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1 h A Deterministic Analysis of Stochastic
'yt at Approximation with Randomized Directions

I-Jeng Wang and Edwin K. P. Chong

Abstract—We study the convergence of two stochastic approxima-
t@on algorithms with randomized directions: the simultaneous pertur-
yulbdtion stochastic approximation algorithm and the random direction
nd<iefer—Wolfowitz algorithm. We establish deterministic necessary and
|0§ fficient conditions on the random directions and noise sequences for

th algorithms, and these conditions demonstrate the effect of the “ran-

dom” directions on the “sample-path” behavior of the studied algorithms.
We discuss ideas for further research in analysis and design of these
algorithms.

Index Terms—Deterministic analysis, random directions, simultaneous

Iorﬁerturbation, stochastic approximation.
n-
J I. INTRODUCTION

nd One of the most important applications of stochastic approxi-

mation algorithms is in solving local optimization problems. If an
agestimator of the gradient of the criterion function is available, the
.” Robbins—Monro algorithm [9] can be directly applied. In [7], Kiefer
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and Wolfowitz present a modification of the standard Robbins—MonroA2) There existr* € R” such that

algorithm to recursively estimate the extrema of a function in the . )

scalar case. The algorithm is based on a finite-difference estimate of * @) =0 . .

the gradient and does not require knowledge of the structure of the cri- + forall 6 > O,Tthere e>*<|sts}z,5 >0 sucb tha|e — 7| > 6
terion function. In [1], Blum presents a multivariate version of Kiefer implies f(x)" (x — %) 2 hs[lz — 27|,

and Wolfowitz's algorithm for higher dimensional optimization. Wenote that Assumptions A1) and A2) are not the weakest possible
will refer to this algorithm as the Kiefer-Wolfowitz (KW) algorithm. assumptions on the functiofi for convergence of the SPSA or
For an objective function with dimensiop, the finite-difference RDKW algorithms; for example, a weaker Lyapunov-type of condi-
estimation generally requireXp observations at each iteration. Thistion is considered by Cheet al. in [2] for convergence of the SPSA
requirement usually results in unrealistic computational complexigigorithm. Since our main objective is not to obtain convergence
when the dimension of the problem is high. To circumvent thigsults under weaker conditions d@n we adopt the more restrictive
problem, several authors have studied variants of the KW algorittggsumptions [A1) and A2)] to avoid unnecessary complications that
based on finite-difference estimates of the directional derivativesay arise from considering the more genefal Throughout this

along a sequence of randomized directions; see, for example, [§dper,{c,} is a positive scalar sequence wlih,, . ¢, = 0.
[8], and [12]. We will refer to this type of algorithm as than-

dom direction Kiefer—Wolfowit¢zRDKW) algorithm. The number of
observations needed by the RDKW algorithm is two per iteration, ) i
regardless of the dimension of the problem. However, the question/Vé rely mainly on the following convergence theorem from [14]
arises as to whether the increase in the number of iterations (dué*ftsl [15] to derive conditions on the perturbations and noise.

the randomization of the directions) may offset the reduction in the Theorem 1: Consider the stochastic approximation algorithm
amount of data per iteration, resulting in worse overall performance. Tog1 = Tn — an f(20) + anen + anb, 1)

Different distributions for the randomized direction sequence ha\\f\%ere (e}, {en}, and {b,} are sequences o?, f: R* —

been considered: uniform distribution in [6], spherically uniforrr}{,, satisfies Assumption A2), anfiz, } is a sequence of positive
distribution in [8], and Normal and Cauchy distributions in [12]. Non al numbers satisfyingim ‘ 0 = 0, Y a, = oo, and
7L — OO n L) n=1 n il

_ ; o §

olf tht_atsr,]e resu_lttr? theorettl_calI):j_estrf[l_bl|sP:j_tr;e_bSL:perlorlty ?LthetR%KYlﬁn,Hoo b, = 0. Suppose that the sequenfé(«,)} is bounded.
algorithms with respective direction distribution over the standatfy, . ¢, anyz, in R”, {x.} converges tor” if and only if {e,}
taneous perturbation” gradient approximation that requires only twoCl)
observations at each iteration. The algorithm also moves along a <
standard KW procedure. Following the terminology of [11], we T},
refer to Spall's algorithm as th&multaneous perturbation stochastic c2)

; . . =0.
name RDSA is used therein), and SPSA algorithms. A more general T—0 n—oc \n<k<m(n,T)
class of distributions is considered for the RDKW algorithm there and ~3y o, anya, 3 > 0, and any infinite sequence of nonoverlap-
direction have unity variance, which is not necessary for convergence
of the RDKW algorithm as illustrated by Proposition 2. In fact, as Z wne| < a Z A
optimized conditions. In [2], Cheat al. study a modification of the =~ C4) There exist sequencdy’, } and{g,} with e, = fn + g»
SPSA algorithm and prove its convergence under weaker conditions.  for all » such that
of the algorithms and present deterministic necessary and sufﬁcien&
conditions on both the randomized directions and noise sequence for
deterministic sequence and derive the conditions on each individual converges to zero, where
sequence for convergence of these algorithms. The resulting condition '

