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INTRODUCTION

Motivation
In many instances, programs are concerned only with 

processing or manipulating data and displaying them 
to a user, who becomes the agent that ends up taking 
physical action. However, in some instances, we create 
software to control other analog devices or machin-
ery directly. We call these hybrid systems because they 
exhibit a mixture of discrete behavior from the software 
and continuous behavior from the analog physics of the 
device being controlled.

From an engineering perspective, creating zero-
defect control software for hybrid systems has unique 
challenges. On one hand, for an engineering system 
consisting only of analog devices, we can use continu-
ous mathematics to model it and prove that its design 
satisfies our requirements. On the other hand, for soft-
ware that only processes data, we can begin to apply 
the formal methods (i.e., program logics) that we have 
developed to prove properties about software-only sys-

reating software for controlling robotic machinery has unique 
challenges. This article describes a formal method called  

differential-dynamic logic (dL) that can help produce zero-defect 
algorithms for robotic systems. We take the reader through an example of applying 
dL to a version of a control algorithm used in an experimental surgical robot. This 
case study is a simplif ied variant of an existing control algorithm. It shows how this tool 
can be useful and illustrates general principles that readers can use when applying 
this technique to other systems. We describe how to model a control algorithm for the 
robot and are able to prove that it safely enforces tool movement for a single boundary. 
Our proof provides a guarantee of the control algorithm’s safe behavior for all possible 
inputs and is far more comprehensive than what is possible by using testing alone.
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tems. However, a hybrid system contains the interface 
between these two domains and requires new logics.

Formal Methods
To guarantee that the control algorithm predictably 

influences the machinery with which it interacts, we 
need to develop hybrid logics that are tailored to include 
both models of discrete programs as well as the continu-
ous equations that govern the analog components.

Engineers can write code to model a hybrid system 
and then run these models with particular inputs to see 
how the system behaves. However, at best, this approach 
affords only the equivalent of evaluating individual test 
cases, which cannot guarantee the exploration of impor-
tant corner cases, nor always eliminate unexpected 
behavior.

In some sense, a hybrid system can be more challeng-
ing to model than a software-only system. A software-
only system exists as a logical entity that can be directly 
translated, without loss of detail, into a representation 
useful for modeling. A hybrid system description needs 
to carefully incorporate the continuous behavior of 
physical components into the system’s model.

There have been a series of developments recently, 
allowing us to apply formal methods to model and rigor-
ously reason about hybrid systems, both in the context 
of model-checking1 and deductive verification.2, 3 In this 
article, we will describe a hybrid logic called differential-
dynamic logic (dL).4 This logic allows us to rigorously 
prove, using sound inference rules, properties about the 
behavior of a hybrid system for all possible inputs.

We will walk through an example of creating a model 
so that we can apply dL to certify the safety of a control 
algorithm for a surgical robot. In this article, our main 
emphasis is on the process of building a model, which 
is a central step to proving a hybrid system’s safety. We 
approach building a model with a multistep process that 
begins with a simplified model, to which we progressively 
add detail. We express this model as a “hybrid program” 
(HP), using the programming language available in dL. 
As we add detail, we will highlight common idioms and 
strategies for modeling using this approach.

SKULL-BASE SURGERY ROBOT
The target of this analysis is an experimental robot 

developed by the Johns Hopkins University Center for 
Integrated Surgical Systems and Technology Group.5 
It was designed to support physicians by helping them 
move and navigate precisely during surgical procedures 
on the base of a patient’s skull.

The surgical robot was created by integrating three 
subsystems: a StealthStation navigation system that 
tracks the position and orientation of sets of optical mark-

ers on a rigid body; 3DSlicer, software used for visualiz-
ing and analyzing medical image data; and a Neuromate 
robot, a Food and Drug Administration (FDA)-cleared 
image-guided 6-degree-of-freedom robotic arm designed 
for use in neurosurgery.

MODELING A SURGICAL ROBOT CONTROL 
ALGORITHM

The skull-base surgery (SBS) robot is an example of 
a cooperatively controlled system. Both the robot and 
the physician simultaneously hold a surgical tool, and as 
the surgeon puts force on the tool, the robot allows it to 
move according to the equation

	 dt
dp

G f=
r ^ h,	 (1)

where f  is the force exerted by the physician, and p  is 
the position of the tool in space. The overall equation 
is a continuous differential equation that represents 
the effect of a negative feedback control circuit with an 
admittance control design. This sort of control circuit is 
designed to convert forces and torques to velocity and 
is described in Ref. 5. We assume that the admittance 
control circuit is designed with a sufficiently quick and 
accurate response so that its imperfections are negligible 
compared to the response of the system as a whole. The 
function G is the discrete part of the system; it repre-
sents the software that sets the parameters to control 
the system.

