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his article introduces formal methods (FM) approaches in the context of 
zero-defect software development and also presents a tutorial-style case 

study in which we apply a program logic called History for Local Rely/
Guarantee (HLRG) to create a zero-defect software component for a surgical robot 
software library. During this analysis, we found a bug in the system that could adversely 
affect safety. We demonstrate the additional utility of incorporating FM into the design 
process by fixing the bug and proving that no more bugs exist in that component that 
could impact the property we were analyzing.
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we can get to the ideal of developing zero-defect compo-
nents and systems. We can closely approach this ideal in 
many areas of engineering. For example, we have good 
mathematical models of basic physics, circuits, antennas, 
structural components, aircraft, and even chemical pro-
cesses. We use continuous mathematics to model and 
reason about the engineering solutions that we create, 
solving equations that come from our models and con-
structing proofs about the models’ behavior to aid in the 
design process.

However, because of the discrete nature of software, 
it has been difficult to add mathematical rigor to the 
models we use during software engineering. On the one 
hand, modeling software does not seem to be a significant 
obstacle; software is a precise and descriptive formal model 
of itself. On the other hand, the continuous mathematics 

INTRODUCTION

Motivation
Innovative software engineering solutions are often 

difficult to design and difficult to implement. Even a 
small component may have complex behavior, and this 
can make it difficult for the developer to hold the whole 
of the design in working memory. There may be unex-
pected corner cases where unknown inputs cause the 
system to malfunction. Creating zero-defect software is 
a challenging goal.

Applying sound mathematical logic to reason about 
our problems has been the cornerstone of progress in sci-
ence and engineering. Successful scientists and engineers 
have a conceptual model of what they are working with in 
their heads, and they apply sound reasoning to this model 
to understand and solve the problems they encounter. 

In engineering, the more that the model and reason-
ing are formalized (i.e., documented precisely), the closer 
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Existing FM are often grouped into two categories: 
model checking and deductive verification. These 
categories differ in the expressiveness of the model-
ing language and the reasoning strategy. In this case, 
expressiveness of the language is a qualitative measure of 
the range of different systems it can describe. For exam-
ple, the NuSMV model checker is limited to analyzing 
models of nondeterministic, finite-state automata. Some 
systems can be modeled accurately using this formalism, 
whereas others cannot.

Models for model checking are limited in some way, 
often to some sort of state machine, so that the state 
space can be limited; the sound reasoning strategy for 
model checkers is a brute-force exploration of the state 
space. An often difficult aspect of model checking is cre-
ating the model with just enough detail to capture the 
essence of the problem but not so much detail that it 
causes the state space to be too large to explore. Once 
the model is constructed and the desired behavior is 
described, proving a property of a system by using a 
model checker is as easy as pressing a button and wait-
ing for the computer to explore all of the states.

Models for deductive verification are often written in 
a very expressive modeling language. It is often the case 
that because of the modeling language’s flexibility, much 
of the difficulty inherent in deductive verification is in 
doing the proof, not in creating the model. The proofs 
for such an approach cannot be fully automated in all 
cases and require human intervention and guidance to 
show the essence of why the property we seek is true.

We will describe a case study, presented in Refs. 1 and 
2, in which we apply a program logic called History for 
Local Rely/Guarantee (HLRG)3 to certify the integrity 
of a data-exchange mechanism in a concurrent system. 
The system is part of a library called the Surgical Assis-
tant Workstation (SAW), which is designed to support 
surgical robots.

SURGICAL ROBOT SOFTWARE
The target of our analysis is a software framework 

called the SAW, which was created by the National 
Science Foundation Engineering Research Center for 
Computer Integrated Surgical Systems and Technology 
(CISST ERC) at The Johns Hopkins University (JHU), 
in partnership with Intuitive Surgical, Inc., developer 
of the da Vinci® surgical robot. The SAW, described 
in Ref. 4, provides a modular, open-source component-
based software framework to support prototyping of 
medical robotics and computer-assisted surgery systems. 
It utilizes the cisst C++ libraries to provide basic foun-
dation classes (data types such as vectors, matrices, and 
transformations, and tools such as class and object reg-
istries, logging, etc.) and a component-based framework 
that supports different execution models, such as periodic 
threads, callbacks, and event-based programming. The 

we successfully apply in so many other domains does not 
help us translate the mental reasoning process that we 
use to think about software into a formal approach.