Il. CONVERGENCE OFROBBINS—-MONRO ALGORITHMS

k

E a;e;

i=n

sup
n<k<m(n,T)

k

E a;e;

i=n

n€ly n€ly

E ar fr. converges andlim g, = 0.
n—oc
k=1

5) The weighted average.. } of the sequencée,, } defined by

KW algorithm. - : L
. . atisfies any of the following conditions.
In [11], Spall presents a KW-type algorithm based on a “S|muE y ¢
sequence of randomized directions as the RDKW algorithm. By nli_n; ) =0
analyzing the asymptotic distribution, Spall [11] shows that the
proposed algorithm can be significantly more efficient than the for someT” > 0, wherem (n, T) 2 max{k : an+- - +ay, <
approximation(SPSA) algorithm. Chin presents in [4] both theoretical
and numerical comparison of the performance of KW, RDKW (the lim 1 lim sup ( sup
0T . <
the SPSA algorithm is shown to exhibit the smallest asymptotic mean ping intervals{I,} on NV there existsk’ € N such that for
squared error. Chin makes an assumption that components of each 5, 7. >~ i '
explained in Section IV, we can show that the SPSA and RDKW algo-
rithms achieved the same level of performance asymptotically under
In this paper, we focus on the sample-path analysis of the SPSA "
and the RDKW algorithms. We develop a deterministic analysis
convergence of these algorithms. Different from the results in [2], [4], o 1 i .
and [11], we treat the “randomized” direction sequence as an arbitrary " B = TkCR

displays the sample-path effect of each random direction sequence on B = {17 N ; n=1 )
the convergence of both algorithms. ITi= Toay» Otherwise

Throughout the paper, we consider the problem of recursively Yn = @nBn.
estimating the minimum of an objective functidn R” — R based Proof: See [14] for a proof for conditions C1)-C4) and [15] for
on noisy measurements bf We assume that satisfies the following 3 proof for condition C5). O
conditions. Theorem 1 provides five equivalence necessary and sufficient noise

Al) The gradient ofL, denoted byf = VL, exists and is conditions, conditions C1)-C5), for convergence of the standard
uniformly continuous. Robbins—Monro algorithm (1). Note that the assumption {lfat:., ) }
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is bounded can be relaxed by incorporating the projection schemith additive noisee;” and e, respectively. For convenience, we
into the algorithm as in [3]. Since our objective is to investigaterite

the effect of the “random” directigns on the algorithm, rather than . L(xn + cnrn) — L(an — carn)

to weaken the convergence conditions, the form of the convergence f(za) = 2 (3)
result in Theorem 1 suffices for our purpose. In the next section, we ”

will use Theorem 1 to establish the convergence of two stochas#i§ an approximation to the directional derivative along the direction
approximation algorithms with randomized directions by writing them»- 7. f(z,). To analyze the algorithm, we rewrite (2) into the

into the form of (1). standard form of the Robbins—Monro algorithm (1)
Tptt = o — an f (@0)dy + an;idn 4)
Ill. ALGORITHMS WITH RANDOMIZED DIRECTIONS . En .
In this section, we study two variants of the KW algorithms = 2n = an (1o f(zn) = bu)dn +"'77f§dn

with randomized directions, including the SPSA and the RDKW = it = an f(n) + anbudn + a fn g
algorithms. In contrast to the standard KW algorithm, which moves oo e e, "

along an approximation of the gradient at each iteration, these algo- —a, (d“ = I)f(a:“) (5)
rithms move along a sequence of randomized directions. Moreover,

these algorithms use only two measurements per iteration to estimeayedefining

the associated directional derivative as in the case of the RDKW . -

algorithm, or some related quantity as in the case of the SPSA b =71y f(@n) = ' (20) ©)
algorithm. en =e, —el.

We define the randomized directions as a sequence of veetpts o o o
on R*. We denote theith component ofd, by d.;. Except for 1he se_quer_me{bn} represents tht_a bias in the dlrgctlon_al derivative
Propositions 1 and 2, the sequer{deg } is assumed to be an arbitraryaPPrOX'mat'on- The effective noise for thg algorithm is the scaled
deterministic sequence. The main goal of this section is to establ@ifférence between two measurement noise valges,. \We can
a deterministic characterization ., } that guarantees convergencéPPly the result in Theorem 1 to establish the convergence of the
of the algorithms under reasonable assumptions. Note that we S§&SA algorithm (2). We first prove that the bias sequefise}
the same notation,, to represent the random directions for bottfONVerges to zero. o _
the SPSA and RDKW algorithms to elucidate the similarity between L€émma 1: Suppose thaf.: R* — R satisfies Assumption Al),
them. This does not imply that the same direction sequence should{be} converges to zero, anfl-, } is bounded. Then the sequence
applied to both algorithms. In general, different requirementgdyy ~ {0»} defined by (6) converges to zero.
are needed for convergence of these two algorithms, as illustrated in Proof: By the Mean Value theorem
Theorems 2 and 3. " L(n + carn) — L2y — cnry)

