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the guidance system. The types of steering commands vary depending on the phase 
of flight and the type of interceptor. For example, in the boost phase the flight control 
system may be designed to force the missile to track a desired flight-path angle or 
attitude. In the midcourse and terminal phases the system may be designed to track 
acceleration commands to effect an intercept of the target. This article explores several 
aspects of the missile flight control system, including its role in the overall missile system, 
its subsystems, types of flight control systems, design objectives, and design challenges. 
Also discussed are some of APL’s contributions to the field, which have come primarily 
through our role as Technical Direction Agent on a variety of Navy missile programs.

he flight control system is a key element that allows the missile to meet its 
system performance requirements. The objective of the flight control system 

is to force the missile to achieve the steering commands developed by 

INTRODUCTION
The missile flight control system is one element of 

the overall homing loop. Figure 1 is a simplified block 
diagram of the missile homing loop configured for the 
terminal phase of flight when the missile is approaching 
intercept with the target. The missile and target motion 
relative to inertial space can be combined mathemati-
cally to obtain the relative motion between the missile 
and the target. The terminal sensor, typically an RF or 
IR seeker, measures the angle between an inertial refer-
ence and the missile-to-target line-of-sight (LOS) vector, 

which is called the LOS angle. The state estimator, e.g., a 
Kalman filter, uses LOS angle measurements to estimate 
LOS angle rate and perhaps other quantities such as 
target acceleration. The state estimates feed a guidance 
law that develops the flight control commands required 
to intercept the target. The flight control system forces 
the missile to track the guidance commands, resulting 
in the achieved missile motion. The achieved missile 
motion alters the relative geometry, which then is sensed 
and used to determine the next set of flight control  
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commands, and so on. This loop continues to operate 
until the missile intercepts the target.

In the parlance of feedback control, the homing 
loop is a feedback control system that regulates the 
LOS angle rate to zero. As such, the overall stability 
and performance of this control system are determined 
by the dynamics of each element in the loop. Conse-
quently, the flight control system cannot be designed in 
a vacuum. Instead, it must be designed in concert with 
the other elements to meet overall homing-loop perfor-
mance requirements in the presence of target maneu-
vers and other disturbances in the system, e.g., terminal 
sensor noise (not shown in Fig. 1), which can negatively 
impact missile performance.

The remainder of this article is divided into six sec-
tions. The first section discusses the specific elements of 
the flight control system. Particular emphasis is placed 
on understanding the dynamics of the missile and how 
they affect the flight control system designer. The next 
three sections describe different types of flight control 
systems, objectives to be considered in their design, and 
a brief design example. The last two sections discuss 
some of the challenges that need to be addressed in the 
future and APL’s contributions to Navy systems and the 
field in general.

FLIGHT CONTROL SYSTEM ELEMENTS
As noted above, the flight control system is one ele-

ment of the overall homing loop. Figure 2 shows the 
basic elements of the flight control system, which itself 
is another feedback control loop within the overall 
homing loop depicted in Fig. 1. An inertial measurement 
unit (IMU) measures the missile translational accelera-
tion and angular velocity. The outputs of the IMU are 

combined with the guidance commands in the autopi-
lot to compute the commanded control input, such as a 
desired tail-surface deflection or thrust-vector angle. An 
actuator, usually an electromechanical system, forces 
the physical control input to follow the commanded 
control input. The airframe dynamics respond to the 
control input. The basic objective of the flight control 
system is to force the achieved missile dynamics to track 
the guidance commands in a well-controlled manner. 
The figures of merit (FOMs) used to assess how well 
the flight control system works are discussed in Flight 
Control System Design Objectives. This section provides 
an overview of each element of the flight control loop.

Guidance Inputs
The inputs to the flight control system are outputs 

from the guidance law that need to be followed to ulti-
mately effect a target intercept. The specific form of the 
flight control system inputs (acceleration commands, 
attitude commands, etc.) depends on the specific appli-
cation (discussed later). In general, the flight control 
system must be designed based on the expected charac-
teristics of the commands, which are determined by the 
other elements of the homing loop and overall system 
requirements. Characteristics of concern can be static, 
dynamic, or both. An example of a static characteris-
tic is the maximum input that the flight control system 
is expected to be able to track. For instance, a typical 
rule of thumb for intercepting a target that has constant 
acceleration perpendicular to the LOS is for the missile 
to have a 3:1 acceleration advantage over the target. If 
the missile system is expected to intercept a 10-g accel-
erating threat, then the flight control system should be 
able to force the missile to maintain a 30-g acceleration. 
An example of a dynamic characteristic is the expected 
frequency content of the command. For instance, rapid 
changes in the command are expected as the missile 
approaches intercept against a maneuvering threat, but 
the input commands may change more slowly during 
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Figure 1.  The flight control system is one element in the missile 
homing loop. The inertial missile motion controlled by the flight 
control system combines with the target motion to form the rela-
tive geometry between the missile and target. The terminal sensor 
measures the missile-to-target LOS angle. The state estimator 
forms an estimate of the LOS angle rate, which in turn is input to 
the guidance law. The output of the guidance law is the steering 
command, typically a translational acceleration. The flight control 
system uses the missile control effectors, such as aerodynamic 
tail surfaces, to force the missile to track steering commands to 
achieve a target intercept.
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Figure 2.  The four basic elements of the flight control system are 
shown in the gray box. The IMU senses the inertial motion of the 
missile. Its outputs and the inputs from the guidance law are com-
bined in the autopilot to form a command input to the control 
effector, such as the commanded deflection angle to an aerody-
namic control surface. The actuator turns the autopilot command 
into the physical motion of the control effector, which in turn 
influences the airframe dynamics to track the guidance command.



MISSILE FLIGHT CONTROL SYSTEMS

JOHNS HOPKINS APL TECHNICAL DIGEST, VOLUME 29, NUMBER 1 (2010) 11­­­­

the midcourse phase of flight where the objective is to 
keep the missile on an approximate collision path or to 
minimize energy loss. Other dynamic characteristics of 
concern include the guidance command update rate 
and the amount of terminal sensor noise flowing into 
the flight control system and causing unnecessary con-
trol actuator activity.

Airframe Dynamics
Recall that the objective of the flight control system 

is to force the missile dynamics to track the input com-
mand. The dynamics of the airframe are governed by 
fundamental equations of motion, with their specific 
characteristics determined by the missile aerodynamic 
response, propulsion, and mass properties. Assuming 
that missile motion is restricted to the vertical plane 
(typical for early concept development), the equations of 
motion that govern the missile dynamics can be devel-
oped in straightforward fashion.

