it enters a “slow zone,” defined as all points
that are within a distance, D, of the boundary, where
the component of its velocity toward the boundary is
attenuated in proportion to its proximity to the bound-
ary. Eventually, as the tool reaches the boundary, the
component normal to the boundary goes to zero, and
it should not progress farther in that direction. This is
illustrated in Fig. 1.

If the velocity of the tool is pl, the distance from the
boundary is d, and the unit normal to the boundary is

,n1t the overall velocity plis given in Ref. 6 as

	 p p D
d p n n1– – 1 11

$= l ll t t` ^j h ,	 (2)

where  is the dot product of two vectors, and a prime
indicates a derivative with respect to time. This is a sub-
tractive control law, which we will use throughout this

Y.  KOUSKOULAS,  A.  PLATZER,  AND  P.  KAZANZIDES

JOHNS HOPKINS APL TECHNICAL DIGEST, VOLUME 32, NUMBER 2 (2013)492

article, even though more advanced controls turn out to
be necessary.7

To create a model of a cyber-physical system by using
dL, we write a HP in dL modeling language. The lan-
guage in which we write HPs to model cyber-physical
systems is not designed to be executed but to be formally
reasoned about; its syntactic constructs are simpler than
what we find in executable languages today and are
shown in Table 1.

The HP language used in dL contains arithmetic
operators, assignments, and sequential composition of
statements and assertions—operations that are found in
many imperative languages. State variables in the pro-
gram can have types that are discrete, finite sets, or R,
the reals.

To write a conditional statement in this language, we
use an assumption written as a question mark followed
by a logical predicate that describes the condition we
wish to hold, e.g., ?. Therefore, we might write ?(a > 5);
b := 3;, which describes a program that can only run when
a > 5 and then sets b to 3. What happens if a ≤ 5 in the
above program? This program fragment simply cannot
execute under these conditions. This is very different
from a conventional programming language where the
program halts when there is an assertion that is not met.
In the case of our HP, an assumption in the middle of the
program can noncausally prevent the program from ever

executing under those conditions. Because we are not
executing the program, but reasoning about it, this does
not require unwinding reality; it is simply the equiva-
lent of eliminating certain executions from analysis (e.g.,
because they cannot be found in the real system).

The HP modeling language used in dL also has state-
ments that represent the interaction of the program with
the physics of a device. To represent these interactions,
dL includes representations of nondeterminism and the
ability to describe the evolution of continuous time as a
statement in the model. Nondeterminism, for the pur-
poses of dL, is uncertainty that is not described with a
probability density function. Conclusions we draw about
the system need to be absolute. Thus, theorems we prove
must hold for all possible nondeterministic choices, not
on the average or a proportion of the time. There are
three constructs in the language that can represent non-
determinism: (i) assignment, (ii) choice, and (iii) loop-
ing. Assignment of a nondeterministic value to a state
variable is written a := *. This can assign any value to
a. The language also includes a nondeterministic choice
of two branches, or alternate behaviors. We write this
using the  operator. Thus, (a := 3  b := 6) represents
a program that can make either of two assignments.
Again, the distribution with which it conducts this pro-
cess is not meaningful because whatever we prove about
it must hold for all executions. A conventional “if” state-
ment can be constructed by combining assertions with
nondeterministic choice, e.g., (?(a > 5); b := 3) ?(a ≤ 5).
An indeterminate loop is described with an asterisk
appended to the program which is looping. The program
(i := i + 1)* can execute the increment instruction some
finite number of times before terminating. Again, we
can construct conventional control structures such as
terminating for and while loops using conditionals and
this looping construct, but this indeterminate execution
provides us with more expressive flexibility with which
to model our programs.

The most interesting statement in a dL HP is the
dynamics statement, which represents the continuous
physics of an analog device. Such a statement contains
a system of differential equations, and its presence indi-

cates continuous evolution of
state variables in a manner
that provides a solution to
these equations, as long as the
state satisfies the logical con-
straint, :

	 , , &x xn n1 1 f  = =l l .	 (3)

We can think of dynamics
statements as allowing time in
the real world to progress and
whatever physics governs our
system to operate. The rest of

V
irt

ua
l �

xt
ur

e
b

ou
nd

ar
y D

d

Figure 1.  Cooperatively controlled robot enforcing virtual fix-
tures to restrict a tool-tip to remain on one side of a boundary.