The control algorithm we are evaluating is designed 
to prevent the surgical tool from crossing a preopera-
tively defined planar boundary, so as to prevent the 
tool from moving into an undesirable location. Most of 
the time, the surgeon can move the tool freely around 
the surgical site, without interference from the robot. 
In this region, called the free zone, G is some constant 
multiple of f . However, as the tool approaches the 
boundary, it enters a “slow zone,” defined as all points 
that are within a distance, D, of the boundary, where 
the component of its velocity toward the boundary is 
attenuated in proportion to its proximity to the bound-
ary. Eventually, as the tool reaches the boundary, the 
component normal to the boundary goes to zero, and 
it should not progress farther in that direction. This is 
illustrated in Fig. 1.

If the velocity of the tool is pl, the distance from the 
boundary is d, and the unit normal to the boundary is 

,n1t  the overall velocity plis given in Ref. 6 as

	 p p D
d p n n1– – 1 11

$= l ll t t` ^j h ,	 (2)

where  is the dot product of two vectors, and a prime 
indicates a derivative with respect to time. This is a sub-
tractive control law, which we will use throughout this 
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article, even though more advanced controls turn out to 
be necessary.7

To create a model of a cyber-physical system by using 
dL, we write a HP in dL modeling language. The lan-
guage in which we write HPs to model cyber-physical 
systems is not designed to be executed but to be formally 
reasoned about; its syntactic constructs are simpler than 
what we find in executable languages today and are 
shown in Table 1.

The HP language used in dL contains arithmetic 
operators, assignments, and sequential composition of 
statements and assertions—operations that are found in 
many imperative languages. State variables in the pro-
gram can have types that are discrete, finite sets, or R, 
the reals.

To write a conditional statement in this language, we 
use an assumption written as a question mark followed 
by a logical predicate that describes the condition we 
wish to hold, e.g., ?. Therefore, we might write ?(a > 5); 
b := 3;, which describes a program that can only run when 
a > 5 and then sets b to 3. What happens if a ≤ 5 in the 
above program? This program fragment simply cannot 
execute under these conditions. This is very different 
from a conventional programming language where the 
program halts when there is an assertion that is not met. 
In the case of our HP, an assumption in the middle of the 
program can noncausally prevent the program from ever 

executing under those conditions. Because we are not 
executing the program, but reasoning about it, this does 
not require unwinding reality; it is simply the equiva-
lent of eliminating certain executions from analysis (e.g., 
because they cannot be found in the real system).

The HP modeling language used in dL also has state-
ments that represent the interaction of the program with 
the physics of a device. To represent these interactions, 
dL includes representations of nondeterminism and the 
ability to describe the evolution of continuous time as a 
statement in the model. Nondeterminism, for the pur-
poses of dL, is uncertainty that is not described with a 
probability density function. Conclusions we draw about 
the system need to be absolute. Thus, theorems we prove 
must hold for all possible nondeterministic choices, not 
on the average or a proportion of the time. There are 
three constructs in the language that can represent non-
determinism: (i) assignment, (ii) choice, and (iii) loop-
ing. Assignment of a nondeterministic value to a state 
variable is written a := *. This can assign any value to 
a. The language also includes a nondeterministic choice 
of two branches, or alternate behaviors. We write this 
using the  operator. Thus, (a := 3  b := 6) represents 
a program that can make either of two assignments. 
Again, the distribution with which it conducts this pro-
cess is not meaningful because whatever we prove about 
it must hold for all executions. A conventional “if” state-
ment can be constructed by combining assertions with 
nondeterministic choice, e.g., (?(a > 5); b := 3) ?(a ≤ 5). 
An indeterminate loop is described with an asterisk 
appended to the program which is looping. The program 
(i := i + 1)* can execute the increment instruction some 
finite number of times before terminating. Again, we 
can construct conventional control structures such as 
terminating for and while loops using conditionals and 
this looping construct, but this indeterminate execution 
provides us with more expressive flexibility with which 
to model our programs.