Formal Methods
To be able to guarantee proper operation of a soft-

ware component in the same fashion that we compute 
the behavior of a transistor or the loads on a beam, we 
must develop discrete logics that are tailored to the pro-
gramming languages in which we develop our software. 
Formal methods (FM) is the name that people often 
apply to approaches that can help us prove that our soft-
ware does what we design it to do.

FM can provide mathematically rigorous means of 
ensuring a software component’s behavior for all pos-
sible inputs, providing a completeness that is unat-
tainable by using testing alone. These approaches can 
eventually lead to written proofs, which are useful for 
software components that have complicated algorithms 
with nonobvious behavior.

These proofs are formalized versions of the models 
and reasoning that already exist in the heads of the engi-
neers who are doing the system design and implementa-
tion. Any engineer who has an idea of why what he or 
she is building is going to work also has in his or her 
head an informal proof of correctness. If the engineer 
has not thought of a proof, then he or she does not have 
any idea why the code or circuit might work, and it prob-
ably will not. The challenge is getting the proof out of 
the engineer’s head and onto paper, then checking all of 
its details to make sure that there are not any mistakes.

FM for software and other discrete systems have 
been developed by mathematicians, logicians, and com-
puter scientists for the past 40 years, and perhaps longer 
depending on when you start counting. This problem is 
challenging, but the community has made significant 
progress in recent years, applying a rigorous mathemati-
cal logic to different levels of software abstraction and 
different components. 

Each formal method has three components, which 
allows us to write down our proofs:

1.	 A language we can use to model the system

2.	 A language we can use to describe the system’s 
behavior

3.	 A sound reasoning strategy that will enable a rigor-
ous mathematical proof that the system we modeled 
has the behavior we describe

The sound reasoning strategy is simply a set of rules 
that describe the conclusions we can draw about the com-
putation of each instruction. Often, this combination of 
elements is called a “logic” because it is used to reason 
about systems in a particular domain. Once we have a 
logic, we can write down the steps of our proofs and check 
them to ensure that we have not made any mistakes.
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Therefore, our approach is to apply recent advances 
in FM to reason about the correctness of these concur-
rent data-exchange mechanisms, which are the most 
difficult to verify using standard test suites (as is well 
known, “timing” errors can lay dormant in code for a 
long time until triggered). This approach complements 
other validation activities, such as design reviews, code 
walk-through, and regression testing.

PROVING CORRECTNESS FOR CONCURRENT 
SOFTWARE IN SURGICAL ROBOTS

The SAW has a concurrent architecture, and the com-
munication mechanism that it uses to send data among 
the concurrent threads (shown in Fig. 2) uses no locks 
or blocking. Concurrent systems often have functionality 
that is not obvious; the main reason for this is that dif-
ferent threads of execution can interleave in unexpected 
patterns. For these systems, testing is unreliable when 
the goal is exhaustively finding bugs because it cannot 
adequately cover the state space, and software in a con-
current environment usually does not have a way of con-
trolling the interleaving during execution, making the 
exact conditions of tests unrepeatable. For this reason, we 
chose to focus on the concurrent aspects of the system, to 
help eliminate bugs and nonobvious behavior.

We chose to analyze a core algorithm that mediates 
concurrent data exchange among threads and that uses 
a data structure called the state table. It enables one 
thread (the writer thread) to maintain and update data 
critical to the robot’s understanding of its state, such 
as the position and velocity of its joints in space, while 

SAW includes a number of interface components, which 
encapsulate hardware devices, and software components 
such as robot motion, collaborative control, speech rec-
ognition, 3-D user interface, and video processing. A key 
aspect is the definition of interface standards, within the 
SAW framework, that enable “plug-and-play” configura-
tion of systems. For example, although robots are physi-
cally different, their interfaces (e.g., command names and 
parameters) have been standardized as much as possible.

SAW is currently used for research with the da Vinci 
surgical system, the JHU microsurgery workstation, 
and other surgical robotic systems.4 Because SAW is a 
software framework, there are many configurations and 
many applications for which it can be used. For example, 
it could create a heads-up display, dynamically super
imposing preoperative computed tomography or mag-
netic resonance images onto the surgical field; it could 
enforce no-cut volumes, preventing the surgeon from 
cutting into tissue or organs that he or she identified 
volumetrically on preoperative images; or it could actu-
ally make cuts based on the surgeon’s preoperative plan.

