
JOHNS HOPKINS APL TECHNICAL DIGEST, VOLUME 32, NUMBER 1 (2013) 419

INTRODUCTION
A team from APL has been using model-based sys-

tems engineering (MBSE) methods within a conceptual 
modeling process to support and unify activities related 
to system-of-systems architecture development; model-
ing, simulation, and analysis efforts; and system capabil-
ity trade studies. These techniques have been applied to 
support analysis of complex systems, particularly in the 

net-centric operations and warfare domain, which has 
proven particularly challenging to the modeling, simula-
tion, and analysis community because of its complexity, 
information richness, and broad scope.

In particular, the APL team has used MBSE tech-
niques to provide structured models of complex systems 
incorporating input from multiple diverse stakeholders 

odel-based systems engineering techniques 
facilitate complex system design and docu-
mentation processes. A rigorous, iterative 

conceptual development process based on the Unified Modeling Language (UML) 
or the Systems Modeling Language (SysML) and consisting of domain modeling, use 
case development, and behavioral and structural modeling supports design, architect-
ing, analysis, modeling and simulation, test and evaluation, and program management 
activities. The resulting model is more useful than traditional documentation because 
it represents structure, data, and functions, along with associated documentation, in 
a multidimensional, navigable format. Beyond benefits to project documentation and 
stakeholder communication, UML- and SysML-based models also support direct anal-
ysis methods, such as functional thread extraction. The APL team is continuing to 
develop analysis techniques using conceptual models to reduce the risk of design and 
test errors, reduce costs, and improve the quality of analysis and supporting modeling 
and simulation activities in the development of complex systems.

Model-Based Systems Engineering in Support 
of Complex Systems Development

J. Stephen Topper and Nathaniel C. Horner



J. S.  TOPPER  AND  N. C.  HORNER

JOHNS HOPKINS APL TECHNICAL DIGEST, VOLUME 32, NUMBER 1 (2013)420

•	 Structural model: This specification of system struc-
ture allocates attributes and operations to system 
components, expanding and adding detail to the 
domain model.

The process is shown in Fig.  1 and is described in 
more detail below.

The conceptual modeling process provides an essen-
tial foundation as a project moves from problem space to 
solution space. In the early stages, the domain models 
and use cases provide a basis for analyzing needs and 
identifying problem parameters. Once the concept space 
is modeled, possible solutions can be developed during 
creative synthesis in the configuration space.

Finally, each configuration is evaluated using an 
applicable analysis process. It is during this evaluation 
step, not before, that M&S or another analysis meth-
odology is carried out based on what has been learned 
and specified during the previous iteration of the con-
ceptual development cycle. The results of this evaluation 
are then reflected in alterations to the conceptual model 
during a subsequent iteration; the cycle is repeated as 
many times as is necessary to develop a robust solution 
(e.g., a final system design or an M&S architecture). 
Ultimately, the process provides a coherent view of a 
system and its domain that can be used (and reused) as 
a basis for analysis of the system configuration, behavior, 
and alternatives. It can also form the basis for software 
model design in the event that an M&S effort is desired.

The process helps project stakeholders transform 
informal descriptions of systems into formalized, com-
plete documentation. Each step produces output that 
provides traceability from the final product back to ini-
tial descriptions and assumptions. The process forces 
domain understanding before design, evaluation, and 
development.

Guiding Principles
Several overarching principles guide the conceptual 

modeling process.

Breadth-First Development (or, Scope Before Fidelity)
Scope is defined as the area within the boundaries 

of the problem space. Fidelity is defined as the level of 
detail incorporated into the modeling or analysis activi-
ties associated with the problem. The modeling process 
dictates a breadth-first approach in which the scope is 
covered comprehensively before fidelity is addressed. 
This mandate forces designers and analysts to thor-
oughly and objectively define the problem domain scope 
and prevents “jumping ahead” to selection of a particular 
analysis methodology, development of simulation tools, 
or premature conclusions.

We first capture the entire domain at a high level of 
abstraction and then drill down into more detail where 

to support understanding of critical components, inter-
faces, and processes of these systems, and to document 
explicit traceability between analytical needs and the 
simulations designed to meet them.

This article provides an overview of the conceptual 
modeling process used to support these goals, presents 
a simple example to illustrate the process, and explains 
some of the analytical techniques that can be applied 
directly to such models. It concludes with a discussion of 
the broader benefits of this approach.

OVERVIEW OF THE CONCEPTUAL MODELING 
PROCESS

In brief, a conceptual model is a complete, coherent 
representation of a system and its operating domain, 
including interactions with other systems and with its 
environment, that is common across the stakeholder 
community. Conceptual models are created to docu-
ment and understand a problem and its context and 
to provide a foundation for developing and analyzing 
potential solutions—regardless of the method for that 
analysis, which may or may not include modeling and 
simulation (M&S).

The general goal behind conceptual modeling is to 
establish a framework that facilitates understanding of 
the problem space, synthesis of possible solutions, and 
analysis of those identified solutions. The process devel-
oped and used to build the conceptual model involves 
creating the following artifacts:

•	 Domain model: This artifact describes what the 
system and its environment are—it captures the 
high-level components of the system and its oper-
ating environment and establishes the normalized 
referential framework particularly important for 
multidisciplined stakeholder organizations.

•	 Use cases: These written descriptions of what the 
system will do capture its expected behaviors and its 
interactions with external actors.

•	 Functional model: The functional model describes 
how the system will accomplish its goals—it breaks 
the use cases into greater detail and shows activity 
flows and state transitions among components. Com-
plex functionality, an increasingly common char-
acteristic of modern systems, is difficult to address 
using traditional assessment techniques. In conjunc-
tion with other artifacts presented in this section, 
new techniques, outlined in the Functional Thread 
Analysis section, enable and enhance analysis, test-
ing, and evaluation of complex systems, which are 
difficult to assess using traditional analytical meth-
odologies and tools.