Consider the diagram in Fig. 3, which shows the mis-
sile flying in space constrained to the vertical plane. The 
angle between the inertial reference axis and the mis-
sile velocity vector is called the flight-path angle g. The 
angle from the velocity vector to the missile centerline 
is called the angle of attack (AOA) a. The angle from 
the inertial reference to the missile centerline is called 
the pitch angle . Acceleration in the direction normal 
to the missile Az derives from two sources. The non-zero 
AOA generates aerodynamic lift. Normal acceleration 

V

Inertial reference

�

�

�  Az

Figure 3.  In the pitch plane, the missile dynamics and kinemat-
ics can be described by four variables. Az is the component of 
the translational acceleration normal to the missile longitudinal 
axis. The AOA, a, is a measure of how the missile is oriented rela-
tive to the airflow and is the angle between the missile velocity 
vector and the missile longitudinal axis. The flight-path angle g is 
a measure of the direction of travel relative to inertial space, i.e., 
the angle between the missile velocity vector and an inertial refer-
ence. The pitch angle u defines the missile orientation relative to 
inertial space and is the angle between the inertial reference and 
the missile longitudinal axis.

also can be developed by a control input d such as tail-
fin deflection or thrust-deflection angle. In general, the 
missile acceleration also has a component along the 
centerline due to thrust and drag. For the simple model 
being developed here, we assume that this acceleration 
is negligible.

Based on the diagram in Fig. 3, the fundamental rela-
tionship among the three angles above is

	 & &� = � – � → � = � – �.& 	 (1)

The angular acceleration is the moment applied to the 
airframe divided by the moment of inertia,

	 &&� = M(�, �)
J

. 	 (2)

The applied moment is a function of the control input d 
and the aerodynamic force induced by the AOA. The 
rate of change of the flight-path angle is the component 
of missile acceleration perpendicular to the velocity 
vector divided by the magnitude of the velocity vector. 
Assuming that the AOA is small, the flight-path angle 
rate is

	 & = ≈
A

V

A

V
z zcos( )

.�
�

	 (3)

The normal acceleration is determined by the forces 
applied to the missile divided by its mass

	 A
mz

z= .
F(�, �)

	 (4)

The applied force is a function of the control input d 
and the aerodynamic force induced by the AOA. Substi-
tuting Eqs. 3 and 4 into Eq. 1 and combining the result 
with Eq. 2 yields a coupled set of nonlinear differential 
equations where the state variables are the AOA and 
the pitch rate:

	 mV
zF(�, �)

& &� = � –

&&� = M(�, �)
J

.
	 (5)

Although these differential equations can be solved 
numerically, an analytical approach often is desirable to 
fully understand the missile dynamics. Therefore, the 
equations of motion are linearized around an operating 
condition so that linear systems theory can be applied. 
Assuming constant missile speed, linearization of Eq. 5 
yields a second-order state-space description of the mis-
sile dynamics
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where the numerical coefficients are defined by
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and are evaluated at the particular operating condition 
of interest. Because these differential equations result 
from linearization around an operating point, the state, 
input, and output variables actually represent small 
signal perturbations around that operating point.

These linear differential equations apply for any mis-
sile under the stated assumptions. However, specific 
dynamics governed by these equations differ depending 
on the application. For example, for a tail-controlled 
endoatmospheric interceptor, the dynamics are a weak 
function of Zd. For a thrust-vector-controlled exoatmo-
spheric interceptor, the aerodynamic forces are negligi-
ble and the terms Za and Ma can be set to zero.

The linear differential equations determine the 
dynamic behavior of the missile for small perturbations 
around the specified operating conditions. For example, 
suppose the missile is given an initial condition at an 
AOA a few degrees away from the nominal AOA around 
which the dynamics have been linearized. One impor-
tant question is whether the missile will rotate back 
to the nominal AOA or diverge in the absence of any 
corrective control input. The answer to this question of 
stability is determined by the roots of the characteristic 
polynomial of the state matrix in Eq. 6:

	 s M+ + − =( )s
V

2 0 .
Z�

� 	 (8)

A necessary and sufficient condition for both roots 
of this equation to have negative real parts and thus 
ensure stability is that all of the coefficients be positive. 
Using the conventions in Fig. 3, Za is always positive. 
Therefore, the stability of the missile in the absence of 
a control input is determined by the sign of Ma. If Ma is 

positive, the aerodynamic pitching moment forces the 
missile to diverge from the nominal AOA, and the mis-
sile is said to be statically unstable. If Ma is negative, the 
missile tends to be restored back to the nominal AOA, 
and the missile is said to be statically stable. The static 
stability of the missile is a crucial property that, under 
the stated assumptions, is determined solely by the sign 
of Ma, which is in turn determined by the aerodynamic 
configuration and the location of the missile center 
of mass.

Figure 4 illustrates in the complex s-plane how the 
roots of the characteristic equation migrate as a function 
of Ma. Again, for large, positive values of Ma, the missile 
is statically unstable, and the dynamics are governed by 
one unstable real root in the right half of the plane and 
one stable real root in the left half of the plane. As Ma 
decreases, the roots migrate toward the origin. When 
Ma is zero, the system has one real, stable root in the left 
half plane and one root at the origin. This condition is 
called neutral stability. As Ma becomes more negative, 
the roots migrate toward each other and eventually split 
apart as a complex pair.

The state-space representation in Eq. 6 describes the 
missile dynamics in the time domain. A representation 
in the complex frequency domain can be obtained that 
relates the input to the system, e.g., tail-deflection angle, 
to the system outputs, e.g., pitch rate and normal accel-
eration. This type of representation is called the trans-
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Figure 4.  Static stability of the airframe is determined by the 
slope of the pitching moment curve with respect to the AOA, Ma. 
If the slope is positive, the missile is statically unstable because 
one of the roots of the characteristic polynomial of the governing 
differential equation is in the right half of the complex plane. If the 
slope is negative, both roots are in the left half of the plane and 
the missile is statically stable. The case where the slope is zero is 
called neutral stability, with one of the roots at the origin of the 
complex plane.
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fer function and can be determined 
from the state-space model using 
the formula

	 H s C sI A B D( ) ( ) ,= − +−1 	 (9)

where s = s + jv is complex fre-
quency and A, B, C, and D are 
defined in Eq. 6.

In reality, missiles are not con-
strained to motion in a single plane. 
Figure 5 shows the relevant vari-
ables that describe the missile kine-
matics in three dimensions. The 
angle of sideslip (AOS) b is the yaw 
equivalent to the AOA. Together, 
they completely specify how the 
missile body is oriented relative to 
its velocity vector. The three com-
ponents of the missile body angular 
velocity vector resolved in body-
fixed coordinates are denoted p, q, 
and r, denoting the roll, pitch, and 
yaw rate, respectively. The pitch 
rate q was denoted as · in the dis-
cussion above where the motion was 
constrained to the pitch plane.