From the outset, SAW and cisst have been developed 
by using a well-defined process and set of tools (see Fig. 1). 
SAW uses the CppUnit and PyUnit testing frameworks 
to implement an automated nightly test suite, which 
consists of more than 1100 regression tests. This nightly 
test suite can find syntax errors or (sequential) program 
logic errors, but it generally cannot find errors in con-
current execution (e.g., timing errors, mutual exclusion 
problems, etc.). This is problematic because the eventual 
goal of many research projects is to translate the tech-
nology into the operating room for clinical testing.
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Figure 1.  (a) The cisst/SAW software development process and tools. (b) The automated test suite is based on CppUnit and PyUnit for 
the C++ and Python code, respectively; results are reported to the CDash web-based dashboard (right).



APPLYING MATHEMATICAL LOGIC TO CREATE ZERO-DEFECT SOFTWARE

JOHNS HOPKINS APL TECHNICAL DIGEST, VOLUME 32, NUMBER 2 (2013) 479

simultaneously allowing many other 
threads (the reader threads) to read 
uncorrupted, fresh values of these 
data for their own use. A single snap-
shot of the robot’s state is called a 
state vector. The state table is a circu-
lar buffer, shown in Fig. 3a, with ele-
ments, as in Fig. 3b, that each contain 
a complete copy of the state vector. 
The state table algorithm maintains 
read and write indices, each referring 
to a single slot, shown by dashed and 
solid outlines, respectively.

An HLRG model of a concur-
rent system is made of source code. 
The code for this component of 
the library is written in C++ and is 
approximately 2000  lines long. We 
created a model of the code by com-
puting a union of backward program 
slices whose slicing criteria are the 
different variables used in the state 
table’s data structures. We inlined 
the various functions in the call tree 
and converted the resulting code to 
a simplified subset of C. The result is 
collected into two functions, which 
are shown in Fig.  4; one represents 
the relevant code executed repeat-
edly by the writer thread, and the 
other is the code that is executed by 
a reader thread every time it wants to 
read the system’s state.

Examining the writer thread’s algo-
rithm closely, we find that the writer 
updates a slot by writing a fresh state 
vector into the write-indexed slot, 
advances the write index clockwise, 
updates the version number of the new 
write-index slot, and then advances 
the read index clockwise. There is 
only a single writer in the system, and 
the only function of the writer is to 
continually write fresh state-vector 
data into this buffer, filling it with 
data in a clockwise direction.

Fresh state-vector data are written 
in a slot each time the write index 
progresses around the buffer; there-
fore, to be uncorrupted, a single read 
needs to happen before the writer 
thread returns. By examining the 
algorithm, we can convince our-
selves that the data in a slot may not 
change before their version numbers 
are updated.
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Figure 2.  Diagram of data structures used in communication channels among different 
threads in the SAW.
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tively, and the rest of 
the virtual address 
space is unmapped,” 
by writing (100  23) 
* (104  36). Another 
example might be to use 
the temporal operators 
to assert, “In the past, 
address 100 contained 
some value, but at 
some subsequent point 
in time, it contained 
value 23 at the same 
time that address  200 
contained the origi-
nal value,” by writing 

7X.(100 U  X)  ((100 U  23) * (200 U  X)).

Reasoning About Concurrent Software
Our goal will be to ensure that when a reader thread 

completes a read of the state vector, it can accurately dis-
tinguish between a successful read that faithfully copied 
the values that were written and an unsuccessful read, 
where the values may be corrupted. In the latter case, 
the reader can try again.

First, we create an invariant we call I to describe what 
memory is allocated in our program. Some programs 
allocate and deallocate memory, so this can be compli-
cated and time dependent in general, but in the case 
of this program, it is simple. Shared state in our case 
consists of the read and write indices, the state vector 
elements, and their version numbers.

To detect when corrupted data have been read, the 
reader thread compares version numbers before and after 
the read; if the version numbers do not match, the read 
is assumed to have been corrupted and must be tried 
again. If they do match, we assume that the read was 
uncorrupted.