Table 1.  dL modeling language

= &





=
=

, ,x |f=

nondeterministic assignment
;

?

,

x
x

x x

assigns any value
sequence first runs , then

nondeterministic choice
nondeterministic loop
dynamics statement describing continous evolution

i i

i

i i1 1 2 2

|

|

,

   



 



=

*

*

assignment

assumption

l l

FORMAL METHODS FOR ROBOTIC SYSTEM CONTROL SOFTWARE

JOHNS HOPKINS APL TECHNICAL DIGEST, VOLUME 32, NUMBER 2 (2013) 493

the statements describe discrete computations and state
changes inside a computer and have no real time associ-
ated with them. It is as if when discrete statements are
encountered in sequence, the continuous dynamics of the
system are “frozen,” and when the system encounters a
dynamics statement, discrete computation ceases and the
continuous dynamics evolve.

Despite the apparent stop-and-go nature of the
dynamics in this model, it is effective at modeling a
system that is doing discrete computations as the con-
tinuous dynamics evolve. In the real world, discrete
computations and continuous dynamics operate concur-
rently, but the HP forces us to linearize them, putting
them into a sequential order. We conceptually associate
the period of time in which the physics evolved to be
concurrent with the discrete computation that preceded
it in the program. Within the HP, the discrete program
and the continuous physics can share state at the edges
of these linearized transitions, as shown in Fig. 2.

In the rest of this article, we will develop an algorithm
that enforces a virtual boundary that is arbitrarily ori-
ented and, when encountered by the user, qualitatively
feels hard. In other words, an encounter between the tool
and the boundary will abruptly stop the tool, preventing
it from crossing but allowing it to slide along the bound-
ary, giving it a slippery feel. This control algorithm dif-
fers qualitatively from the one described in Ref. 7, which
provides force feedback, making the walls feel like they
are soft, leading to a gradual stop, and where contact
with the boundary feels sticky. Our first model will be a
simplified version, to which we will add detail.

Simple Model
Consider the control algorithm implemented to con-

strain the movement of a tool, whose dynamics are

	 dt
dp

G f= ^ h,	 (4)

where G represents the effect of the software that we
write for the system, f is the force in the direction of the
axis, and p is the position of the tool.

For the initial model, we will constrain the tool in
one direction, the x axis, so it restricts movement by

providing a hard stop on only one side. In this simpli-
fied scenario, p is a positive value representing the tool’s
position on the x axis. Assume the stop is set to position
p = 0, and we wish to design an algorithm that ensures
that the sled comes to an abrupt halt, bouncing off of a
virtual boundary that feels rigid.

If we are sufficiently far from the track’s end at p = 0,
we would like to allow the system to move freely, trans-
lating force into velocity via a constant coefficient, g.
When we are close to the track’s end, we wish to create
a buffer that attenuates its motion in proportion to how
close it comes to the end. For simplicity, we can assume
that the force, f, the surgeon exerts on the tool is con-
stant over a short time period. We can write a HP that
describes the different states of the system by describing
each state with a dynamics statement:

	

;= *(

&
/ &

f
p g f f
p g f f p D
p g p D f f p D

0
0

0

ctrl |

,

/ ,

/

2

1 2

1 1

=
= =
= = =
= = = *

&l

l

l

^
^ ^ ^
^ ^ ^ ^

h
h hh

h h hhh

.	 (5)

The first line of this HP is a nondeterministic assign-
ment of some value to the state variable f. It represents
the surgeon’s arbitrary input. The HP is a loop, whose
body comprises a nondeterministic assignment followed
by a nondeterministic choice between three different
dynamics statements, each of which is given on its own
line. These dynamics statements describe the evolu-
tion of our system according to the differential equa-
tions given in each case, which can only occur when
the specified constraints f >= 0, (f  0)  (p  D), or
(f  0)  (p  D) are satisfied.

The outer loop (i.e., *) represents the permanent
operation of the system. For each time through the loop,
there is some constant force input represented with the
nondeterministic assignment, and this is followed by a
nondeterministic choice. Because the HP in Eq. 5 must
choose one of these, it chooses one where the con-
straints on the right side of the dynamics statement are
satisfied and solves the differential equation given. The
tool moves along at a speed proportional to how hard
it is pushed, with the constant of proportionality either
given by g or by p / D. The system can switch state at any
time, if the constraints allow it.