The equations that govern the 
dynamics of the missile can be 
developed by applying the Newton–
Euler equations of motion. The 

translational motion can be described in terms of the derivatives of the AOA 
and the AOS. The rotational motion can be described in terms of the angu-
lar accelerations and takes a simple form assuming that products of inertia  
are zero:
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The lateral components of missile inertial translational acceleration resolved 
in body-fixed coordinates are

	
A

F

m

A
F

m

z
zb
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yb

=

= .

	 (12)

In these equations the forces and moments are resolved in body coordinates, 
with components indicated by the subscripts. Though not shown explicitly, 
all of the six components of the force and moment vectors are functions of 
the state variables and three control inputs, e.g.,

Figure 5.  This diagram defines quantities used to describe the three-dimensional missile kinematics. Two angles are used to orient the 
missile relative to the velocity vector, either AOA and AOS or total AOA and aerodynamic roll angle. The components of the missile inertial 
velocity vector resolved in body-fixed axes are u, v, and w (not shown). The components of the inertial angular velocity vector resolved 
in body-fixed coordinates are p, q, and r. The missile orientation in inertial space usually is described via three Euler angles, typically in 
yaw–pitch–roll sequence (not shown).
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	 F f(�, �, p, q, r, � , � , � ).zb p y r= 	 (13)

The dynamic equations together are a coupled, fifth-
order, nonlinear differential equation. In situations 
where the mass properties vary with time, such as when 
a rocket motor is burning propellant, the differential 
equation is time-varying as well.

Equations 10–12 can be linearized around some operat-
ing condition of interest by expanding them in a Taylor 
series and retaining only the first-order terms. The result 
is a linear, time-invariant, state-space model with three 
inputs and five outputs:
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As in the planar case, the state variables, control input 
variables, and output variables represent perturbations 
around the nominal operating condition.

Expanding the model to account for yaw and roll in 
addition to pitch brings a new set of challenges to the 
flight control designer. Foremost among these in many 
applications is aerodynamic cross-coupling as the total 
AOA increases, in which case aerodynamic surfaces on 
the leeward side of the missile become shaded by the 
fuselage, resulting in aerodynamic imbalances. The net 
effect typically results in undesirable motion, such as roll 
moment induced by a change in AOA or pitch moment 
induced by roll control input. The flight control system 
must compensate for these effects. An alternative is to 
simplify the airframe design to minimize cross-coupling, 
but the airframe must be designed with other factors in 
mind as well, such as maximizing the effective range 
of the missile. Compensating for aerodynamic cross- 
coupling for some missiles is challenging and often 
limits the maximum total AOA, and hence the maxi-
mum lateral acceleration, that can be achieved by the 
flight control system.

Actuator
The missile actuator converts the desired control  

command developed by the autopilot into physical 
motion, such as rotation of a tail fin, that will effect the 
desired missile motion. Actuators for endoatmospheric 
missiles typically need to be high-bandwidth devices 
(significantly higher than the desired bandwidth of 
the flight control loop itself) that can overcome sig-
nificant loads. Most actuators are electromechanical, 
with hydraulic actuators being an option in certain 
applications. For early design and analysis, the actuator  

dynamics are modeled with a second-order transfer func-
tion (which does not do justice to the actual complexity 
of the underlying hardware),

	
s s+ +

�(s)
.

c

a

a a a

=
2

2 22
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	 (15)

Although the actuator often is modeled as a linear 
system for preliminary design and development, it is 
actually a nonlinear device, and care must be taken by 
the flight control designer not to exceed the hardware 
capabilities. Two critical FOMs for the actuator for many 
endoatmospheric missiles are its rate and position limits. 
The position limit is an effective limit on the moment 
that the control input can impart on the airframe, 
which in turn limits the maximum AOA and accelera-
tion. The rate limit essentially limits how fast the actua-
tor can cause the missile to rotate, which effectively 
limits how fast the flight control system can respond to 
changes in the guidance command. The performance 
of a flight control system that commands the actua-
tor to exceed its limits can be degraded, particularly if 
the missile is flying at a condition where it is statically  
unstable.

Inertial Measurement Unit
The IMU measures the missile dynamics for feedback 

to the autopilot. In most flight control applications, the 
IMU is composed of accelerometers and gyroscopes to 
measure three components of the missile translational 
acceleration and three components of missile angular 
velocity. For early design and analysis, the IMU dynam-
ics often are represented by a second-order transfer 
function,

	
m m+ +

y s
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for each rate and acceleration channel. Like the actuator, 
the IMU needs to be a high-bandwidth device relative to 
the desired bandwidth of the flight control loop. In some 
applications, other quantities also need to be measured, 
such as the pitch angle for an attitude control system. In 
this case, other sensors can be used (e.g., an inertially 
stabilized platform), or IMU outputs can feed strapdown 
navigation equations that are implemented in a digital 
computer to determine the missile attitude, which then 
is sent to the autopilot as a feedback measurement.

The flight control system must be designed such that 
the missile dynamics do not exceed the dynamic range 
of the IMU. If the IMU saturates, the missile will lose 
its inertial reference, and the flight control feedback is 
corrupted. The former may be crucial, depending on the 
specific missile application and the phase of flight. The 
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latter may be more problematic if the dynamic range is 
exceeded for too long, particularly if the missile is stati-
cally unstable.

Autopilot
The autopilot is a set of equations that takes as inputs 

the guidance commands and the feedback measure-
ments from the IMU and computes the control com-
mand as the output. As mentioned previously, the 
autopilot must be designed so that the control command 
does not cause oversaturation of the actuator or the 
IMU. Because the autopilot usually is a set of differen-
tial equations, computing its output involves integrat-
ing signals with respect to time. Most modern autopilots 
are implemented in discrete time on digital computers, 
although analog autopilots are still used. The following 
section describes several types of autopilots that apply in 
different flight control applications.

TYPES OF FLIGHT CONTROL SYSTEMS
The specific type of flight control system that is imple-

mented on a particular missile depends on several factors, 
including the overall system mission and requirements, 
packaging constraints, and cost. In many applications, 
the type of flight control system changes with different 
phases of flight. For example, the system used during 
the boost phase for a ground- or ship-launched missile 
could very well differ from the system used during the 
intercept phase. This section provides a brief overview 
of different types of flight control systems and when they 
might be used.