Modeling Concurrent Software Behavior
We need a language to describe the behavior of con-

current software, without reference to its specific imple-
mentation; to do this, HLRG uses logical statements, 
or predicates. A predicate is a precise, logical statement 
about a snapshot of the system’s state, which can be sat-
isfied or not (true or false) at any given moment in the 
system’s evolution. HLRG’s predicates are made up of an 
innovative combination of opera-
tors from first-order logic, separa-
tion logic,5, 6 and modal operators 
borrowed from temporal logics. 
Within HLRG, predicates are 
not confined to the current state 
of the system but refer to a vector 
of system states, called a trace, 
that represents the history of 
the system’s evolution over time. 
Table 1 shows the different opera-
tors available in the predicate and 
provides a brief description of the 
function and meaning of each.

Using these predicates, we can 
describe the effects of a program 
on memory, without reference to 
its details. For example, we can use 
the separating conjunction and 
point-to operator to assert, “At this 
instant, the program has allocated 
only two memory locations at 
addresses 100 and 104, which con-
tain the values 23 and 36, respec-

Table 1.  Different operators available in HLRG to express software behavior

a  b logical and

a  b logical or

¬a negation

7xP(x) existential quantification

6xP(y) universal quantification

addr 7  val assertion of the existence of memory at the given address, and that its 
contents are value, and that there is no other memory mapped

addr U  val same as above, but there may be other memory mapped whose loca-
tion and contents are left unspecified (this is called an imprecise bind-
ing assertion)

a * b separating conjunction is true when both a and b are true, and each 
are satisfied by memory at each step in the trace that does not overlap 
or coincide with the other at that point

a  b a held at some point in the past, and b has held at every step since

a  b a held at some point in the past, and b held at some point subsequently

a G  b a held one step ago, and b holds now

Wa a holds at every step in the trace

Ga a held at some point in the past

Figure 4.  Model of code.
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Underscores mean there is some value there, but we do not specify or need to know what it is. By doing this, we 
describe the shape of memory (i.e., what is allocated) without being specific about the values that memory contains. 
U is to * as  is to +, representing a prefix version of the separating conjunction used to conjoin a series of terms. The 
assertion of this invariant is implicit in every reasoning step we take. That is to say, every predicate P that we write 
about this system implicitly means P  I; I is so ubiquitous that we do not write it.

To reason about how these threads interact, HLRG uses a technique called rely/guarantee reasoning. In a sequen-
tial program, the only alterations to memory are from the instructions themselves; each instruction makes certain 
deterministic changes to the computer’s state, according to its semantics. In a concurrent program that is being ana-
lyzed by using HLRG, the program’s state changes with every instruction that is executed, but additional changes to 
state can occur in between instructions because of the actions of other concurrent threads in memory. To use HLRG, 
we need a way to express and summarize the effects that other threads can have on memory during the execution of 
the thread being analyzed.

To model the effects of other threads, HLRG uses the same predicate language it uses to describe behavior. How-
ever, when using these predicates to model the effects of other threads, the predicate represents an assertion that 
something is true during a particular time step, rather than a logical statement that may or may not be satisfied. This 
subtle difference allows predicates to be used to model atomic state transitions in the logic.

For the surgical robot, an executing reader thread does not know the state of the writer thread, so we need to sum-
marize what atomic changes the writer can make to the computer’s state in between instructions. This description of 
behavior is necessary because some of the reasoning rules require it.

Lines 6 and 7 in Fig. 4 are one atomic action from the perspective of shared state; this action updates the write 
index, writeindex, to point to the next element in the buffer. A description of this atomic action can be written 
as an assertive predicate:

This also asserts that the most recent step must follow the UpdData step, with intervening steps that do not 
change shared state, Id. We use the temporal operator  to enforce this sequencing. This predicate, along with all 
of the others that describe atomic steps, has an Id connected to it with a separating conjunction. This assertion says 
that there is other memory that is disjoint from the memory explicitly referenced in the rest of the expression and 
that it has not changed between the last two state transitions in the thread. This makes it so we do not have to write 
imprecise assertions (i.e., using U) in these atomic transitions. Other shared memory is allowed (accounted for by Id) 
and is asserted to remain unchanged.