MODEL-BASED SYSTEMS ENGINEERING IN SYSTEMS DEVELOPMENT

JOHNS HOPKINS APL TECHNICAL DIGEST, VOLUME 32, NUMBER 1 (2013) 421

stand the context of their use. A development strategy 
based on the conceptual modeling practices described 
in this article places emphasis on ensuring that cur-
rent work will remain relevant and useful for future 
projects. Processes should be well defined, documented, 
and repeatable, products should be reusable and extend-
able, and analysis results should add to the general body 
of knowledge used in future studies. This philosophy 
means that, again, projects are started at a more gen-
eral level than they would be if they were aimed at a 
single-use solution, but these generic initial outputs pro-
vide a common starting point for future work and reduce 
duplication of effort. Defined, repeatable processes also 
reduce project scope, schedule, and resources required 
for future projects.

Iterative, Agile-Informed Development
While conceptual model development begins at a 

generic level, the goal is usually to support a specific 
solution—an analysis framework, simulation design, 
or system architecture. We arrive at this end result 
through iteration—progressively refining generic ele-
ments into higher-fidelity representations of the system 
and its domain. Prior activities are revisited as neces-
sary, and multiple cycles through the stages are required. 
Iteration allows a high-fidelity solution to have a logical 

such detail is necessitated by the problem. This approach 
fulfills several important roles. First, by scoping the 
problem before developing fidelity, it ensures that effort 
and resources are not wasted on work that does not con-
tribute to the current task (i.e., work that falls outside 
the problem scope). Second, it ensures that no pertinent 
areas of the domain are ignored. A project that moves 
too quickly toward detailed analysis of the most acces-
sible elements in the problem space risks ignoring sig-
nificant elements at the periphery of the domain. Each 
element in the domain outside of the problem scope 
should be placed there explicitly after consideration, not 
excluded by default. Third, the approach establishes a 
basic understanding of the problem domain composition 
at the beginning of the effort that, through extension, 
will support not only the current analysis task but also 
future work.

Reusable, Repeatable, Generic Processes and Products
Historically, the output from one architecture or 

analysis task frequently goes unused in future efforts, 
which instead start over from scratch. That is, the prod-
ucts are so narrowly scoped to one task that they fail to 
have applicability to other tasks, or previous results are 
documented or archived in a format that is not easily 
accessible or lacks supporting data necessary to under-

Operator

Realization
(particularization)

How the components
collaborate to accomplish

system goals

The
system’s

goals

Use cases
Behavioral diagrams
(activity and state, with

class mappings)

Problem
space

Parameter
identi�cation

Creative
synthesis

Solution
space

Structural diagrams
(class and block diagrams)

Domain models

EvaluationConcept
space

Con�guration
space

The components of the
system and its
environment

How individual
components

support system
goals:

speci�cation for
attributes and

operations
Abstraction

(generalization)

Needs and area
analysis Solutions analysis

x

z

x y

ya yb yc

z

y

Figure 1.  Conceptual modeling process and the systems development process. (Some concepts in this diagram are adapted from Ref. 1.)



J. S.  TOPPER  AND  N. C.  HORNER

JOHNS HOPKINS APL TECHNICAL DIGEST, VOLUME 32, NUMBER 1 (2013)422

tion means that these elements are defined according 
to common conventions that apply universally across 
the domain. Traceability indicates that the context, 
source, and assumptions of a particular element are 
readily apparent. Organization means that relationships 
between domain elements are defined. These four char-
acteristics promote understanding and transparency in 
the products being developed, be they architectures, 
software models, analysis processes, or results.

Conceptual Modeling Process Elements
While conceptual model development does not 

prescribe a particular representation language or tool, 
a common approach—and the one adopted by the 
APL team—is to use the Unified Modeling Language 
(UML), a standardized representation of system design 
developed by the software community, or its systems 
engineering counterpart, the Systems Modeling Lan-
guage (SysML).

UML is an industry-standard modeling language 
that provides, through a collection of diagrams, a stan-
dardized syntax for representing system components, 
their relationships, and how they operate.4 SysML is “a 
general-purpose graphical modeling language for speci-
fying, analyzing, designing, and verifying complex sys-
tems that may include hardware, software, information, 
personnel, procedures, and facilities.”5 These languages 
facilitate modeling of systems with standardization and 
rigor yet remain flexible enough to allow the user to rep-
resent systems using vocabulary and other conventions 
appropriate for his or her domain. This combination 
of rigor and flexibility, together with the broad range 
of model diagram types, makes these languages a good 
choice for representing system-of-systems configura-
tions, operating environments, and behaviors. Further-
more, a UML or SysML model can be translated into 
an HTML format, allowing the user to navigate using 
hyperlinks and cross-references. The multidimensional 
richness of such a presentation allows different stake-
holders to see the views, or slices, of the model of inter-
est to them, while maintaining internal consistency 
across the range of viewpoints. Primarily for this reason, 
a body of knowledge thus codified in a standard model-
ing language has greater value to acquisition or research 
and development organizations than does a lengthy doc-
ument consisting of one-off representations of systems 
and information.

ICONIX is a software development process that 
focuses on developing use cases and domain models 
to understand a proposed system before beginning 
implementation of the system.6 While it was originally 
designed as a software process, the APL team has 
extended it to facilitate systems architecture analysis. 
It is appropriate for this task because it supports the 
guiding principles listed in the previous section. First, 

basis traceable back to generic assumptions and views of 
the problem.

The success of the process depends on periodic 
review and revision of the output products by design-
ers, analysts, customers, subject-matter experts (SMEs), 
operators, and other project stakeholders. Only through 
iteration will the final result be a verified, validated, and 
complete solution within its problem domain.