The most interesting statement in a dL HP is the 
dynamics statement, which represents the continuous 
physics of an analog device. Such a statement contains 
a system of differential equations, and its presence indi-

cates continuous evolution of 
state variables in a manner 
that provides a solution to 
these equations, as long as the 
state satisfies the logical con-
straint, :

	 , , &x xn n1 1 f  = =l l .	 (3)

We can think of dynamics 
statements as allowing time in 
the real world to progress and 
whatever physics governs our 
system to operate. The rest of 
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Figure 1.  Cooperatively controlled robot enforcing virtual fix-
tures to restrict a tool-tip to remain on one side of a boundary.

Table 1.  dL  modeling language

= &





=
=

, ,x |f=

nondeterministic assignment
;

?

,

x
x

x x

assigns any value
sequence first runs , then

nondeterministic choice
nondeterministic loop
dynamics statement describing continous evolution

i i

i

i i1 1 2 2

|

|

,

   



 



=

*

*

assignment

assumption

l l



FORMAL METHODS FOR ROBOTIC SYSTEM CONTROL SOFTWARE

JOHNS HOPKINS APL TECHNICAL DIGEST, VOLUME 32, NUMBER 2 (2013) 493

the statements describe discrete computations and state 
changes inside a computer and have no real time associ-
ated with them. It is as if when discrete statements are 
encountered in sequence, the continuous dynamics of the 
system are “frozen,” and when the system encounters a 
dynamics statement, discrete computation ceases and the 
continuous dynamics evolve.

Despite the apparent stop-and-go nature of the 
dynamics in this model, it is effective at modeling a 
system that is doing discrete computations as the con-
tinuous dynamics evolve. In the real world, discrete 
computations and continuous dynamics operate concur-
rently, but the HP forces us to linearize them, putting 
them into a sequential order. We conceptually associate 
the period of time in which the physics evolved to be 
concurrent with the discrete computation that preceded 
it in the program. Within the HP, the discrete program 
and the continuous physics can share state at the edges 
of these linearized transitions, as shown in Fig. 2.

In the rest of this article, we will develop an algorithm 
that enforces a virtual boundary that is arbitrarily ori-
ented and, when encountered by the user, qualitatively 
feels hard. In other words, an encounter between the tool 
and the boundary will abruptly stop the tool, preventing 
it from crossing but allowing it to slide along the bound-
ary, giving it a slippery feel. This control algorithm dif-
fers qualitatively from the one described in Ref. 7, which 
provides force feedback, making the walls feel like they 
are soft, leading to a gradual stop, and where contact 
with the boundary feels sticky. Our first model will be a 
simplified version, to which we will add detail.

Simple Model
Consider the control algorithm implemented to con-

strain the movement of a tool, whose dynamics are

	 dt
dp

G f= ^ h,	 (4)

where G represents the effect of the software that we 
write for the system, f is the force in the direction of the 
axis, and p is the position of the tool.

For the initial model, we will constrain the tool in 
one direction, the x axis, so it restricts movement by 

providing a hard stop on only one side. In this simpli-
fied scenario, p is a positive value representing the tool’s 
position on the x axis. Assume the stop is set to position 
p = 0, and we wish to design an algorithm that ensures 
that the sled comes to an abrupt halt, bouncing off of a 
virtual boundary that feels rigid.

If we are sufficiently far from the track’s end at p = 0, 
we would like to allow the system to move freely, trans-
lating force into velocity via a constant coefficient, g. 
When we are close to the track’s end, we wish to create 
a buffer that attenuates its motion in proportion to how 
close it comes to the end. For simplicity, we can assume 
that the force, f, the surgeon exerts on the tool is con-
stant over a short time period. We can write a HP that 
describes the different states of the system by describing 
each state with a dynamics statement:
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The first line of this HP is a nondeterministic assign-
ment of some value to the state variable f. It represents 
the surgeon’s arbitrary input. The HP is a loop, whose 
body comprises a nondeterministic assignment followed 
by a nondeterministic choice between three different 
dynamics statements, each of which is given on its own 
line. These dynamics statements describe the evolu-
tion of our system according to the differential equa-
tions given in each case, which can only occur when 
the specified constraints f >= 0, (f  0)  (p  D), or 
(f  0)  (p  D) are satisfied.