Lines 8 and 9, 10, and 4 and 5 also constitute atomic blocks, and follow similarly:

Finally, we used the description of the program’s atomic steps to create rely and guarantee predicates describing the 
operation of the Write program in a fairly straightforward way.
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The guarantee predicate G is a guarantee about the behavior of the thread executing the Write function; it tells 
us how a step taken by that thread affects shared state. R assures us that the rest of the concurrent processes (namely 
the multitude of possible readers executing Read) have no effect on the state at all. M  describes the behavior of the 
system as a whole; any step in the system will either execute a step in the Write function or execute a step in the 
Read function. Furthermore, (I G I) tells us that the invariant that describes the domain of the program does not 
change from step to step (i.e., no memory is mapped or unmapped during this program). Via this process, we have 
described the effect of Write on shared state as well as its interaction with other concurrent processes.

Proving Data Integrity
To prove data integrity, we began with a predicate of true as a precondition to Read and used the sound reason-

ing rules (known as inference rules) associated with HLRG to move that predicate forward through the program. As 
it moves past instructions and the gaps between instructions where concurrent threads can operate, the predicate 
changes form.

Starting at lines 15 and 16, which are the first lines that have an effect on the program’s state, our predicate is 
referenced to the point right before line 15, and true means that the predicate is satisfied by any possible configura-
tion of memory.

The first reasoning step is to apply inference rules that describe how executing an assignment transforms a predi-
cate that holds before the assignment into a predicate that holds after the assignment. This allows us to write down 
the appropriate predicate after line 15:

This says “Immediately after the atomic step described by the assignment on line 15, the local variable rd has 
the same value as the read index.” Next, we have to consider the gap between instructions 15 and 16 because the 
writer thread can change shared state. This is where we use G because the rules for reasoning require a predicate that 
describes how the other threads change state. First, we know that at each step, ( )R GM defW 0 , which means our state 
is altered according to either R or G. Because R does not change the state, G describes the different atomic changes that 
can affect our shared memory. A finite number of these can occur before line 16 executes. These atomic steps include 
modification of the read index because it is shared state. Propagating the predicate past the gap, we find:

The difference is that now we have a G operator. This says, “At some point in the past, the read index had some 
value, and now rd has the same value as it had then.” Notice that we cannot say much about the value that the read 
index has right now because it may have changed during the gap between lines 15 and 16 as a result of the operation 
of other concurrent threads. We also don’t know exactly how far in the past its value matched what is currently in 
rd, only that it did at some time. Notice that rd is not shared state but is local to this function, so it will not change 
unpredictably because of the action of other concurrent threads. Now we can use the predicate we have so far and 
apply it to the point immediately before line 16, which is also an assignment:
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We take similar steps with the predicate, propagating it past line 16 and past the gap between 16 and 17.

Here we used that p q p qdef_ /G G^ h to simplify the resulting predicate. The result says, “At some point in the 
past, the read index had some value X, and sometime after it, the Xth element of the version array had some value Y, 
and the present local variables curTic1 and rd contain values Y and X, respectively.”

It turns out that the knowledge that the read index once held X is not useful to us during the rest of this proof, and 
so we can use another reasoning rule to “forget” about this and drop this term, to make it easier to read.

As we can see, as we move the predicate forward through the program, it changes according to the semantics of 
the different instructions as they are executed as well as the operation of concurrent threads in the gaps between 
instructions. There are many choices to be made about which reasoning steps to take and what sort of information 
needs to be expressed in the predicate at each step.

We seek to guarantee that when the if statement takes the return 1; branch, the postcondition of the com-
putation of the branching condition guarantees that Vector(X) U  D held during the time period that included 
copying of state vector elements, where X is the index of the slot we were reading and D represents the values in the 
memory array containing the state vector we just read.

This implies not just that Read read data were constant during the copy but also that its contents could not have 
been altered by a writer during that period, because where updates cannot occur in the Write algorithm, the state 
vector is considered uncorrupted. This is subtle but important because it guarantees that our read did not occur in 
the middle of a Write that had stalled, leaving the value constant but corrupted.

With such a guarantee, when the Read completes successfully, the value that is returned accurately reflects an 
uncorrupted version of what was stored in that slot by Write.