Proving Safety of the Simplified Model of a Control
Algorithm

To describe the desired behavior of our model, we
construct logical predicates describing the relationships
between different state variables, using the operators
given in Table 2. These predicates can contain opera-
tors from first-order logic (e.g.,    represents logical
“and”) and quantifiers (e.g., 6 x  represents the state-

Continuous physics
discrete computation

Continuous
and discrete

Concurrent
representation

Linearized
representation

Time

Figure 2.  Illustration of the HP strategy for representing the con-
current interaction between the evolution of continuous physics
and discrete computation.

Y.  KOUSKOULAS,  A.  PLATZER,  AND  P.  KAZANZIDES

JOHNS HOPKINS APL TECHNICAL DIGEST, VOLUME 32, NUMBER 2 (2013)494

ment that  holds for all values of x). We also can write
modal operators (e.g., [] means that after running the
HP , the predicate  always holds). The modal opera-
tors are very powerful because they allow a sort of quan-
tification over different executions of a given program,
and they are at the core of how we describe properties of
hybrid models of cyber-physical systems.

We write the safety property we desire to prove for
our algorithm as

	 (p >= 0) → [ctrl](p >= 0).	 (6)

This predicate is called our goal, or the theorem that we
wish to prove. It says: if the tool starts in a safe place (i.e.,
p >= 0) and you run the control program, then the tool
will remain in a safe place at every instant of time, no
matter what input you provide for it.

To do the proof, we apply sound inference rules to our
goal, decomposing it into simpler goals and eventually
statements in real arithmetic. This real arithmetic can
be solved by a computer program called a decision pro-
cedure. This proving process is the heart of dL; the logic
is constructed so that completing such proofs translates
into a guarantee about the system’s behavior, for all pos-
sible system inputs.

The proof will be structured the same way as the
model, first decomposing the outer loop into three dif-
ferent subgoals: the base case, the inductive step, and the
postcondition. Within the proof of the inductive step,
there are three cases, one for each possible nondeter-
ministic choice represented by the dynamics statements.
The differential equation must be solved for each one,
and the proof about the inductive step can be completed.

KeYmaera8 is a tool that takes a HP and allows an
engineer to create a machine-checked proof by using .dL
This is called a mechanization of the logic. This system
is simple enough that once the HP model and safety
property are entered, a loop invariant can be provided,
and safety for this simplified 1-D system can be proved
automatically at the press of a button. A loop invari-
ant is a logical statement that describes an important,
unchanging attribute that will hold at the beginning

and end of a loop; it is necessary
to resolve the behavior of compli-
cated loops automatically.

A Generalized Model of a Single
Virtual Fixture Boundary

The simplified model represents
input as a constant during a time
step and does not accurately repre-
sent a lag in the system. It assumes
that the program that implements
the controller runs all the time. It

also fixes the position of the virtual boundary and pro-
vides control in only one dimension. Although these
simplifying assumptions were a useful starting point, we
need to replace them with more realistic assumptions to
ensure that our conclusions are true. This section refines
the previous model to relax these assumptions and create
a more realistic controller in two dimensions.

The first enhancement to the model will be a more
accurate representation of user input. The previous
model represented user input for each “step” in the
system as a constant, by setting the force components
to a nondeterministic value by writing fx := *; fy := *.
A more accurate model of the force input to the system
would be to create a piecewise linear representation of
the force. To do this, we assign nondeterministic values
to some state variables, fxp := *; fyp := *, and then logi-
cally associate these with the derivative of the force by
requiring f f f fandx xp py y= =l l in the set of differential
equations that we specify during continuous evolution.
When we make this change, it ensures that at each step,
we have a constant acceleration. This makes our veloc-
ity piecewise linear and our path quadratic, given the
simple relationship between these state variables. Con-
sequently, there are many additional possible types of
force curves that can be exerted on the system during a
time step, depending on the acceleration and the initial
direction of the force during the step. We can distinguish
between these different types of curves and design our
controller to recognize and behave differently in each
situation. The different movement scenarios are shown
in Fig. 3. Each subfigure represents a movement scenario
in which the SBS robot must enforce safety. Each case
must start above the x axis because the system starts in
a safe location. The different cases represent different
accelerations, velocities, and possibilities for intersecting
or not intersecting the boundary. If they do intersect,
the controller needs to take action to ensure safety. The
final, safe version of the realistic controller contains
each of these scenarios as an explicitly controlled case.