Acceleration Control System
One type of flight control system common in many 

endoatmospheric applications is designed to track com-
manded acceleration perpendicular to the missile longi-
tudinal axis. In this system, deflection of an aerodynamic 

control surface, such as a tail fin, is the control input, and 
pitch angular rate (q) and acceleration (Az) are measured 
by the IMU for feedback to the autopilot. The control 
deflection produces a small aerodynamic force on the tail 
fin but a large moment on the airframe because of its 
lever arm from the center of mass. The induced moment 
rotates the missile to produce the AOA, which in turn 
produces aerodynamic lift to accelerate the airframe.

Figure 6 represents equations that can be imple-
mented in the autopilot to develop the commanded con-
trol surface deflection angle d based on the commanded 
acceleration and feedback measurements of achieved 
acceleration Az and pitch rate q. This particular struc-
ture can be found in many missile applications, but is 
by no means exclusive. As indicated in Fig. 6, the error 
between the commanded and achieved acceleration is 
used as an input to the inner control loops that control 
missile pitch rate. The pitch rate control loops include 
integration with respect to time that is implemented 
in circuitry for an analog autopilot or with numerical 
difference equations in a computer in a digital auto-
pilot. The three control gains are selected so that the 
closed-loop flight control system has the desired speed 
of response and robustness consistent with other design 
constraints such as actuator limits. The autopilot in  
Fig.  6 is a reasonable starting point for a preliminary 
design. The final implementation would need to include 
other features, such as additional filters to attenuate 
IMU noise and missile vibrations, so that the system 
would actually work in flight and not just on paper.

Attitude Control System
Figure 7 shows another type of autopilot that can 

be used to control the attitude of the missile. In this 
case, the control effector is the thrust-deflection angle 
that is actuated by either a nozzle or jet tabs. The feed-
back loops have a structure similar to that used in the 
acceleration control system of Fig. 6, except that the 
outer loop is pitch-angle feedback instead of accelera-

Figure 6.  This block diagram illustrates a classical approach to the design of an acceleration control autopilot. 
The difference between the scaled input acceleration command and the measured acceleration is multiplied by 
a gain to effectively form a pitch rate command.  The difference between the effective pitch rate command and 
the measured pitch rate is multiplied by a gain and integrated with respect to time. The resulting integral is dif-
ferenced with the measured pitch rate and multiplied by a third gain to form the control effector command such 
as desired tail-deflection angle. The gain on the input acceleration command ensures zero steady-state error to 
constant acceleration command inputs. The final autopilot design would build on this basic structure with the 
addition of noise filters and other features such as actuator command limits. This basic structure is called the 
three-loop autopilot.

Ki�(•)dtKaKdcAzc

Az
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�c
Actuator

IMU
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tion. The numerical values of the gains in the control 
loops may differ for controlling attitude compared 
to controlling translational acceleration. The inte-
gration of pitch rate measured by the IMU to pitch 
attitude would typically be done via discrete integra-
tion in the missile navigation processing in the flight  
computer.

Flight-Path Angle Control System
Figure 8 shows an autopilot that can be used to track 

flight-path angle commands using thrust-vector control. 
This type of system assumes that aerodynamic forces are 
small and hence applies for exoatmospheric flight or for 
endoatmospheric flight when the missile speed is low. 
In this design, the feedback loops reflect the underly-
ing physical relationships among the flight-path angle, 
AOA, flight-path angle rate, and pitch rate. The design 
explicitly uses estimates of the missile thrust and mass 
properties to compensate for how the missile dynam-
ics change as propellant is expended. The commanded 
input into the autopilot is the desired flight-path angle. 
The output is the thrust-vector deflection angle. The 
feedback signals are the pitch rate q, flight-path angle 
rate g·, AOA a, and flight-path angle g. The pitch rate 
is measured by the IMU. The other feedback quantities 
are estimated in the missile navigation processing in 
the flight computer. This design is an example of the 
dynamic inversion design approach, which will be dis-
cussed in Technology Development.

FLIGHT CONTROL SYSTEM DESIGN OBJECTIVES
The particular FOMs used to evaluate the flight con-

trol system are application dependent. In this section, 
we explore typical FOMs that would generally apply.  
A specific application may include others as well.

Time-Domain Design Objectives
Flight control system FOMs can be expressed in the 

time and frequency domains. Figure 9 illustrates typi-
cal FOMs in the time domain. The plot shows the time 
response of the missile dynamics in response to a step 
change in commanded input. For example, this response 
could represent the achieved missile acceleration in 
response to a step change in commanded missile accel-
eration. The time constant and rise time characterize 
how quickly the system responds to the change in the 
command. The percentage overshoot and peak ampli-
tude characterize the degree to which the response is 
well controlled. The steady-state error and settling time 
are indicators of how well the system tracks the desired 
command. As might be expected, designing the flight 
control system can require trade-offs between these 
FOMs. For example, a system that requires a small time 
constant may have to suffer larger overshoot.

In addition to time-domain requirements that mea-
sure how well the missile tracks the command in the 
desired plane of motion, the flight control system must 
be designed to minimize undesirable motion in response 
to that same command. For example, the missile should 
minimize motion in the horizontal plane in response 
to a guidance command in the vertical plane. In other 
words, the flight control system should “decouple the 
airframe,” i.e., compensate for the natural aerodynamic 
coupling specific to the particular airframe in question. 
Decoupling is important insofar as the derivation of ter-
minal guidance laws assumes a perfectly decoupled flight 
control system.

Frequency-Domain Design Objectives
Frequency-domain requirements are based on the 

classical control theory of Nyquist and Bode and are  

Figure 7.  This attitude control system also has a three-loop struc-
ture like the acceleration control system. The difference lies in the 
selection of the numerical values of the gains to reflect a different 
design criterion, i.e., controlling attitude instead of acceleration.

Figure 8.  This diagram of a flight-path control system shows the dynamic inversion design approach. The 
design explicitly uses the fundamental relationships among the missile kinematic and dynamic variables as well 
as real-time estimates of the missile thrust and mass properties to naturally compensate for the changing missile 
dynamics as propellant is expended. 
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Figure 10.  The open-loop transfer function at some point of inter-
est is computed by “breaking the loop” at that point and comput-
ing the negative of the transfer function from the resulting input 
to the output. This open-loop transfer function is the bedrock of 
classical stability analysis in the frequency domain.

Output Input
K (s) G (s)

–

Figure 9.  Some basic FOMs of a flight control system that are 
measured in the time domain are illustrated. These FOMs define 
how quickly the missile will respond to a change in guidance com-
mand and also the deviation of the achieved missile motion rela-
tive to the command (t is time constant, Mp is peak magnitude, 
tp is time to first peak, tr is rise time, and ts is settling time). 

primarily concerned with quantifying the robustness 
of the flight control system. Robustness is important 
because the flight control system is designed based on 
models of the missile dynamics, actuator, and IMU, 
which are inherently approximations (i.e., no model is 
perfect). Qualitatively, robustness is the degree to which 
the flight control system can tolerate the error between 
the assumed models and the real system. Robustness 
can be addressed in several ways, 
two of which are discussed below. 
Classical stability margins quan-
tify how much error can be toler-
ated at a single point in the system. 
More advanced techniques can 
be used to quantify robustness to 
simultaneous variations to mul-
tiple parameters in the model.