Each iteration should be completed within a reason-
able time and should have a specific goal in order to 
avoid the “analysis paralysis”2 that is anecdotally cited 
as a problem by opponents of breadth-first, model-based 
approaches. The software world has benefited from the 
agile movement, a development philosophy that empha-
sizes short-term iteration, early and frequent product 
delivery, collaboration with the customer, and adapta-
tion to changing requirements.3 Rigorously following 
one of the numerous agile methodologies on an archi-
tecture development effort or an analysis study may not 
be appropriate, but following these general principles is 
important to avoiding a stalled modeling process. Itera-
tion, as discussed above, prevents moving too deep too 
quickly. Agile developers recognize that customer reac-
tion to early products reveals misconceptions of customer 
desires before they are too late to address. Changing 
requirements can alter project scope, and collaboration 
with a broad range of stakeholders improves the qual-
ity of the end result. Iteration, with incremental product 
delivery and stakeholder review after each round, helps 
ensure that the problem domain is adequately under-
stood, architectures are complete and developed to the 
correct level of fidelity, analysis tools meet users’ needs, 
and analysis results answer the right question at the 
right level of detail.

Decomposition to Primitive Elements
A reductionist approach seeks to decompose ele-

ments to their simplest, primitive forms. This approach 
is compatible with the focus on breadth-first generality 
described above. Decomposition of an entity into its 
fundamental components allows definition of common 
building blocks among the domain entities. For instance, 
when modeling a military system domain, the behavior 
of sensors, jammers, and radios can be subsumed into 
the common function emit. Naturally each of these 
emitters serves a different purpose, but classifying them 
according to their most basic attributes and operations 
allows leveraging of their commonalities and makes 
standardization easier. Once the generic primitives are 
defined, detailed specifics extend the model as needed 
during subsequent iterations.

Consistency, Standardization, Traceability, and Organization
Consistency means that the elements of a prod-

uct or process are not self-contradictory. Standardiza-



MODEL-BASED SYSTEMS ENGINEERING IN SYSTEMS DEVELOPMENT

JOHNS HOPKINS APL TECHNICAL DIGEST, VOLUME 32, NUMBER 1 (2013) 423

stakeholders, allows all relationships between constitu-
ent systems to be considered during analysis, and pro-
vides a uniform basis for analysis in the domain.

Use Cases
Once the domain model has been created, formalizing 

the constituent elements of the domain, the interactions 
and behaviors of those elements must be documented. A 
use case is “a goal-oriented set of interactions between 
external actors and the system under consideration.”7

Use cases are developed by users, SMEs, and domain 
experts to describe generally how the system should 
function and are listed in a use case diagram, which 
depicts the descriptive name of each use case along with 
other participating actors. Like any UML/SysML arti-
fact, use cases can be developed in a hierarchy specifying 
different levels of detail. Once all use cases have been 
identified, they are formally documented in use case 
description documents. At this stage, some initial scop-
ing of the domain can begin—only use cases of interest 
to the problem need to be documented in detail. A use 
case description typically includes a name and summary 
description, the participating actors, preconditions for 
execution, triggers causing execution, activities occur-
ring within the use case, possible exceptions and alter-
native execution paths, and postconditions defining use 
case completion. Numerous sources, such as the book by 
Cockburn,8 describe how to build use cases.

Writing use case documentation is an important ini-
tial step where general system operation statements are 
formalized into explicit descriptions of system functional-
ity. Use cases form the basis for determining participation 
of system elements in activities and identifying common 
recurring activities throughout the domain. Well-docu-
mented use cases resolve ambiguity about scope by pre-
cisely specifying the system’s functions. Because use cases 
collectively become the definition of project scope, con-
tinuous stakeholder vetting and agreement is required.

Note that the domain model and the use cases are 
particularly dependent on each other. It is likely that 
use case development will uncover additional domain 
entities absent from the domain model; these should be 
added as they are discovered.

Functional Model
Activity and state diagrams show the behavior of 

system objects as they collaborate to fulfill the goals 
identified in the use cases.

Activity diagrams trace functional and informational 
flow through the different components of a system. 
They are often generated by translating the operational 
steps documented in a use case into graphical form and 
further decomposing these steps. Candidate system 
configurations are then created by allocating these 
activities to domain model entities.

it supports consistency and organization by making 
use of UML diagrams to document the process stages. 
Second, ICONIX is a “lightweight” process supporting 
agile development. While it supports desired rigor 
and documentation, it allows iteration, flexibility, 
and response to change—characteristics that are also 
important for analysis projects in the dynamic net-
centric operations and warfare realm. Finally, the process 
supports breadth-first development by emphasizing 
understanding the domain as a first step, and it does not 
allow moving into design and modeling until the system 
domain has been understood.

Brief descriptions of each conceptual model artifact 
follow.

Model Input
To begin the modeling process, the team can start 

with any existing models of similar systems, input from 
clients and SMEs, and documentation pertaining to the 
target system and its mission such as concepts of opera-
tions, high-level requirements lists, and mission descrip-
tions. Sustained stakeholder involvement is crucial.

Domain Model
The domain model provides an overview of the system 

being analyzed by laying out its constituent components, 
showing the elements in the broader environment, and 
specifying the relationships between these entities. Its 
purpose is to capture the makeup of the problem domain 
and show how the pieces fit together. It is represented as 
a high-level UML class diagram or SysML block-defini-
tion diagram without inclusion of attributes and opera-
tions. Candidate domain entities are taken from the 
model input, and relationships are drawn between them. 
The domain model should focus on breadth, encompass-
ing all the components of the target system and all the 
entities that relate to it or may affect its operation in 
some way. Subsequent stages in the process reduce the 
domain model to a minimal set of elements critical to 
the particular system architecture or analysis project, but 
at this stage, the model is comprehensive (though gen-
eral). Broad coverage ensures that the problem scope can 
be set correctly, with explicit knowledge of domain ele-
ments included or excluded from the scope. The domain 
model may be developed as a set of hierarchically layered 
diagrams. The top-level domain model may, for instance, 
only include a few very broad classes, each of which may 
be further detailed in its own diagram.