The second enhancement is to add a clock to our
system to track the passage of time and use it to repre-
sent the fundamental loop used during the control algo-

Table 2.  Different operators available in dL to express behavior

logical and
logical or

a b
a b

a
xP x
xP y

negation
existential quantification over the reals
universal quantification over the reals
box modality: all runs of satisify the postcondition
angle modality: there exists run of that satisifies the postconditiona

/

0

J

7

6

   

   

^
^
h
h

6 @

FORMAL METHODS FOR ROBOTIC SYSTEM CONTROL SOFTWARE

JOHNS HOPKINS APL TECHNICAL DIGEST, VOLUME 32, NUMBER 2 (2013) 495

rithm. In dL, this is a relatively simple matter: we add
a state variable, t, to the program to hold the value of
the clock at any instant of time; before each dynamics
statement, we reset our time counter t := 0; within each
dynamics statement, we require that t = 1 (i.e., time
progresses continuously at a rate of 1); and we put a con-
straint on the evolution in each dynamics statement to
ensure that a time step remains below a certain thresh-
old, t ≤ , to represent a step in the control algorithm. In
this case,  represents the largest time stop the controller
can take before responding to its environment.

This is a common idiom for representing time in a dL
HP. The left program is the original, containing discrete
computation and a dynamics statement to allow the evo-
lution of continuous physics. The program on the right
is a transformation of the program on the left, showing
how a time reference can be added to it. The time refer-
ence can be used to restrict the length of the dynam-
ics statements, as well as used in the discrete program’s
computations.

The third enhancement is to more accurately rep-
resent time lag associated with the discrete program’s
execution on the basis of the time it takes to execute
the computations necessary to make a control decision.
In its simplified form, our model in Eq. 5 has a different
dynamic statement for each possible mode of operation,
whose functional form is tailored to that state. While

this is a reasonable starting point
for our model, it is not very realis-
tic; we are acting as if we have a
discrete program that can instan-
taneously run and modify the
parameters of the system at every
moment in time.

This problem would quickly
become evident if we tried to rep-
resent a more complex controller
by using this approach. We would
encounter difficulties even cre-
ating such a representation; for
example, if we needed a looping
construct to represent our control
logic, we would need to put it in
our dynamics statement, mixing
it with the continuous differen-
tial equation there. This is not
allowed by dL because it is not
realizable.

To represent a more realistic
program, we will factor the discrete computation for
each mode out of the dynamics statement and create a
single dynamics statement that represents physics and
the evolution of time. The collection of discrete compu-
tations and constraints that we factor out of the dynam-
ics statements represents the control algorithm setting
parameters and exerting control over the continuous
dynamics once at every step in the system. Thus, we can
accurately represent time lag associated with a program
and its control loop:

This is a common idiom for representing realistic,
noninstantaneous execution of discrete computation.
The program on the left is an idealized version of the
algorithm that responds instantaneously. The program
on the right is a transformation of the program on the
left, showing how discrete computation may be factored
out of the continuous physics and consolidated to add
more realism to the model.

Once this is done, there will be only one set of differ-
ential equations that describes the continuous evolution
of our system, and it will simply represent the physics of
the system and the behavior of our lower-level admit-

Original HP HP with clock

(discrete; (discrete;

 dyn)* t := 0; (dyn, t = 1& t ≤ ))*

Instantaneous Noninstantaneous

ctrl ≡ ctrl ≡

(discrete; (discrete;

 (mode1 dyn)  (mode1discrete 

 (mode2 dyn)  mode2discrete 

 (mode3 dyn))* mode3discrete);

dyn)*

0 �

0 � 0 �

0 � 0 � 0 �

(a) (b) (c) (d)

(e) (f)

0 �

(g)

Figure 3.  Different movement scenarios in which the SBS robot must enforce safety. The
y axis of each subfigure is the perpendicular distance from the tool to the boundary [i.e.,
d(t)], while the x axis represents the progression of time.

Y.  KOUSKOULAS,  A.  PLATZER,  AND  P.  KAZANZIDES

JOHNS HOPKINS APL TECHNICAL DIGEST, VOLUME 32, NUMBER 2 (2013)496

tance controller, which should not change regardless of
the mode the system is in or the damping decision made
by the control algorithm.