Going through this process is straightforward, once one proves the following, which we call the stable data lemma:

This is an invariant tied to our Read algorithm, which says: If, at some time in the past, we looked at the value of 
version+h and then looked at the state vector in slot h, Vector(h), and version+h in the present matches what 
we saw the first time, then the value of Vector(h) in the present is also the same as what we read in the past. We 
need this lemma to prove that there is a continuous period of time when Vector(h) U  D holds.

When we initially attempted to write down a proof of the stable data lemma by inducting over the steps in a trace, 
we found that it was not true of our system, and thus the read data integrity property was not true: readers could 
unknowingly read corrupted data. We had found a subtle bug, not by informally examining the system or by testing 
it, but by carefully modeling it, writing a lemma, and attempting a formal proof.

The crux of the problem is that there is a very short period of time when the write index references a slot that 
occurs after the version number has changed but before the data update has been completed. During this time, the 
data may become inconsistent without the version number changing. If the read occurs during this time, the result 
may be inconsistent without our being able to detect it. We cannot guarantee that this situation never happens 
because the change of version happens separately from the update of index-writer.

Fixing a Potential Data Integrity Bug
The bug we found is a subtle one that requires a particular timing of the interactions among reader and writer 

threads. In every situation that we can think of that causes the problem above, the problem occurs when the initial 
version check and the read occur during the period when the write index is referencing the element being read; 
consequently, the state in between the initial version check and the read must occur when the element being read is 
referenced by the write index. We modify our Read algorithm so that it checks the status of the write index between 
the first version check and the read of the data.

To guarantee that we solved this problem, we revised the model of the Read algorithm, shown in Fig. 5, and modi-
fied the statement of our lemma to reflect the changes we made:
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We call this the improved stable data lemma, and we are able to prove it using induction as we initially planned. The 
completed proof of the improved stable data lemma is given in the Appendix, along with a number of other lemmas.

Once the stable data lemma has been proven, we can complete the proof of the read data integrity property that 
we seek. After line 19, our predicate looks somewhat intricate but gives a somewhat detailed picture of data structures 
in our program:

The predicate at this point is made of two terms separated by an “or.” The first term describes the case where the 
conditions that we are proposing to use to identify an uncorrupted read have not been met, and the second describes 
the case where they have. The stable data lemma is in the form of an implication, and the second term of the predi-
cate asserts the necessary conditions to satisfy the implicant (left side) of the implication; consequently, we can con-
clude the right side (i.e., D = D) and add that term to the right disjunct of the overall predicate. Using induction, we 
can transform the second disjunctive term into an assertion about the continuous stability of the data in our state 
vector (i.e., that the data could not have changed during the read):

Propagating this predicate past the loop in lines 20 and 21 adds the terms data = D and data = D, respectively, 
to each of the disjuncts in the predicate. Further propagating the predicate into the “if” statement pares off the first 
disjunctive term. We can examine the remaining predicate and find that if the execution reaches that point, the 
state vector was unchanging during the read, and the values are accurately reflected in the local variable data. This 
proves the data integrity property we seek: the read function can accurately discern cases where the data are uncor-
rupted. The completed proof of read data integrity is given in the Appendix.

CONCLUSION
The most promising strategy for creating a zero-defect software system is not to layer on additional functionality but 

to continue developing the mathematical rigor of models and the reasoning we use about the software we are designing. 
We aim to be able to mathematically prove that our system will not behave unexpectedly under any input conditions.

Figure 5.  Corrected code.
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The FM community is in the process of developing 
the domain-specific logics that can be applied to vari-
ous levels of abstraction in software systems. The soft-
ware engineering community can help develop these 
techniques by experimenting with their application in 
real systems. This could provide immediate benefit to 
software engineering projects in the form of proofs of 
correctness about some of the critical algorithms. More 
importantly, such experimental applications could also 
identify problems with the application of these logics 
that help lead to a vision of what the tools should look 
like in the future.
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In this article, we have demonstrated the certification 
of a single, well-scoped component of a larger software 
system to be zero defect with respect to a single property: 
we can guarantee that successful reads are never cor-
rupted by the data-exchange mechanism of the surgical 
robot library. We chose this component and the property 
because it is critical to the system; if the data-exchange 
mechanism corrupted state vector data, the robot would 
not know where it was operating—a potentially cata-
strophic condition for a patient undergoing surgery. This 
decision reduces the possible failure modes of the system.