As with other products, the domain model should be 
repeatedly reviewed by SMEs and other stakeholders for 
completeness, correctness, and standardization. When 
the domain model is complete, it should represent the 
entire domain, its core components, system boundar-
ies, and entity relationships. This model facilitates a 
common understanding of the domain by the project 



J. S.  TOPPER  AND  N. C.  HORNER

JOHNS HOPKINS APL TECHNICAL DIGEST, VOLUME 32, NUMBER 1 (2013)424

Underlying Database
Many modeling tools used for conceptual modeling 

store model data in an underlying database. While the 
graphical user interface is appropriate for constructing 
and viewing the model, the model data can be extracted 
using a relational database management system and 
processed using other analytical tools. This process 
also enables linkage between model data and external 
analysis data, documentation, and other program arti-
facts. Many tools also support configuration control 
via common applications. Model data is exportable to 
XML-based formats, allowing sharing between mod-
eling tools. These capabilities enable the conceptual 
model to form the foundation of a program’s informa-
tion management system.

Functional Thread Analysis
The state of a complex system changes continu-

ously as the designed functionality is executed within 
changing mission phases and environmental conditions. 
These systems can invoke a large number of functional 
threads to accomplish (or fail) a required task, and as 
system complexity grows, it can be difficult to identify 
critical threads and accurately assess key system perfor-
mance requirements.

Graph-Theoretic Algorithmic Techniques for Functional 
Thread Extraction

Analysis of functional threads represented by the 
activity model uses the underlying model data discussed 
above. Activity diagrams can be interpreted as directed 
graphs, where activities are the nodes and the activity 
transitions are the edges between them.

The APL team has successfully extracted these node 
and edge data from conceptual model databases. Pro-
cesses based on graph-theoretic path-finding algorithms 
are then executed on these data to provide a list of all 
unique paths through the activity model. The primary 
challenges are to properly handle parallelism and recur-
sive looping in the activity paths; the current implemen-
tation of the prototype tool for thread extraction uses a 
modified breadth-first search to discover activity threads 
(see the example at the end of this article).

The number of extracted threads from even a simple 
model shows the complexity inherent in many sys-
tems. The extracted thread data can also be analyzed 
to determine critical activities and, via associated activ-
ity-to-block allocations, a system’s critical components. 
Bottlenecks and heavily used interfaces are identifiable.

Thread Extraction Example
A methodology that enables machine processing of 

functional designs is especially useful in complex, col-
laborative systems such as those involved in network-

State diagrams are another type of functional model 
that focus on a system component’s states. They depict 
boundaries between states, activities occurring in each 
state, and conditions governing the state transitions.

Both activity diagrams and state diagrams are useful 
for documenting the behavior of a system. Activity dia-
grams focus on a single thread, which may link many 
system objects, while state diagrams focus on how a 
single system object participates in many different 
system activities.

When some rigor is employed in their construc-
tion, both types of functional diagrams adhere to graph 
theory formalisms. As a result, the underlying data 
structure of these diagrams can be used to enable analy-
sis of complex system functionality using graph theoretic 
techniques and computational methods.

Structural Model
Structural models expand the domain model to rep-

resent system configurations. The domain model classes 
are combined with behavioral models via functional 
allocation and assignment of attributes and constraints 
to reveal how system components behave.

Developing the structural model fleshes out the 
depth of the domain model and scopes it to the analysis 
problem. Classes that do not bear on the problem are 
removed, and candidate configurations are identified. 
Remaining classes are developed further through the 
addition of attributes, operations, inheritance hierar-
chies, and more specific relationships. Classes need not 
be developed to uniform depth throughout the model; in 
some cases, a high degree of detail is required, while in 
others, an extremely general view of a particular compo-
nent may be sufficient.

SysML block definition diagrams and internal block 
diagrams can be used in place of UML class diagrams 
and composite structure diagrams, respectively, to model 
physical systems and their interactions.

SUPPORTING SYSTEM DEVELOPMENT AND 
ANALYSIS WITH A CONCEPTUAL MODEL

A conceptual model is primarily viewed as a means of 
improving documentation, communication, and design 
consistency within a project. However, development 
of a rigorous model supports development and analysis 
processes across the spectrum of systems engineering 
activities. This section explores these benefits. It begins 
with a description of functional thread analysis, which 
is an analytical technique that can be applied to the 
relational data underlying a conceptual model, contin-
ues with a simple example from the net-centric domain, 
and concludes by cataloging the benefits this and other 
MBSE approaches have for various aspects of the sys-
tems engineering process.



MODEL-BASED SYSTEMS ENGINEERING IN SYSTEMS DEVELOPMENT

JOHNS HOPKINS APL TECHNICAL DIGEST, VOLUME 32, NUMBER 1 (2013) 425

bility for feedback loop processes, this simple model con-
tains more than 100 different functional paths. There 
are three major pathways through the model/graph,and 
these three pathways represent different control archi-
tectures:10 (i) deliberate control, which exclusively uses 
the Dynamic replanning activity path and evaluates and 
then selects a specific course of action (COA)/plan to 
follow; (ii) reactive control, which exclusively uses the 
Select preplanned COA path, which uses existing pre-
planned responses to external events; and (iii) hybrid 
control, which blends the reactive and deliberate control 
processes.

For the example in Fig.  2, no deviations from the 
planned situation are detected, and the system function-
ality is represented by the following path through Fig. 3:

Collect data → Locate and classify → Apply effects → 
Assess effects → End mission

As the mission environment becomes more complex, 
alternative pathways are invoked. Figure  4 introduces 
a threat system to the environment with a detection 

centric warfare. In these cases, the design focus must 
consider both the individual platforms and the capa-
bilities and impacts of the network on these platforms. 
The continuous adaptation of network-centric systems 
to the operating environment9 creates functional pro-
cesses that are much more complex than those of tradi-
tional systems.

Figure  2 depicts a simple strike mission where an 
aircraft follows a timed route to apply an effect on a 
target. The numbers in the aircraft represent the time 
step of the mission. The simplicity of this example belies 
increasing levels of complexity as the system is decom-
posed into fundamental elements that define its func-
tions and structures. The aircraft ingresses to the target 
area at step 1, detects the target at step 2, engages the 
target at step 3, and egresses the target area via steps 4, 
5, and 6.