Classical Stability Margins
Two common measures of 

robustness are gain and phase 
margins as determined by an open-
loop frequency response computed 
at a specific point of interest in the 
system. The open-loop frequency 
response is computed by break-
ing the loop at the point of inter-
est and computing the frequency 
response of the negative of the 
transfer function from the result-
ing input to the resulting output 
(Fig.  10). The gain and phase as 
a function of frequency often 

are plotted separately on what is called a Bode plot. 
Figure 11 is a Bode plot of an example open-loop fre-
quency response for an acceleration control system with 
the loop broken at the input to the actuator. The gain 
margin is determined from the gain curve at the fre-
quency where the phase crosses 180°. The gain margin 
tells how much the gain can be increased or decreased 
at the loop breakpoint before the closed-loop system 
becomes unstable. The phase margin is determined from 
the phase curve at the frequency where the gain curve 
crosses 0 dB. The phase margin tells how much extra 
phase lag, i.e., delay, can be tolerated at the loop break-
point before the closed-loop system becomes unstable. 
Common requirements for gain and phase margins are 
6 dB and 30°, respectively.

Mathematically, gain and phase margins only apply 
at the specific point for which they were computed. 
From an engineering standpoint, gain and phase varia-
tions need to be tolerated at many different points in 
the system. Qualitatively, the engineer needs to under-
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Figure 11.  This Bode plot shows the open-loop frequency response of an acceleration auto-
pilot with the loop broken at the input to the actuator. In this example, the missile is statically 
unstable, which results in the phase curve crossing the 180° line twice. The low-frequency 
crossover yields a decreasing gain margin (GM) and the high-frequency crossover yields an 
increasing GM. The gain curve crosses the 0-dB line between the phase crossover frequencies, 
resulting in a positive phase margin (PM). At high frequencies, the monotonically decreasing 
gain provides robustness to high-frequency modeling errors, uncertainty, and other effects.
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stand how all of these variations can be translated to 
and combined at a single point. Consequently, designing 
for good gain and phase margins at a single point is an 
attempt to cover the net effect of all of the variability in 
the missile that the flight control system must tolerate. 
Typically, gain and phase margins are computed at the 
input to the actuator and also should be computed at  
the outputs of the IMU. In addition, gain and phase 
margins can be computed at other points in the system 
that may be of particular interest. For example, it may 
be useful to know how much Ma can be increased from 
its modeled value before the system becomes unstable.

The open-loop frequency response at the actuator 
shown in Fig. 11 exhibits characteristics common to a 
good design. At low frequencies, the gain is high, which is 
required for good command tracking, robustness to low-
frequency variations from the modeled system dynamics, 
and rejection of low-frequency disturbances (e.g., a wind 
gust or a transient induced by a staging event). At high 
frequency, the gain is small and decreasing, which pro-
vides attenuation of high-frequency disturbances such as 
sensor noise and robustness to high-frequency variations 
to the modeled system dynamics, as discussed next.

At higher frequencies, the concept of gain and phase 
margins applies mathematically but is not as useful real-
istically because the models used for the design and 
analysis typically become increasingly inaccurate with 
increasing frequency because of the fundamental non-
linear nature of the system. Actuators, in particular, do 
not behave as linear systems at high frequency because 
of nonlinearities such as friction and backlash. Another 
issue is that missiles are not perfectly rigid. High- 
frequency flexible body vibrations in response to actua-
tor motion can be sensed by the IMU and become a 
destabilizing effect. The net result is that predicted gain 
and phase values at high frequency can differ consider-
ably from their actual values. A common approach to 
address this problem is to ensure that the open-loop 
gain is below some desired value at all frequencies above 
some certain lower bound. This approach desensitizes 
the system to high-frequency phase variations. The 
gain requirement is set based on assumptions about the 
high-frequency modeling errors, sometimes based on 
test data, and often comes from hard-learned experi-
ence. In general, the less the designer knows about the 
actual response of the system (relative to the modeled 
response), the more conservatism must be built into  
the design.

Not surprisingly, such conservatism comes at a cost. 
Gain and phase of a linear system across all frequen-
cies must satisfy certain mathematical relationships 
and cannot be controlled independently. Therefore, the 
designer cannot decrease the gain at high frequency 
without also reducing the phase at lower frequencies, 
which then reduces the phase margin. Phase margin can 
be recovered by modifying the gain to move the 0-dB 

Figure 12.  This block diagram illustrates a general way to rep-
resent the effect of modeling errors or uncertainty in a control 
system. Here, w represents the system input (e.g., an acceleration 
command), z is the system output (e.g., achieved acceleration), 
M(s) is the transfer function model of the nominal system, and D 
represents perturbations to the nominal parameters (e.g., moment 
of inertia or aerodynamic coefficients). The model uncertainty can 
be represented as the gain in a feedback loop around the nominal 
system. Because it is a feedback loop, stability of this system can 
be analyzed using feedback control theory.

M(s)

�

w z

crossover point to lower frequencies, but this in turn 
will likely slow down the step response and increase 
the time constant. Conflicts between high-frequency 
attenuation requirements and low-frequency bandwidth 
requirements are not uncommon for a high-performance 
system, particularly with an unstable airframe, and can 
only be solved by giving up one for the other or re-
addressing overall system requirements and the system 
configuration through systems engineering.

Robustness to Parameter Variations
So far the concept of robustness has been addressed 

through gain and phase margins, which apply at a single 
point or can be loosely thought of as “covering” simul-
taneous variations, and high-frequency attenuation, 
which covers high-frequency modeling errors and uncer-
tainty. Another type of robustness that can be useful to 
quantify is tolerance to specific simultaneous parameter 
variations in the missile dynamics model, which is a 
more accurate error model than assuming that only one 
parameter can vary while holding the others fixed. For 
example, we might wish to know how much variability 
can be tolerated in Ma and Md simultaneously before the 
system becomes unstable.