A more realistic model of our control algorithm that
includes these enhancements is shown in Table 3. This
algorithm enforces a single virtual boundary based on
the subtractive control law given in Eq. 2. The subtrac-
tive control law works by modifying the overall velocity
by subtracting the part of the vector out of the move-
ment that is normal to the virtual boundary. This
boundary should feel abrupt; it is encountered with no
warning, so the surgeon needs another way of visualizing
how close to it he or she is. When pressed against it, the
tool will tend to bounce back slightly, giving the bound-
ary a bouncy feel. This comes from a combination of the
subtractive control law and the system’s delay.

The user should not experience any of the stickiness
we expect from the control algorithms produced by mul-
tiplicative damping strategies (i.e., those strategies that
modify the overall velocity by applying a multiplica-

tive factor less than 1), but instead
the virtual boundary will feel some-
what slippery because of the selective
removal of the movement component
in the direction of the boundary.

Proving Safety of an Enhanced
Model of a Control Algorithm

We implemented the realistic
model of our controller and proved
its safety using KeYmaera. We can
trust KeYmaera because it faithfully
implements the inference rules in dL,
which are guaranteed to yield correct
conclusions because they themselves
have been proven to be sound.4 The
proof of safety for our controller was
created by a mixture of automated
steps that decomposed the HP accord-
ing to its structure, manual steps used
to guide the proof for each of the dif-
ferent branches, and quantifier elimi-
nation to discharge real arithmetic at
the leaves of the proof tree.

The proof is structured like the
program with an initial set of three
branches relating to the loop and
its invariant, namely proving a nec-
essary precondition, a desired post-
condition, and the inductive step. In
the inductive step, there are seven
major branches, one for each of the
different input cases we encounter.
Figure 4 shows the major branches of

this proof, in the leftmost pane, as a hierarchical tree.
The green folders marked “Case 1” are all major branches
corresponding to a movement case, and the last “Case 2”
branch is the last movement case. KeYmaera highlights
completed proof branches with green to indicate that
their proof is completed and mechanically checked. The
right pane of the proof window shows the state of the
proof, with a sequent that contains assumptions and the
goal to be proved at the intermediate state highlighted
in blue on the left.

Figure 5 shows a completed, machine-checked proof
that guarantees that our algorithm safely enforces a
virtual planar boundary under all possible input con-
ditions. The proof has a total of 1582 nodes and 163
branches. The various branches are generated from the
different circumstances in which the system can find
itself, and the different nodes are created each time an
inference rule is applied to transform our proof state.
It takes 19 minutes for a standard laptop to machine-
check the completed proof.

Table 3.  A complete time-triggered model of a redesigned control algorithm that
enforces the safety of an arbitrary number of arbitrarily oriented and positioned virtual
fixture boundaries, in three dimensions (this model is realistic, provides directional force
feedback, and is proven to be safe, via formal, mechanized proof)

FORMAL METHODS FOR ROBOTIC SYSTEM CONTROL SOFTWARE

JOHNS HOPKINS APL TECHNICAL DIGEST, VOLUME 32, NUMBER 2 (2013) 497

FURTHER WORK

As part of this robotic control formal verification,
we further developed the 2-D model described in the
preceding section to increase its fidelity. We created a
3-D model of a virtual fixture boundary defined by a

set of arbitrarily oriented planes to constrain the tool,
as shown in Fig. 1. Additionally, instead of implement-
ing a hard stop, we developed an algorithm that created
a soft stop where the force required to move the blade
increased in proportion to the nearness to the boundary
so that the tool came to a stop and could not slide across

Figure 4.  KeYmaera tool displaying intermediate proof state and major branches for surgical robot control algorithm safety proof.

Figure 5.  KeYmaera tool displaying completed proof of safety for surgical robot control algorithm.

Y.  KOUSKOULAS,  A.  PLATZER,  AND  P.  KAZANZIDES

JOHNS HOPKINS APL TECHNICAL DIGEST, VOLUME 32, NUMBER 2 (2013)498

REFERENCES

  1Fränzle, M., and Herde, C., “HySAT: An Efficient Proof Engine for
Bounded Model Checking of Hybrid Systems,” Formal Methods in
System Design 30(2), 179–198 (2007).

  2Platzer, A., “Differential-Algebraic Dynamic Logic for Differential-
Algebraic Programs,” J. Log. Comput. 20(1), 309–352 (2010).

  3Platzer, A., “A Complete Axiomatization of Quantified Differential
Dynamic Logic for Distributed Hybrid Systems,” Logical Methods in
Computer Science 8(4), 1–44 (2012).