There are many other things that can go wrong with 
the system, and we have a long way to go before we can 
declare the whole system to be zero defect. We have 
made no guarantees about other components, which 
could fail and affect this component. Even this compo-
nent could cause problems because we have only guar-
anteed one property. For example, we would also want to 
prove that the data we have read are recent (fresh) and 
that the reader cannot be starved by the system; we will 
need to do more work to accomplish this.

This is an exciting time to be in the field of soft-
ware engineering because FM is beginning to come 
to a maturity level where it can be used on practical 
problems. However, there are many problems still to be 
solved. Scaling our proofs to large systems is still very 
difficult to do, even with the aid of computers. We have 
not figured out how to make these techniques easy for 
someone to use. Often, they are more pedantic than 
they need to be, and their reasoning steps are too small 
for the leaps we make in our heads. We need to automate 
all of the simple reasoning steps and leave the tricky bits 
to be proved by the engineer, and we need to develop 
easy-to-use interfaces for the software engineer.

APPENDIX.

DETAILS OF PROOF OF IMPROVED STABLE DATA LEMMA
There are a number of properties that are useful in proving our read data integrity property. In this section, we will state these 
as lemmas and prove them. We end this section with a complete proof of the improved stable data lemma.

Cyclical Update Lemma
The program cycles endlessly through a fixed sequence of atomic transitions described by the following list:

List elements are separated by double colons ::, and + is the Kleene plus, indicating that the preceding state may have 
occurred more than once.

We prove this lemma by inspection of the predicates that we used to describe atomic transitions, with attention to the por-
tion of the predicates that enforce ordering, e.g.,

Because the structure of the predicates does not contain any other disjunctive terms, the linear ordering above follows.
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Monotonic Version Lemma
A given version number is monotonic.

The only step in a trace that affects Ticks+h is the UpdVer step, and only when writeindex U  h. Each time a trace 
enters this state, it increments Ticks+h by 1. Assume the implicant. A given trace will enter this state n N!  times. Con-
sequently, , ,X X X X Xn so for N! #= +l l^ h.

Constant Version Lemma
If we measured the version of a slot at some time in the past, and its value then is the same is its value now, its value at some 
time in between these points is also the same.

Assume the implicants, that version+h U  X  version+h U  X’, version+h U  X’  version+h U  X, and (X = X). 
Apply the monotonic version lemma to the first two terms, and conclude that X  X’ and X’  X. Substitute X = X in the 
second term, and we find X  X’  X. Consequently, (X = X’).

Continuously Constant Version Lemma
If we measured the version of a slot at some time in the past, and its value then is the same as its value now, its value between 
these points was the same at every point in time. Our formalization for this lemma includes some English:

If G(version+X U  Y)(version+X U  Y), then we can conclude that from the initial time when we first measured the 
version until now, (version+X U  Y) held continuously.

Assume the implicant, that the first term is satisfied by a state in the trace T, si, and that the second term is satisfied by the 
current state in the T.last. For each state s in between si and T.last, we can measure (version+X), and by application of 
the constant version lemma, we can show that (version+X U  Y) for all s. States si and T.last satisfy (version+X U  Y), 
by the assumption of the implicant. Consequently, (version+X U  Y) held continuously, from the first time we looked at 
version until the present moment.

Improved Stable Data Lemma

Our proof is by induction, inducting over the steps in a trace. We begin by proving that i ⇒ i + 1. Different terms of the 
implicant have been named by using capital letters, as indicated by the brackets in the statement of the lemma. These letters 
will be used during the proof to refer to each term, as before.

Assume that we have a trace T that satisfies this lemma. Show that any step taken produces a trace T that also satisfies this 
lemma. The possible steps that can be taken are:

•	 UpdWrite—Changes writeindex in the current state, but the predicate refers to this variable in the past, 
so it does not affect the truth of the predicate. 

•	 UpdVer—Changes version+h when writeindex U  h. It could falsify the implicant, but this could only 
preserve the truth of the predicate.