The outer loop (i.e., *) represents the permanent 
operation of the system. For each time through the loop, 
there is some constant force input represented with the 
nondeterministic assignment, and this is followed by a 
nondeterministic choice. Because the HP in Eq. 5 must 
choose one of these, it chooses one where the con-
straints on the right side of the dynamics statement are 
satisfied and solves the differential equation given. The 
tool moves along at a speed proportional to how hard 
it is pushed, with the constant of proportionality either 
given by g or by p / D. The system can switch state at any 
time, if the constraints allow it.

Proving Safety of the Simplified Model of a Control 
Algorithm

To describe the desired behavior of our model, we 
construct logical predicates describing the relationships 
between different state variables, using the operators 
given in Table 2. These predicates can contain opera-
tors from first-order logic (e.g.,    represents logical 
“and”) and quantifiers (e.g., 6 x  represents the state-

Continuous physics
discrete computation

Continuous
and discrete

Concurrent
representation

Linearized
representation

Time

Figure 2.  Illustration of the HP strategy for representing the con-
current interaction between the evolution of continuous physics 
and discrete computation.
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ment that  holds for all values of x). We also can write 
modal operators (e.g., [] means that after running the 
HP , the predicate  always holds). The modal opera-
tors are very powerful because they allow a sort of quan-
tification over different executions of a given program, 
and they are at the core of how we describe properties of 
hybrid models of cyber-physical systems.

We write the safety property we desire to prove for 
our algorithm as

	 (p >= 0) → [ctrl](p >= 0).	 (6)

This predicate is called our goal, or the theorem that we 
wish to prove. It says: if the tool starts in a safe place (i.e., 
p >= 0) and you run the control program, then the tool 
will remain in a safe place at every instant of time, no 
matter what input you provide for it.

To do the proof, we apply sound inference rules to our 
goal, decomposing it into simpler goals and eventually 
statements in real arithmetic. This real arithmetic can 
be solved by a computer program called a decision pro-
cedure. This proving process is the heart of dL; the logic 
is constructed so that completing such proofs translates 
into a guarantee about the system’s behavior, for all pos-
sible system inputs.

The proof will be structured the same way as the 
model, first decomposing the outer loop into three dif-
ferent subgoals: the base case, the inductive step, and the 
postcondition. Within the proof of the inductive step, 
there are three cases, one for each possible nondeter-
ministic choice represented by the dynamics statements. 
The differential equation must be solved for each one, 
and the proof about the inductive step can be completed.

KeYmaera8 is a tool that takes a HP and allows an 
engineer to create a machine-checked proof by using .dL  
This is called a mechanization of the logic. This system 
is simple enough that once the HP model and safety 
property are entered, a loop invariant can be provided, 
and safety for this simplified 1-D system can be proved 
automatically at the press of a button. A loop invari-
ant is a logical statement that describes an important, 
unchanging attribute that will hold at the beginning 

and end of a loop; it is necessary 
to resolve the behavior of compli-
cated loops automatically.

A Generalized Model of a Single 
Virtual Fixture Boundary

The simplified model represents 
input as a constant during a time 
step and does not accurately repre-
sent a lag in the system. It assumes 
that the program that implements 
the controller runs all the time. It 

also fixes the position of the virtual boundary and pro-
vides control in only one dimension. Although these 
simplifying assumptions were a useful starting point, we 
need to replace them with more realistic assumptions to 
ensure that our conclusions are true. This section refines 
the previous model to relax these assumptions and create 
a more realistic controller in two dimensions.

The first enhancement to the model will be a more 
accurate representation of user input. The previous 
model represented user input for each “step” in the 
system as a constant, by setting the force components 
to a nondeterministic value by writing fx := *; fy := *. 
A more accurate model of the force input to the system 
would be to create a piecewise linear representation of 
the force. To do this, we assign nondeterministic values 
to some state variables, fxp := *; fyp := *, and then logi-
cally associate these with the derivative of the force by 
requiring f f f fandx xp py y= =l l  in the set of differential 
equations that we specify during continuous evolution. 
When we make this change, it ensures that at each step, 
we have a constant acceleration. This makes our veloc-
ity piecewise linear and our path quadratic, given the 
simple relationship between these state variables. Con-
sequently, there are many additional possible types of 
force curves that can be exerted on the system during a 
time step, depending on the acceleration and the initial 
direction of the force during the step. We can distinguish 
between these different types of curves and design our 
controller to recognize and behave differently in each 
situation. The different movement scenarios are shown 
in Fig. 3. Each subfigure represents a movement scenario 
in which the SBS robot must enforce safety. Each case 
must start above the x axis because the system starts in 
a safe location. The different cases represent different 
accelerations, velocities, and possibilities for intersecting 
or not intersecting the boundary. If they do intersect, 
the controller needs to take action to ensure safety. The 
final, safe version of the realistic controller contains 
each of these scenarios as an explicitly controlled case.