Figure  3 depicts the functional model, which repre-
sents the mission-level functions of the aircraft. Given 
alternative pathways through the process and the possi-

Plan
mission

Assess
effects

Apply
effects

Avoid

Initiate
plan

Develop
targets

Correlate
and fuse

Locate and
classify

Collect
data

Select
preplanned COA

Dynamic
replanning (new

COA development)

Preplanned
response
available?

Effects
application
successful?

Does info
represent potential

target?

Operational
situation requires

new COA?

Correlation
and fusion
required?

No

No

No

No

Yes

Yes

Yes

Yes

No

Start
mission

End
mission

(Yes/mission
ongoing)

(Yes/mission
complete)

Continue
mission

Observe Orient Act

Decide

Figure 3.  Generic mission-level activities framed in the context of the observe–orient–decide–act loop.11

Legend:

Strike aircraft
Weapon (effector)
Detection line
Engagement line
Target

1
2

3

4

5

6

Figure 2.  A scenario representing a simple strike mission.



J. S.  TOPPER  AND  N. C.  HORNER

JOHNS HOPKINS APL TECHNICAL DIGEST, VOLUME 32, NUMBER 1 (2013)426

primary target—collecting target information, locat-
ing and classifying the target, applying and assessing 
effects—and finally ending the mission.

When the mission environment includes additional 
strike aircraft and the ability of the aircraft to exchange 
information using communications systems and estab-

and engagement envelope. In this case, system func-
tions follow the reactive control path (Fig. 3), where the 
strike aircraft detects and locates the threat system (Col-
lect data and Locate and classify), selects a preplanned 
COA, engages the threat (Apply effects), assesses effects 
of the engagement result, and resumes the mission to the 

Engagement zone

Detection zone

Legend:
Strike aircraft
Weapon (effector)
Detection line
Engagement line
Target
Threat system
Communication
event

1

1

2

2

3

3

4

4

5

5

6

6

Figure 5.  A scenario representing a strike mission in a net-centric environment with a threat-response component.

Engagement zone

Detection zone

Legend:
Strike aircraft
Weapon (effector)
Detection line
Engagement line
Target
Threat system

1
2

3

4

5

6

Figure 4.  A scenario representing a strike mission with a threat response element.



MODEL-BASED SYSTEMS ENGINEERING IN SYSTEMS DEVELOPMENT

JOHNS HOPKINS APL TECHNICAL DIGEST, VOLUME 32, NUMBER 1 (2013) 427

in Fig. 3 now includes the possibility of interaction with 
other platforms’ functionality via communications 
messages, greatly increasing the complexity of the mis-
sion thread.

When the threat information is received by the first 
strike aircraft in the scenario in Fig.  5, the Dynamic 
replanning activity in Fig.  3 is triggered because a new 
COA is required, the information represents a potential 
target, and there is not a predefined COA available. This 
activity invokes defensive system functionality depicted 
in Fig.  6. In this scenario, aircraft execute a defensive 
response selected via the Select COA activity in Fig. 6 
(this activity can use, given the system configuration, 
the control architectures presented in Fig. 3)—the first 
aircraft dynamically reroutes (Avoid threat detection 

lished networks, specific functionality can be invoked 
on or triggered from either platform. This network-cen-
tric operational mode, in which platforms collaborate to 
achieve certain functions, enables emergent functional-
ity that is greater than the sum of its parts. This added 
flexibility and capability is accomplished at a cost of 
increased complexity, and evaluation of this function-
ality becomes difficult to accomplish using traditional 
tools and techniques. Figure 5 illustrates a simple exam-
ple of a network-centric operation where two similar 
platforms leverage mutual situational awareness enabled 
by the sharing of information.

This information sharing introduces communica-
tion systems and networks into the example problem. 
Each mission-level activity on an individual platform 

Avoid
threat

Degrade
threat

Destroy
threat

Deny
threat

Use reactive RF
countermeasures

Use IR
countermeasures

Traverse WEZ
at high speed

Select COA

From Dynamic
replanning

Abort

Use proactive
deception

Perform proactive
maneuvering

Avoid threat
engagement

Avoid threat
detection envelope

Perform evasive
maneuvering

Destroy threat
weapon

Destroy threat
source

Figure 6.  High-level defensive activities. WEZ, weapon engagement zone.



J. S.  TOPPER  AND  N. C.  HORNER

JOHNS HOPKINS APL TECHNICAL DIGEST, VOLUME 32, NUMBER 1 (2013)428

invoked is an important consideration for identifying 
critical mission threads and key system parameters.

Conceptual modeling enables discovery of mission 
threads, information and physical elements, and mea-
sures of effectiveness, which are retained in MBSE arti-
facts and their underlying database to support a wide 
range of systems engineering activities.

Conceptual Modeling and Systems Engineering 
Activities

Pace12 has discussed the value of developing simula-
tion conceptual models using UML concepts or similar 

envelope) while the other strike aircraft applies an effect 
to neutralize the threat (Destroy threat source). Note that 
activity models are compartmentalized to manage the 
complexity of the model. In Fig. 6, each high-level activ-
ity depicted corresponds to a defensive system use case, 
and multiple layers of additional detail can be subsumed 
by each of these activities.