This type of problem can be addressed by realizing 
that it can be viewed within the framework of Fig. 12. 
In Fig. 12, the transfer function matrix M(s) represents 
the nominal, closed-loop flight control system, where 
w represents the guidance command (e.g., commanded 
acceleration), and z represents the achieved missile 
dynamics (e.g., achieved missile acceleration). The feed-
back matrix  represents the perturbation to the nomi-
nal system. In this example,  is a 2 3 2 diagonal matrix, 
with the diagonal elements representing the perturba-
tions to the nominal values of Ma and Md. From the dia-
gram, it is apparent that perturbations to the nominal 
system essentially act as an extra feedback loop. Hence, 
the question: How big can  be before the feedback loop 
becomes unstable?
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One approach to answering this question is illus-
trated in Fig. 13. Conceptually, a stability boundary is 
defined by a locus of points in the Ma–Md plane. The 
goal is to find the minimum distance from the origin 
to the stability boundary. This constrained minimum 
distance problem can be solved numerically via a gradi-
ent projection search.1 As with any gradient search, the 
problem of finding local minima must be addressed. This 
approach extends to problems of higher order, where the 
problem is to find the minimum distance from the origin 
of the perturbation space to an n-dimensional surface 
that defines the stability boundary.

Because the perturbations are really a feedback 
loop around the nominal system, another approach to 
addressing the simultaneous perturbation problem fol-
lows directly from stability theory for multi-input, multi-
output feedback control systems. Using the maximum 
singular value  for the measure of the magnitude of a 
matrix, the stability problem then is

	 min( ( )| . . system is unstable),
�

� s t� 	 (17)

i.e., find the smallest perturbation matrix that destabi-
lizes the system. The solution to this problem follows 
from the multivariable Nyquist stability theorem and 
actually is easily solved, assuming that the perturbation 
matrix  is a fully populated, complex matrix, when in 
reality it is a real, diagonal matrix. Hence, this approach 
tends to be conservative. In practice, much of the con-
servatism can be reduced by specifying in the minimiza-

tion problem that the perturbation matrix has a specific 
structure

	
min( ( )| . . system is unstable,

�
� s t�

� � {diagonal matrices}) .
	 (18)

The additional constraint on the structure of the pertur-
bation matrix makes this a much more difficult problem 
to solve.

Although the simultaneous perturbation problem 
can be solved mathematically, the flight control engi-
neer still needs to formulate the problem in a meaning-
ful way, particularly when dealing with perturbations to 
parameters that can have very different dynamic ranges 
or even different physical units. Hence, determining the 
appropriate scaling on the perturbed parameters is an 
important first step in these types of problems.

PITCH ACCELERATION AUTOPILOT EXAMPLE
This section presents an example of a pitch accel-

eration autopilot design for a tail-controlled missile and 
illustrates some of the FOMs discussed above.

The missile dynamics have been linearized around a 
nominal operating condition of a 10° AOA and a missile 
speed of Mach 3. Evaluating the slopes in Eq. 7, insert-
ing them into the state-space model, and computing the 
transfer functions in the frequency domain yields
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The denominator of these transfer functions is the same 
as the left-hand side of the characteristic equation in Eq. 
8. At this condition, the missile has a stable airframe 
with a pair of lightly damped complex poles.

This example assumes that the tail-fin actuator 
dynamics can be represented by a second-order transfer 
function (e.g., Eq. 15) with va = 150 rad/s and a = 0.7. 
The IMU is assumed to be ideal, i.e., the feedback mea-
surements are equal to their corresponding true values.

The autopilot for this example is the basic three-
loop autopilot shown in Fig. 6. The autopilot gains are 
selected to provide a time constant of less than 0.2 s with 
minimal overshoot. The resulting autopilot gains are 
Kdc = 1.1, Ka = 4.5, Ki = 14.3, and Kr = –0.37.

The achieved missile acceleration in response to 
a unit-step acceleration command input is shown in 
Fig. 14. The time constant is approximately 0.18 s, and 
the overshoot is only a few percent. The response in 
Fig.  14 shows that the initial acceleration develops in 
the negative direction before reversing and eventually 

Figure 13.  The stability of the perturbed system can be repre-
sented by regions in the perturbation plane. The analysis problem 
then is to define the stability boundary and the shortest distance 
from it to the origin. This problem can be solved with a projected 
gradient search. This solution approach extends to more than two 
perturbations and can even be used with complex perturbations 
that represent changes in both gain and phase at critical points in 
the system. 
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tracking the command. This feature is common to tail- 
controlled missiles. The tail must develop a negative 
force at the aft end of the missile in order to pitch the 
nose up and develop a positive AOA. The initial nega-
tive kick by the tail moves the center of gravity in the 
negative direction before the AOA increases and devel-
ops positive lift to accelerate the missile in the desired 
direction.

Figure 15 shows the Bode plot of the open-loop fre-
quency response with the loop broken at the actuator. 
The gain and phase margins 
are indicated on the plot and at 
first glance appear to meet the 
classical criteria of 6  dB and 
30°, respectively. However, the 
true gain and phase margins 
might be considerably lower 
once other effects are included 
in the model, such as IMU 
dynamics and measurement 
latencies as well as time delays 
associated with the digital im-
plementation of this autopilot 
in the flight computer. The 
Bode plot also shows another 
desirable aspect of a good 
design: the gain curve is mono-
tonically decreasing at high fre-
quencies, which provides some 
robustness against unmodeled 
high-frequency dynamics, such 
as the aforementioned flexible 
body vibrations.

TECHNOLOGY CHALLENGES
In this section, we review the classical approach to 

designing missile flight control systems and discuss 
where improvements are needed as the requirements on 
the flight control system become more stringent to pace 
the threat.

The classical approach to designing the missile flight 
control system can be summarized as follows.

1.	 Develop linear models of the actuator and sensor.

2.	 Define the functional form of the autopilot  
equations.

3.	 Develop a linear model of the missile dynamics at a 
flight condition of interest.

4.	 Design autopilot gains in the pitch, yaw, and roll 
channels, assuming an aerodynamically decoupled 
airframe to meet basic time-domain requirements.

5.	 Design additional compensation for aerodynamic 
cross-coupling.

6.	 Design additional filters to attenuate sensor noise 
and flexible body vibrations.

7.	 Assess linear robustness and performance of the 
fully coupled system.

8.	 Return to 4 if necessary.

9.	 Repeat 3–8 for all flight conditions of interest.

10.	Develop a methodology to smoothly transition 
from one set of gains to the next as the missile flies 
through different flight conditions.

11.	Add nonlinear features, such as actuator command 
limits, if necessary.

Figure 14.  The response to a unit-step input acceleration com-
mand for the pitch acceleration control system example is shown. 
This response illustrates the characteristics of a good design, such 
as a small time constant, small overshoot, and zero steady-state 
error.  The initial acceleration in the negative direction is common 
to tail-controlled missiles.
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Figure 15.  The Bode plot with the loop broken at the actuator input for the example pitch accel-
eration control system shows the characteristics of a good design. The gain is high at low fre-
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12.	Evaluate in a high-fidelity simulation using nonlin-
ear aerodynamic, actuator, and sensor models.