The second enhancement is to add a clock to our 
system to track the passage of time and use it to repre-
sent the fundamental loop used during the control algo-

Table 2.  Different operators available in dL  to express behavior
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a b
a b
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rithm. In dL, this is a relatively simple matter: we add 
a state variable, t, to the program to hold the value of 
the clock at any instant of time; before each dynamics 
statement, we reset our time counter t := 0; within each 
dynamics statement, we require that t = 1 (i.e., time 
progresses continuously at a rate of 1); and we put a con-
straint on the evolution in each dynamics statement to 
ensure that a time step remains below a certain thresh-
old, t ≤ , to represent a step in the control algorithm. In 
this case,  represents the largest time stop the controller 
can take before responding to its environment.

This is a common idiom for representing time in a dL 
HP. The left program is the original, containing discrete 
computation and a dynamics statement to allow the evo-
lution of continuous physics. The program on the right 
is a transformation of the program on the left, showing 
how a time reference can be added to it. The time refer-
ence can be used to restrict the length of the dynam-
ics statements, as well as used in the discrete program’s 
computations.

The third enhancement is to more accurately rep-
resent time lag associated with the discrete program’s 
execution on the basis of the time it takes to execute 
the computations necessary to make a control decision. 
In its simplified form, our model in Eq. 5 has a different 
dynamic statement for each possible mode of operation, 
whose functional form is tailored to that state. While 

this is a reasonable starting point 
for our model, it is not very realis-
tic; we are acting as if we have a 
discrete program that can instan-
taneously run and modify the 
parameters of the system at every 
moment in time.

This problem would quickly 
become evident if we tried to rep-
resent a more complex controller 
by using this approach. We would 
encounter difficulties even cre-
ating such a representation; for 
example, if we needed a looping 
construct to represent our control 
logic, we would need to put it in 
our dynamics statement, mixing 
it with the continuous differen-
tial equation there. This is not 
allowed by dL  because it is not 
realizable.

To represent a more realistic 
program, we will factor the discrete computation for 
each mode out of the dynamics statement and create a 
single dynamics statement that represents physics and 
the evolution of time. The collection of discrete compu-
tations and constraints that we factor out of the dynam-
ics statements represents the control algorithm setting 
parameters and exerting control over the continuous 
dynamics once at every step in the system. Thus, we can 
accurately represent time lag associated with a program 
and its control loop:

This is a common idiom for representing realistic, 
noninstantaneous execution of discrete computation. 
The program on the left is an idealized version of the 
algorithm that responds instantaneously. The program 
on the right is a transformation of the program on the 
left, showing how discrete computation may be factored 
out of the continuous physics and consolidated to add 
more realism to the model.

Once this is done, there will be only one set of differ-
ential equations that describes the continuous evolution 
of our system, and it will simply represent the physics of 
the system and the behavior of our lower-level admit-

Original HP HP with clock

(discrete; (discrete;

 dyn)*  t := 0; (dyn, t = 1& t ≤ ))*

Instantaneous Noninstantaneous

ctrl ≡ ctrl ≡

(discrete; (discrete;

  (mode1 dyn)    (mode1discrete 

  (mode2 dyn)     mode2discrete 

  (mode3 dyn) )*    mode3discrete);

dyn)*

0 �

0 � 0 �

0 � 0 � 0 �

(a) (b) (c) (d)

(e) (f)

0 �

(g)

Figure 3.  Different movement scenarios in which the SBS robot must enforce safety. The 
y axis of each subfigure is the perpendicular distance from the tool to the boundary [i.e., 
d(t)], while the x axis represents the progression of time.
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tance controller, which should not change regardless of 
the mode the system is in or the damping decision made 
by the control algorithm.