  4Platzer, A., “Differential Dynamic Logic for Hybrid Systems,” J.
Autom. Reasoning 41(2), 143–189 (2008).

  5Xia, T., Baird, C., Jallo, G., Hayes, K., Nakajima, N., et al. “An Inte-
grated System for Planning, Navigation and Robotic Assistance for
Skull Base Surgery,” Int. J. of Med. Robot. 4(4), 321–330 (2008).

  6Kazanzides, P., “Virtual Fixture Computation. Note on Combining
the Effects of Multiple Virtual Fixtures” (2011). [Please contact author
to obtain a copy of document.]

  7Kouskoulas, Y., Renshaw, D., Platzer, A., and Kazanzides, P., “Certi-
fying the Safe Design of a Virtual Fixture Control Algorithm for a
Surgical Robot,” in Proc. 16th International Conf. on Hybrid Systems:
Computation and Control, pp. 263–272 (2013).

  8Platzer, A., and Quesel, J.-D., “KeYmaera: A Hybrid Theorem Prover
for Hybrid Systems,” in Automated Reasoning: 4th Int. Joint Conf., Vol.
5195 of LNCS, A. Armando, P. Baumgartner, and G. Dowek (eds.),
SpringerVerlag, Berlin Heidelberg, pp. 171–178 (2008).

the boundary. This work is detailed in Ref. 7 and was
proved for arbitrarily many boundaries.

CONCLUSION

We have powerful tools available today to reason
about cyber-physical systems. With them, we can create
an accurate model of a cyber-physical system component
and make guarantees about the system’s behavior under
all possible input conditions.

These tools are new, and it is sometimes difficult
to apply them to larger, more complicated system
components because the proof becomes commensurately
more complex.

Along with investigating many other advances in
proof automation in KeYmaera, we are in the process of
exploring how to effectively scale these capabilities to
larger systems and how to compose proofs about small
system components together to make guarantees about
larger subsets of the system.

Yanni Kouskoulas is a group chief scientist at APL. His research interests are focused on formal methods and theorem
proving and their application to help develop zero-defect software for a variety of practical cyber-physical systems.
André Platzer is an assistant professor of computer science at Carnegie Mellon University. His interests include logic
in computer science, cyber-physical systems, programming languages, formal methods, and theorem proving. He
received an Association for Computing Machinery Doctoral Dissertation honorable mention and an National Science
Foundation CAREER Award for his work in this area. He developed differential-dynamic logic and the KeYmaera tool,
which were used for modeling and theorem proving during this work. Peter Kazanzides is an associate research professor
of computer science at The Johns Hopkins University. His research interests include computer-integrated surgery and
systems engineering to enable deployment in the real world. While working at Integrated Surgical Systems, he was
responsible for the design and implementation of the ROBODOC system, which has been used for more than 20,000 hip
and knee replacement surgeries. He helped develop the surgical robot control algorithm that was the subject of analysis
during this work. For further information on the work reported here, contact Yanni Kouskoulas. His e-mail address is
yanni.kouskoulas@jhuapl.edu.

 The Authors

The Johns Hopkins APL Technical Digest can be accessed electronically at www.jhuapl.edu/techdigest.

yanni.kouskoulas@jhuapl.edu

	Formal Methods for Robotic System Control Software
	Yanni Kouskoulas, André Platzer, and Peter Kazanzides
	INTRODUCTION
	Motivation
	Formal Methods

	SKULL-BASE SURGERY ROBOT
	MODELING A SURGICAL ROBOT CONTROL ALGORITHM
	Simple Model
	Proving Safety of the Simplified Model of a Control Algorithm
	A Generalized Model of a Single Virtual Fixture Boundary
	Proving Safety of an Enhanced Model of a Control Algorithm

	FURTHER WORK
	CONCLUSION
	REFERENCES
	 The Authors
	Figures and Tables
	Figure 1. Cooperatively controlled robot enforcing virtual fixtures.
	Figure 2. Illustration of the HP strategy.
	Figure 3. Different movement scenarios in which the SBS robot must enforce safety.
	Figure 4. KeYmaera tool displaying intermediate proof state and major branches for surgical robot control algorithm safety proof.
	Figure 5. KeYmaera tool displaying completed proof of safety for surgical robot control algorithm.
	Table 1. dL modeling language.
	Table 2. Different operators available in dL to express behavior.
	Table 3. A complete time-triggered model of a redesigned control algorithm.