Model complexity increases because of the increas-
ing intricacy of the modeled process, as in the evolution 
from the scenario in Fig. 2, to the scenario in Fig. 4, to 
the scenario in Fig.  5, as well as via decomposition of 
system functionality. Understanding the set of the pos-
sible functional threads and how frequently they are 

SysML-based products

UML-based
products

MBSE information products

Systems engineering

Product teams

Enterprise Mission, objectives,
and requirements

Operations research

Systems analysis

Information systems

ExperimentationFeasibility

M&S

AoASWOT T&E

M&S needs

Decisions

Stakeholders
Veri�cation

SelectionProcesses

SoftwareHardware

Data

Validation

Accreditation

execute
coordinated
processes
including

Enterprise
product

and
service

development

Develop and accredit
the optimal

system solution

supports

includes

conduct Analysis

Services

for

which require

uses

have

establishes
requirements

for

supports
development of

activities determine

by

used
for

with the
goal of

includes

uses, monitors,
and controls

has

supports supports

uses

enable

Products

People

feedback

Figure 7.  Systems engineering domain elements. AoA, analysis of alternatives; SWOT, strengths, weaknesses/limitations, opportunities, 
and threats; T&E, test and evaluation.



MODEL-BASED SYSTEMS ENGINEERING IN SYSTEMS DEVELOPMENT

JOHNS HOPKINS APL TECHNICAL DIGEST, VOLUME 32, NUMBER 1 (2013) 429

experimentation efforts to help reduce errors and 
efficiently use resources.

•	 Architecture: Design processes describe and struc-
ture information about the system and its interaction 
with the environment to create a system architec-
ture.14 As system complexity increases, maintaining 
a document-based architecture becomes difficult, 
increasing the risk of overlooking critical infor-
mation and important interfaces. A model-based 
approach allows for representations of the system 
that are easier to use, reuse of system component 
models throughout the architecture, and configura-
tion control. Such an approach also makes it easier 
to create architectures incrementally, starting with 
simple parts and developing more complex systems 
using the existing artifacts.

•	 Acquisition process support: Similarly, document-
based approaches supporting management, systems 
engineering, and analysis activities become dis-
jointed as complexity increases. Documents, data, 
and processes can be linked directly to the system 
conceptual model, which creates a structure for 
program information management and configura-
tion control. Model-based approaches also enhance 
cost estimation and governance processes, which 
are critical for successful management of acquisi-
tion programs.

processes and recognized that decomposition of a simu-
lation into its fundamental elements capturing com-
pleteness, consistency, coherence, and correctness of 
simulation requirements was an essential element of any 
engineering effort. Since then, the UML specification 
has been extended to systems engineering efforts using 
SysML, and the field has expanded the scope of model-
based activities from simulation software development 
to nearly every aspect of a systems development effort 
(Fig. 7).

Informatically rigorous conventions for semantics and 
notation help create MBSE UML/SysML artifacts that 
improve quality and reduce preparation time of systems 
engineering products. This section discusses how the 
MBSE approach supports key engineering activities. 
These activities include conceptual design, previously 
covered in the Overview of the Conceptual Modeling 
Process section, along with these other important 
functions:

•	 Analysis and experimentation: Evaluation of can-
didate system configurations through analysis and 
experimentation occurs during iteration of the 
system design process shown in Fig.  1. As system 
complexity increases, the number of functional 
threads increases exponentially, increasing the prob-
ability of system errors, faults, and failures.13 Model-
based approaches support automation of analysis 
processes and focus human-centered analysis and 

Evolving “design-to” specs into “build-to”
documentation and inspection plan

Inspection of
“build-to” documentation

Fabricate, assemble, and code
to “build-to” documentation

Stakeholder de�nition
of needs

Detailed design/
implementation phase

T&E
phase

Expand performance specs into
CI “design-to” spec

CI veri�cation vs.
CI “design-to” specs

System veri�cation
vs. performance specs

System validation
vs. validation plan

Develop CI
veri�cation plan

System
validation plan

Develop systems
concept

Develop
validation plan

System
performance specs

Understand user
requirements

Conceptual
design phase

Demonstration

Systems integration

Assembly of CIs

initiates systems engineering process to if accepted, sati�es

leads toneeded to develop

needed to leads to

leads to

requiresleads to development of

validation link enables

veri�cation link enables

provides CI spec, which enables

veri�cation
link

enables

M&S development processes. M&S development mirrors the systems engineering process. M&S development
must precede a speci�c SE phase and create both M&S and systems engineering veri�cation, validation, and
accreditation artifacts (e.g., tools and metrics) to support the test phase while maximizing design for reuse.

Evolving ”design-to” specs into “build-to”
documentation and inspection plan

Inspection of
“build-to” documentation

Fabricate, assemble, and code to
“build-to” documentation

Stakeholder de�nition
of needs

Expand performance specs into
CI “design-to” spec

CI veri�cation vs.
CI “design-to” specs

System veri�cation
vs. performance specs

System validation
vs. validation plan

Develop CI
veri�cation plan

System
validation plan

Develop systems
concept plan

Develop
validation plan

System
performance specs

Understand user
requirements

Demonstration

Systems integration

initiates systems engineering process to if accepted, sati�es

leads toneeded to develop

needed to

leads to

leads to

requiresleads to development of

validation link enables

veri�cation link enables

provides CI spec, which enables

veri�cation
link

enables
Assembly of CIs

Figure 8.  Systems engineering process with a supporting M&S process. CI, configuration item.



J. S.  TOPPER  AND  N. C.  HORNER

JOHNS HOPKINS APL TECHNICAL DIGEST, VOLUME 32, NUMBER 1 (2013)430

link management, engineering, analysis, and M&S arti-
facts and activities via a common architecture.

CONCLUSION: MBSE EFFECTIVENESS
With the increase in system complexity precipitated 

by the advent of network-centric systems, MBSE tech-
niques offer a way to capture, archive, and use informa-
tion that is essential for complex system design, analysis, 
implementation, and T&E throughout a system’s life 
cycle. The conceptual model includes entities, their 
important attributes and interrelationships, how they 
operate and behave, and any assumptions being made 
about them. It provides a basis for future analysis studies, 
model development, simulation efforts, system require-
ments definition, and program information management. 
As a means of exploring and documenting requirements 
and assumptions, the process is the groundwork for 
system analysis, design, and development.

A robust conceptual model does the following:

•	 Facilitates communication and collaboration among 
project stakeholders by standardizing and document-
ing a common reference blueprint for the project. 
This basis allows the team to exhaustively explore 
the system’s conceptual and configuration spaces 
and identify and assess key parameters in the evalu-
ation of system alternatives.