•	 UpdRead—Does not affect any terms in the predicate.
•	 UpdData—This step could change D when writeindex U  h and could falsify the implicand. When this 

occurs, it must have been preceded by the following state-changing steps, in the following order: UpdWrite 
:: UpdVer :: UpdRead :: UpdData+. To show that this step does not falsify the predicate, we must show that 
every time the implicand is falsified, the implicant is falsified as well.
If term A was satisfied by a state in the trace before the UpdVer step in the sequence, then the most recent 
UpdVer step would have been taken with writeindex U  h, falsifying term E and preserving the truth of the 
predicate because UpdVer never repeats version numbers, and no other predicate changes the version binding.
If term A was satisfied by a state in the trace after the UpdVer step in the sequence, then terms A and E would 
be satisfied, and points in the trace available to satisfy term B must occur after the UpdVer step as well, when 
writeindex U  h, falsifying term F and preserving the truth of this predicate.
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Now prove the base case to be true. Any trace that only has one state, where the write index does not point to the slot h, 
satisfies the implicant and satisfies the whole predicate. Traces with a single state where the write index points to h falsify 
the implicant, also satisfying the predicate.

We have shown that the base case satisfies our predicate, and we have shown that for any trace that satisfies the predicate, 
any one step also produces a trace that satisfies the predicate. By induction, we can conclude that our predicate holds for any 
trace produced by our system.

DETAILS OF PROOF OF READ DATA INTEGRITY
This appendix completes the proof of data integrity property, following the strategy described in the Proving Data Integrity section.

Figures 6 and 7 show the propagation of the predicate starting with the precondition of true and ending at return 1, 
indicating a successful read. In these figures, lines of the function are shown in between predicates so that it is clear where 
in the program each predicate applies. Predicates are shown in curly braces.

Figures 8 and 9 show in detail the transformations that we apply to the predicate to reason about the nonatomic reading of 
state (i.e., line 20 and 21 in the program) in the presence of a concurrent thread running Write. In the original SAW C++ 
source code, this read is a single instruction; here, it has been transformed into a loop to remind ourselves of its nonatomic 
nature.

The precondition for the successful completion of the program shown in Fig. 7 contains data = D, and at some range of 
time during this program, Vector(X) U  D. We know from the properties of the Write that for any range of time where a 
slot is guaranteed not to be written, the slot may be considered uncorrupted.

We conclude that when the read successfully completes, the value returned accurately reflects what was stored in memory for 
that state vector element during the read, and that value was stable and uncorrupted during the read (i.e., no writer was alter-
ing it or may have altered it during that time). 

Figure 6.  Beginning the proof of the data integrity property. This is a straightforward collection of state. Before line 17, we drop 
the information about having the value of the read index because it is not necessary for the proof of data integrity.
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Figure 7.  Using the series of transformations described in Figs. 8 and 9, we can reason about the propagation of the predicate 
past the nonatomic read in line 20 and 21. At the completion of the read, data = D’, and some subset of these moments in the 
period between the first version check and the present is used to read the state vector into the local variable data. If the value 
of Vector(X) was constant, then we can conclude that at the end of the read, D = D’.

Figure 8.  We apply sound inference rules to transform the postcondition of line 19 into two cases, one where the version for 
the slot from which we are reading has changed, and the other where the version has stayed constant.
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Figure 9.  The first predicate shown is the result of allowing our system to evolve a single step past line 19, allowing us to trans-
form the resulting predicate in Fig. 8 to distinguish two new cases. The first disjunctive term is the same as the first disjunctive 
term of the result of Fig. 8, except time has passed that has made the then present state part of the history. The second and third 
terms are the new cases associated with having the second version check match the first, and having a third version check match 
and not match, respectively. The second predicate shown is the result of collapsing the first and third disjunctive terms into one 
by waiting for the present moment to pass into history and ignoring some of the state we have collected in the third. The third 
predicate uses the three identical measurements of the version in the history to apply the continuous version lemma, and show 
that the version number must have been this value continuously between the original accumulation of the Vector(X) U D 
term in this predicate and the present moment. We can then apply the stable data lemma to show that since version+X U  Y, 
Vector(X) U D during this time period. Finally, in the fourth predicate, we have simply named the disjunctive terms of the third 
predicate Q1 and Q2 for ease of reference. This is an invariant that applies at each moment during the for loop in lines 20 and 21.
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