A more realistic model of our control algorithm that 
includes these enhancements is shown in Table 3. This 
algorithm enforces a single virtual boundary based on 
the subtractive control law given in Eq. 2. The subtrac-
tive control law works by modifying the overall velocity 
by subtracting the part of the vector out of the move-
ment that is normal to the virtual boundary. This 
boundary should feel abrupt; it is encountered with no 
warning, so the surgeon needs another way of visualizing 
how close to it he or she is. When pressed against it, the 
tool will tend to bounce back slightly, giving the bound-
ary a bouncy feel. This comes from a combination of the 
subtractive control law and the system’s delay.

The user should not experience any of the stickiness 
we expect from the control algorithms produced by mul-
tiplicative damping strategies (i.e., those strategies that 
modify the overall velocity by applying a multiplica-

tive factor less than 1), but instead 
the virtual boundary will feel some-
what slippery because of the selective 
removal of the movement component 
in the direction of the boundary.

Proving Safety of an Enhanced 
Model of a Control Algorithm

We implemented the realistic 
model of our controller and proved 
its safety using KeYmaera. We can 
trust KeYmaera because it faithfully 
implements the inference rules in dL, 
which are guaranteed to yield correct 
conclusions because they themselves 
have been proven to be sound.4 The 
proof of safety for our controller was 
created by a mixture of automated 
steps that decomposed the HP accord-
ing to its structure, manual steps used 
to guide the proof for each of the dif-
ferent branches, and quantifier elimi-
nation to discharge real arithmetic at 
the leaves of the proof tree.

The proof is structured like the 
program with an initial set of three 
branches relating to the loop and 
its invariant, namely proving a nec-
essary precondition, a desired post-
condition, and the inductive step. In 
the inductive step, there are seven 
major branches, one for each of the 
different input cases we encounter. 
Figure 4 shows the major branches of 

this proof, in the leftmost pane, as a hierarchical tree. 
The green folders marked “Case 1” are all major branches 
corresponding to a movement case, and the last “Case 2” 
branch is the last movement case. KeYmaera highlights 
completed proof branches with green to indicate that 
their proof is completed and mechanically checked. The 
right pane of the proof window shows the state of the 
proof, with a sequent that contains assumptions and the 
goal to be proved at the intermediate state highlighted 
in blue on the left.

Figure 5 shows a completed, machine-checked proof 
that guarantees that our algorithm safely enforces a 
virtual planar boundary under all possible input con-
ditions. The proof has a total of 1582 nodes and 163 
branches. The various branches are generated from the 
different circumstances in which the system can find 
itself, and the different nodes are created each time an 
inference rule is applied to transform our proof state. 
It takes 19 minutes for a standard laptop to machine-
check the completed proof.

Table  3.  A complete time-triggered model of a redesigned control algorithm that 
enforces the safety of an arbitrary number of arbitrarily oriented and positioned virtual 
fixture boundaries, in three dimensions (this model is realistic, provides directional force 
feedback, and is proven to be safe, via formal, mechanized proof)
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FURTHER WORK

As part of this robotic control formal verification, 
we further developed the 2-D model described in the 
preceding section to increase its fidelity. We created a 
3-D model of a virtual fixture boundary defined by a 

set of arbitrarily oriented planes to constrain the tool, 
as shown in Fig. 1. Additionally, instead of implement-
ing a hard stop, we developed an algorithm that created 
a soft stop where the force required to move the blade 
increased in proportion to the nearness to the boundary 
so that the tool came to a stop and could not slide across 

Figure 4.  KeYmaera tool displaying intermediate proof state and major branches for surgical robot control algorithm safety proof.

Figure 5.  KeYmaera tool displaying completed proof of safety for surgical robot control algorithm.
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the boundary. This work is detailed in Ref. 7 and was 
proved for arbitrarily many boundaries.

CONCLUSION

We have powerful tools available today to reason 
about cyber-physical systems. With them, we can create 
an accurate model of a cyber-physical system component 
and make guarantees about the system’s behavior under 
all possible input conditions.

These tools are new, and it is sometimes difficult 
to apply them to larger, more complicated system 
components because the proof becomes commensurately 
more complex.

Along with investigating many other advances in 
proof automation in KeYmaera, we are in the process of 
exploring how to effectively scale these capabilities to 
larger systems and how to compose proofs about small 
system components together to make guarantees about 
larger subsets of the system.
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