•	 Promotes reuse of components and analytical results 
among projects across a shared domain.

•	 Enables information management and integrates 
business and engineering processes into a single 
model. A conceptual model of the project, especially 
one that reuses components from previous projects 
and includes elements from the enterprise architec-
ture as well as the system, allows managers to better 
estimate the scope, schedule, and resources needed 
to develop and deploy a complex system.

•	 Documents traceability from needs to results, sup-
porting verification and validation. With respect to 
M&S in particular, the conceptual model “addresses 
the simulation’s context, how it will satisfy its 
requirements, and how its entities and processes will 
be represented.”12 That is, once the a basic concep-
tual model is developed for the system being ana-
lyzed, that model can be extended to document how 
that system will be represented in software, explic-
itly depicting how each component will be modeled 
and to what level of fidelity.

These benefits are similar to those seen in the soft-
ware industry after the adoption of object-oriented anal-
ysis and design methods supported by UML modeling.

The justification for a conceptual modeling process 
for complex analysis, simulation, and system develop-
ment activities is straightforward, and its ramifications 

•	 Modeling and simulation: M&S is frequently used 
to support analysis and experimentation activities, 
as shown in Fig. 8. Often, complex simulations are 
reused on multiple programs without adequate assess-
ment of whether their capabilities meet analysis 
needs. When M&S requirements are developed using 
MBSE processes, the resulting model enables assess-
ment of a simulation’s risks, capabilities, and appro-
priateness for analysis, test, and evaluation activities.

•	 Test, Evaluation, and Validation, Verification, and 
Accreditation (VV&A): As shown in Fig. 8, vali-
dation, verification, and accreditation depends on 
linkage between the conceptual design and the test 
and evaluation (T&E) phases of the systems engi-
neering process model. The model developed in the 
conceptual design phase contains the system struc-
ture, functionality, interfaces, and metrics used for 
verification and validation during the system T&E 
phase. Verification of simulation-based T&E activi-
ties is supported through the direct linkage of the 
simulation and system conceptual models, showing 
where and how each system entity is being repre-
sented in simulation.

The following example extends the functional thread 
analysis presented earlier to show how the data underly-
ing the model support T&E activities.

Matarić10 characterized three different control archi-
tectures, which are implicit in Fig.  3: deliberate, which 
requires COA development; reactive, which initiates pre-
planned activities; and hybrid, which uses an allocation 
process to decide on the preferred path. In this exam-
ple, flight test planners are interested in evaluating the 
reactive control architecture. Because Select preplanned 
COA represents the primary activity for reactive system 
responses, the set of possible functional threads can be 
reduced to only those paths incorporating this node. 
In this case, there are 29 such paths associated with a 
reactive process. The data underlying the UML model 
for one of these 29 paths are depicted in Table 1. These 
data were used by thread extraction tool to generate the 
graphical representation of this path shown in Fig. 9.

Analysis of functional processes can further reduce 
the number of possible threads. By using the system 
model to focus on the relevant COAs (in this case, 
selecting the appropriate defensive activities from Fig. 6), 
the planner can identify key system test points either 
qualitatively or quantitatively (for instance, using design 
of experiments processes). By combining the key test 
points with selection of specific mission profiles (Figs. 2, 
4, and 5) and operational environment conditions (e.g., 
the scenario), the planner can develop a comprehensive 
test plan.

MBSE techniques support activities across the entire 
life cycle of a given system. The processes simultaneously 
create structured information system-based models that 



MODEL-BASED SYSTEMS ENGINEERING IN SYSTEMS DEVELOPMENT

JOHNS HOPKINS APL TECHNICAL DIGEST, VOLUME 32, NUMBER 1 (2013) 431

365
Select

preplanned COA

343
Develop
targets

337
Correlate
and fuse

357
Locate

and classify

327
Collect
data

311
Apply effects

316
Assess effects

323
Avoid

356
Initiate
plan

362
Plan

mission
390 391

383

382381

380
411

412

394

Figure 9.  A mission functional thread.

Table 1.  Conceptual model thread data

StartObjectName StartObjectType EndObjectName EndObjectType

Start mission (394) StateNode Plan mission (362) Activity

Plan mission (362) Activity Initiate plan (356) Activity

Initiate plan (356) Activity Collect data (327) Activity

Collect data (327) Activity Locate and classify (357) Activity

Locate and classify (357) Activity Correlation and fusion required? (381) Decision

Correlation and fusion required? (381) Decision Correlate and fuse (337) Activity

Correlate and fuse (337) Activity Operational situation requires new COA? (390) Decision

Operational situation requires new COA? (390) Decision Does info represent potential target? (382) Decision

Does info represent potential target? (382) Decision Develop targets (343) Activity

Develop targets (343) Activity Preplanned response available? (391) Decision

Preplanned response available? (391) Decision Select preplanned COA (365) Activity

Select preplanned COA (365) Activity Fork from Select preplanned COA (412) Synchronization

Fork from Select preplanned COA (412) Synchronization Avoid (323) Activity

Avoid (323) Activity Join to Assess effects (411) Synchronization

Join to Assess effects (411) Synchronization Assess effects (316) Activity

Assess effects (316) Activity Effects application successful? (383) Decision

Effects application successful? (383) Decision Preplanned response available? (391) Decision

Preplanned response available? (391) Decision Select preplanned COA (365) Activity

Select preplanned COA (365) Activity Fork from Select preplanned COA (412) Synchronization

Fork from Select preplanned COA (412) Synchronization Apply effects (311) Activity

Apply effects (311) Activity Join to Assess effects (411) Synchronization

Join to Assess effects (411) Synchronization Assess effects (316) Activity

Assess effects (316) Activity Effects application successful? (383) Decision

Effects application successful? (383) Decision End mission (380) StateNode

Color coding associates each activity with a phase in the observe (green)–orient (blue)–decide (yellow)–act (orange) process. Numbers in parentheses in the 
table and in Fig. 9 are internal node indices in the thread data.