13.	Return to 3 if necessary.

This approach has worked well in the past and will 
continue to work well in the future for many applica-
tions. However, for high-performance interceptors that 
need to achieve a high AOA with a small time constant, 
this approach can suffer. One potential problem is the 
separate steps in 4 and 5 for dealing with the aerody-
namic coupling. Intuitively, it might be expected that 
designing the in-channel and cross-coupling compensa-
tion in a unified design approach would yield superior 
performance. Another area for improvement is the way 
in which the high-fidelity models are used only for assess-
ment after the basic design is complete. As required time 
constants decrease, the autopilot will likely saturate the 
actuator for longer periods of time, suggesting that non-
linear simulation may need to be integral to the design 
process. Further complicating the design is that steps 
3–8 might need to be carried out for thousands of oper-
ating conditions.

As the classical design approach evolves, the follow-
ing challenges need to be addressed:

•	 The design approach should account for hardware 
nonlinearities as a fundamental element of the 
design process.

•	 The design approach needs to be easily auto-
mated so that computer programs can be writ-
ten to design the autopilot gains over the entire 
flight envelope to minimize the need for “design  
by hand.”

•	 The design approach should work directly on the 
fully coupled model of the missile dynamics.

•	 A good design approach should yield a design that 
is easily adaptable to changes in the missile configu-
ration, specifically the mass properties that tend to 
change over the course of a missile development and 
production program.

Though not explicitly stated, any desirable design 
method should yield a robust control system when prop-
erly applied.

The first challenge can be addressed by designing 
the autopilot using numerical optimization programs. 
The cost function that is optimized can include many 
if not all of the FOMs previously discussed, including 
those from the time-domain response as determined 
from high-fidelity simulations that include models of the 
system hardware with their nonlinear dynamics. In this 
way, the trade-off between robustness and nonlinear 
time response is brought directly into the process. The 
challenge then becomes developing a cost function that 
will meet engineering design goals when it is optimized. 
The last three challenges can be addressed through the 

selection of the specific design method to apply to any 
particular system. Many control system design tech-
niques are available, but finding one method that meets 
all three of these criteria is difficult. APL’s contributions 
in this area are addressed in the next section.

APL CONTRIBUTIONS
APL has been involved in the development of flight 

control systems for the Navy since the earliest missiles 
were being developed. For many of these programs, APL 
serves as the Technical Direction Agent and, as such, 
provides support over the life cycle of a missile program. 
APL also evaluates new theoretical developments in 
control theory for their applicability to the missile flight 
control design problem. 

Life Cycle Support
During the concept development phase of a pro-

gram, APL is involved in developing the requirements 
for the flight control system. These requirements then 
flow down to subsystem requirements on the airframe, 
actuator, and IMU. Typically, this subsystem flow-down 
requires some level of an autopilot design to demonstrate 
the feasibility of the entire system meeting the flight 
control requirements. 

As the missile program proceeds to the development 
phase, APL works closely with the design contractor to 
ensure a robust design that meets requirements. APL 
develops models, independent of the contractor, that can 
be used for model verification and performs an indepen-
dent assessment of the design. This assessment includes 
linear analyses as well as predictions from high-fidelity 
time-domain simulations. Parts of the analyses may rep-
licate those performed by the contractor to verify results. 
The results of these analyses are communicated back to 
the contractor with emphasis on areas of concern and 
potential solutions that may need to be addressed in a 
subsequent design iteration.

As the program progresses to the test-flight phase, 
APL works with the contractor and other organizations 
to develop test objectives and scenarios. The scenarios 
are designed to maximize coverage over the design space 
and demonstrate flight control performance, with par-
ticular emphasis on the time constant and maximum 
acceleration. Along with scenario development are pre-
flight predictions based on high-fidelity simulations. 
After the flight, APL again conducts an independent 
postflight analysis and also uses the flight test data for 
model validation.

Technology Development
In addition to supporting missile development pro-

grams, APL has taken an active role in applying new 
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theoretical developments in the field of control systems 
design and assessing their applicability to the missile 
flight control design problem. Our particular emphasis 
has been on addressing the last three challenges listed 
previously, i.e., developing design methods that can be 
automated, apply to the fully coupled pitch–yaw–roll 
dynamic model, and are adaptable to changes in the 
missile configuration. This activity has been ongoing 
since the earliest Navy missile programs. This article 
covers only the relatively recent activities over the last 
20 years or so.

In the late 1980s, APL demonstrated that the linear 
quadratic regulator (LQR) theory can be applied to 
the missile autopilot design problem. The LQR design 
problem is to find the control input that minimizes a 
quadratic function of the state and control

	 C x u Ru dtT T= +�( ) ,Qx
0

�

	 (20)

where x is the vector of state variables—e.g., AOA, 
AOS, etc.—and u is the vector of control inputs—e.g., 
pitch, yaw, and roll tail deflections. The constant, sym-
metric weighting matrices, Q and R, must be selected 
to reflect the desired time-domain design criteria, such 
as time constant and overshoot. The primary benefit 
of the LQR approach is that the control solution typi-
cally has very good stability margins. The difficulty had 
always been in the appropriate selection of Q and R 
to represent engineering design criteria. APL used the 
theoretical work of Harvey and Stein,2 where Q and R 
can be constructed to specify a desired eigenstructure of 
the closed-loop control system. The closed-loop eigen-
values can be specified based on time-domain require-
ments, and the eigenvectors can be specified to reflect 
the desired degree of decoupling between the control 
channels. This approach has been demonstrated to yield 
robust designs based on the fully coupled dynamic model 
and can be automated to work on all flight conditions 
across the battle space. It does not, however, easily adapt 
to changes in the missile configuration. Such changes 
typically require another iteration of the design over the 
entire design space.

The late 1980s and early 1990s saw an explosion in 
the use of so-called H design techniques, primarily as 
a result of the groundbreaking solution of the control 
problem indicated in Fig. 16.3 In the frequency domain, 
the mathematical objective is to find the controller K(s) 
to compute the control u based on measurements y from 
the plant P(s) that minimizes the infinity norm of the 
transfer function matrix that relates the inputs w to 
the outputs z. The infinity norm of a transfer function 
matrix is defined as

	 sup  �(H(j�)).
� � = 0→�

H s( ) = 	 (21)

Loosely speaking, the infinity norm is a measure of 
the maximum gain from input to output over all  
frequencies.