J. S.  TOPPER  AND  N. C.  HORNER

JOHNS HOPKINS APL TECHNICAL DIGEST, VOLUME 32, NUMBER 1 (2013)432

  4Fowler, M., and Scott, K., UML Distilled: Applying the Standard 
Object Modeling Language, Addison Wesley Longman, Reading, MA 
(1997).

  5Object Management Group, OMG Systems Modeling Language, http://
www.omgsysml.org/ (accessed 29 Apr 2013).

  6Rosenberg, D., and Stephens, M., Use Case Driven Object Modeling 
with UML: Theory and Practice, Apress, Berkeley, CA (2007).

  7Malan, R., and Bredemeyer, D., “Functional Requirements and Use 
Cases,” www.bredemeyer.com/pdf_files/functreq.pdf (2001).

  8Cockburn, A., Writing Effective Use Cases, Addison Wesley, Boston, 
MA (2001).

  9Cebrowski, A. K., and Garstka, J. H., “Network-Centric Warfare: Its 
Origin and Future,” Proceedings 124(1), 1139 (1998).

10Matarić, M., The Robotics Primer, MIT Press, Cambridge, MA (2007).
11Boyd, J. R., “The Essence of Winning and Losing,” http://www.dan-

ford.net/boyd/essence.htm (1996).
12Pace, D. K., “Ideas About Conceptual Model Development,” Johns 

Hopkins APL Tech. Dig. 21(3), 327–336 (2000).
13McCabe, T., “A Complexity Measure,” IEEE Trans. Softw. Eng. 

SE-2(4), 308–320 (1976).
14Rechtin, E., Systems Architecting: Creating & Building Complex Sys-

tems, Prentice-Hall, Inc., Upper Saddle River, NJ (1991).

can be far-reaching. Conceptual modeling has the poten-
tial to reduce acquisition costs while enhancing analysis, 
design, and T&E processes. Although introducing con-
ceptual modeling in a new organizational environment 
can involve overcoming cultural and educational barri-
ers, the APL team has received positive feedback from 
sponsors in cases when a conceptual modeling approach 
was adopted.

REFERENCES

  1Kroll, E., Condoor, S., and Jansson, D., Innovative Conceptual Design: 
Theory and Application of Parameter Analysis, Cambridge University 
Press, Cambridge, UK (2001).

  2Wiegers, K. E., “Karl Wiegers Describes 10 Requirements Traps to 
Avoid,” Software Testing & Quality Engineering 2(1), 35–40 (2000).

  3Beck, K., Beedle, M., van Bennekum, A., Cockburn, A., Cunning-
ham, W., et al., “Manifesto for Agile Software Development,” http://
agilemanifesto.org/ (2001).

J. Stephen Topper, a member of the Senior Professional Staff in the Force Projection Department, has been Project Man-
ager for United States Air Force conceptual modeling efforts in support of simulation validation, verification, and accred-
itation. He has implemented conceptual modeling processes on several external and internal APL projects. Nathaniel C. 
Horner, a former Associate Professional Staff member who was also in the Force Projection Department, served as Project 
Manager and Technical Lead on conceptual modeling projects for various Air Force sponsors. He developed conceptual 
models in support of systems development and has also built analytical software tools and simulations. He is currently 
pursuing a Ph.D. in the Engineering and Public Policy Department at Carnegie Mellon University. Both Mr. Horner and 
Mr. Topper teach conceptual modeling-related classes in The Johns Hopkins University Whiting School of Engineering’s 
Systems Engineering Department. For further information on the work reported here, contact Mr. Topper. His e-mail 
address is steve.topper@jhuapl.edu.

The Authors

The Johns Hopkins APL Technical Digest can be accessed electronically at www.jhuapl.edu/techdigest.

http://www.omgsysml.org
http://www.omgsysml.org
http://www.bredemeyer.com/pdf_files/functreq.pdf
http://www.danford.net/boyd/essence.htm
http://www.danford.net/boyd/essence.htm
http://agilemanifesto.org
http://agilemanifesto.org
mailto:steve.topper@jhuapl.edu
www.jhuapl.edu/techdigest

	Model-Based Systems Engineering in Support Model-Based Systems Engineering in Support of Complex Systems Development
	J. Stephen Topper and Nathaniel C. Horner
	INTRODUCTION
	OVERVIEW OF THE CONCEPTUAL MODELING PROCESS
	Guiding Principles
	Breadth-First Development (or, Scope Before Fidelity)
	Reusable, Repeatable, Generic Processes and Products
	Iterative, Agile-Informed Development
	Decomposition to Primitive Elements
	Consistency, Standardization, Traceability, and Organization


	Conceptual Modeling Process Elements
	Model Input
	Domain Model
	Use Cases
	Functional Model
	Structural Model

	SUPPORTING SYSTEM DEVELOPMENT AND ANALYSIS WITH A CONCEPTUAL MODEL
	Underlying Database
	Functional Thread Analysis
	Graph-Theoretic Algorithmic Techniques for Functional Thread Extraction
	Thread Extraction Example


	Conceptual Modeling and Systems Engineering Activities
	CONCLUSION: MBSE EFFECTIVENESS
	REFERENCES
	The Authors
	Figures
	Figure 1. Conceptual modeling process and the systems development process.
	Figure 2. A scenario representing a simple strike mission.
	Figure 3. Generic mission-level activities framed in the context of the observe–orient–decide–act loop.
	Figure 4. A scenario representing a strike mission with a threat response element.
	Figure 5. A scenario representing a strike mission in a net-centric environment with a threat-response component.
	Figure 6. High-level defensive activities.
	Figure 7. Systems engineering domain elements.
	Figure 8. Systems engineering process with a supporting M&S process.
	Figure 9. A mission functional thread.

	Table
	Table 1. Conceptual model thread data.