For the flight control application, the plant repre-
sents the missile dynamics, actuator, and IMU. The 
controller is the autopilot. The control u is the actuator 
command, and the measurements y are the IMU out-
puts. The inputs w would include, for example, pitch and 
yaw acceleration commands, and the outputs z would 
include the pitch and yaw acceleration errors and the 
missile roll rate. The key is that the outputs are not the 
actual signals themselves but frequency-weighted ver-
sions of those signals. The frequency-dependent weights 
map time and frequency-domain design goals to the 
peak gain over all frequencies of the transfer function 
from w to z.

This approach works well for designing missile auto-
pilots at specific operating conditions based on a fully 
coupled model of the missile dynamics. However, it 
results in high-order controllers that may be difficult 
to implement, and it is not easy to automate over the 
design space. APL pioneered the use of this method for 
the autopilot design problem. Some of this work is con-
tained in Refs. 4–9. 

In the early-to-mid-1990s, APL took the lead on the 
Highly Responsive Missile Control System Advanced 
Technology Demonstration program. This program had 
several objectives, one of which was to demonstrate the 
efficacy of modern design techniques for the flight con-
trol problem and show that the resulting design could 
be implemented in real time on an embedded processor. 

P(s)

K(s)

z(s)
w(s)

w

yu

z

min
K(s) �

Figure 16.  The H design problem is to find the controller K(s) 
that minimizes the infinity norm of the transfer function from the 
inputs in vector w to the outputs in vector z. For the flight control 
design problem, the plant P(s) models the actuator,  airframe, and 
IMU dynamics. The controller K(s) is the frequency-domain rep-
resentation of the autopilot. The inputs w are the guidance com-
mands and the outputs z are frequency-weighted signals, such 
as the achieved acceleration. The frequency-dependent weights 
can be chosen to represent typical time-domain and frequency-
domain design objectives.  An approximate solution to this prob-
lem can be reached through an iterative approach and involves 
the solution of two algebraic Riccati equations for each iteration.
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The design method used in this program was based on 
the normalized, co-prime factorization (NCF) approach.

In the NCF approach, the plant in the frequency 
domain is viewed in terms of a transfer function numera-
tor and denominator (N(s), D(s)), where each has some 
associated uncertainty, as in Fig. 17. The control prob-
lem is to find the controller K(s) to achieve the desired 
open-loop frequency response specified by the weight-
ing functions W1(s) and W2(s) and simultaneously maxi-
mize the size of the uncertainty that would result in an 
unstable system. The weighting functions are specified 
by the designer as part of the plant model in the design 
step and then combined with K(s) for implementation. 
Examples using this approach can be found in Ref. 10.

The NCF approach was shown to yield solid, robust 
designs and could be automated across the design space. 
However, a completed design does not readily adapt to 
changes in the missile configuration. Also, it does yield 
high-order controllers that can be difficult to implement. 
Unfortunately, the effort was halted before it could be 
shown that the resulting design could be implemented 
in real time.

In the mid-1990s, APL was involved in the analysis 
of various missile system concepts being proposed for 
the tactical ballistic missile defense mission. To assess 
these concepts, APL developed weapon system simula-
tions to evaluate predicted performance. Although none 
of the conceptual systems had actually been designed at 
this point, the Navy nevertheless desired that the simu-
lations be of relatively high fidelity. To this end, APL 
had to design prototype flight control systems that could 
be used in high-fidelity, nonlinear, launch-to-intercept 
simulations that used fully coupled aerodynamic models. 
These prototype designs had to be developed reasonably 
quickly, be easily modified to adapt to weight and center- 
of-mass changes to each concept, and represent the 
expected tactical performance of each of these concepts.

To this end, APL used a technique called nonlinear 
dynamic inversion to quickly design prototype flight 
control systems. At its core, this technique is very 
simple, yet it is a powerful design approach. Consider 
the nonlinear system that is affine in the control input,

	 &x f x g x u= +( ) ( ) . 	 (22)

The control u is to be designed such that the system 
dynamics follow some desired trajectory that is a func-
tion of the state and commanded state,

	 &x h x xd c= ( , ) . 	 (23)

A typical form for the desired dynamics is a first- 
order lag,

	 h x x
x x

c
c( , ) ,=
−
�

	 (24)

with t being the desired time constant. These desired 
dynamics can be achieved through a feedback control 
law of the form

	 u g x h x x f xc= −−1( )( ( , ) ( )) ,	 (25)

assuming that the state vector can be measured.
For the acceleration autopilot design problem, for 

example, the dynamic inversion actually is used twice. 
First, it is applied to develop control of the missile pitch 
rate given a desired pitch rate command. Once the pitch 
rate control loop is designed, it becomes part of the effec-
tive plant for which the outer acceleration control loop 
is defined, using the guidance acceleration command as 
the reference input.

The dynamic inversion design approach is appealing. 
It is a simple concept to understand and apply. Because 
the missile dynamics are explicitly part of the control 
law, it is easily automated and works directly on the non-
linear, fully coupled pitch–yaw–roll dynamic model. A 
direct consequence is that the autopilot design naturally 
adapts to modifications in the missile configuration. For 
example, a change to the missile mass properties can 
be naturally accommodated by updating values in the 
computations of f(x) and g(x) in Eq. 25, whereas for the 
autopilot shown in Fig. 6, the relationship between the 
values of each gain and the mass properties will not be 
readily apparent.

The primary drawback of the dynamic inversion 
approach is that is does not provide any theoretical guar-
antees of robustness. Instead, it relies on an experienced 
designer to specify desired dynamics that can be reason-
ably achieved by the airframe and within the bandwidth 
constraints of the system hardware. As with any design 

W2(s)W1(s)
–

PlantDesign plant

K(s)

N(s)+�1

D(s)+�2

Implemented controller

Figure 17.  The normalized co-prime factorization approach uses 
frequency-dependent weights to shape the open-loop frequency 
response. The design problem is to solve for the controller K(s) to 
achieve the desired open-loop response and simultaneously max-
imize robustness to uncertainty in the numerator and denomina-
tor of the transfer function that models the plant dynamics. The 
weights W1(s) and W2(s) are treated as part of the plant for design-
ing K(s) and then appended to K(s) for the controller that is imple-
mented in the missile software.
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approach, the final design must be thoroughly assessed 
in a high-fidelity simulation and through linear analysis 
techniques.

Despite this one drawback, the advantages of the 
dynamic inversion approach make it very appealing. 
In addition, the desired dynamics could potentially be 
made a function of time as well, for example, to make 
the missile more responsive as it approaches intercept 
at short time-to-go. The implications of a time-varying 
design on flight control system performance and on mis-
sile performance as a whole are as yet unexplored. 

CONCLUSION
This article has covered a variety of topics related 

to the missile flight control system. The design of this 
important missile subsystem will continue to evolve to 
realize the maximum capability of the missile airframe 
to engage the stressing threats expected in the future.
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