b, =7, f(z,) — %%

A. SPSA Algorithm — Ti[f(rn) — Flan + (220 — D)eara)]

Although the convergence of Spall’s algorithm has been established ) )
in [11], it is not clear (at least intuitively) why random perturbation/n€re0 < A. < 1 foralln € N. Lete > 0 be given. Sincef
used in the algorithm would resuilt in faster convergence. In boffy Uniformly continuous, there exists> 0 such that|jx — y|| < &
Spall's [11] and Chen's [2] results, conditions on random pertufTPli€s|lf ()= f(y)ll < 55y Furthermore, by the convergence
bations for convergence are stated in probabilistic settings. Thédelcn } there existsV € N such thaf|(2A, — 1)earn || < & for all
stochastic conditions provide little insight into the essential propertigs> V- Hence, for alln > N

of perturbations that contribute to the convergence and efficiency N £ _ ,

of the SPSA algorithm. In this section, we develop a deterministic ol <l l1F ) Gf(l" + (20 = Denra)
framework for the analysis of the SPSA algorithm. We present five < sup ||'7"n||m =&

equivalent deterministic necessary and sufficient conditions on both K S

the perturbation and noise for convergence of the SPSA algorithiherefore{b,,} converges to zero. O

based on Theorem 1. We believe that our sample-path characterizatiodsing Theorem 1 and Lemma 1, we establish a necessary and
sheds some light on what makes the SPSA algorithm effective. sufficient condition for convergence of the SPSA algorithm in the
We now describe a version of the SPSA algorithm. We definefallowing theorem.
sequence of vectorsr, }, related to{d, }, by Theorem 2: Suppose that Assumptions Al and A2) hold, and
{rn}, {d.}, and {f(x,)} are bounded. Then,z,, } defined by (2)
. { o L} converges ta:* if and only if the sequenceS(d,,». —I)f(x,)} and
T ldn T dap ] {£=d,} satisfy conditions C1)-C5).
”Proof(:>): Suppose thafx,, } converges ta:™. Then{f(x,)}
The SPSA algorithm is described by converges tof(z*) = 0 by the continuity off. Since {r,} and
L {d.} are bounded|d.r; —I|| is bounded and(dnry —I)f(xn)}
Tugl = Tn — n Yn = n 4 (2) converges to zero. Thug(d,rI — I)f(x,)} satisfies conditions
2¢cn C1)-C5). By Theorem 1{(d,.r. — I)f(z.) — 5=d,} satisfies

p Coy

C1)-C5). Thereford ==-d,, } satisfies conditions C1)-C5).

c

where y.i and y;, are noisy measurements of the functidnat (). This follows directly from Theorem 1 and Lemma 1.0

perturbed points, defined by Theorem 2 provides the tightest possible conditions on both the
N N randomized direction sequen¢é, } and noise sequende,, }. Note
Yn = Lan +cnrn) + e, that the condition or,, is “coupled” with the function valueg(z,,).

Y, = L(zn — carn) + e, This special form of coupling suggests an adaptive design scheme
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for d,, based on the estimate ¢f«,, ). However, this idea may be by defining

difficult to carry out due to the special structure of the matrix by = dT fan) — fd(m )
0 dny Ayt _ + ’ (10)
m T m €n = € — €n
dorl 1= oy 0 Ty %) wherep > 0 is an arbitrary constant real number. Comparing (9)

with (4), we can see that the RDKW algorithm differs from the SPSA
dup  dnp 0 algorithm only in the direction along which the directional derivative
dn1 dnz is estimated.

We can see that it is difficult to scale the elements in the matrix Following the same arguments as in the proofs of Lemma 1 and

according to{ f(z,,) }. One solution to this is to establish probabilisticTheorem 2, we can show that the sequeiite} defined by (10)

sufficient conditions on the perturbation to guarantee that the deteonverges to zero and the following theorem holds.

ministic condition in Theorem 1 holds almost surely, as in [2] and Theorem 3: Suppose that Assumptions Al) and A2) hold, and

[11]. We present a general sufficient condition based on the martingété. } and{ f(x..)} are bounded. Thef;:.. } defined by (8) converges

convergence theorem. In the following proposition, we assume that:* if and only if the sequencel§d..d,, —p°I) f (xn)} and{ 5= ~dn }

{d»} and{e.} are random sequences. satisfy noise conditions C1)-C5).

Proposition 1: Let F, be the o-algebra generated by Comparing the above conditions with those of Theorem 2, we again
{dr}r=1,...n and {6],}], 1,..n. Assume that} ™7  al < oo notice a coupling betweefl,, } and{f(x.)}. Similar to the case of
for someq > 1, and E( | Fn—1) = 0 for i # j. Suppose that the SPSA algorithm, it may be difficult to des@ml } based on

{dn}, {rn}, and {f(x n)} are bounded. Ther{(d,r! — I)f(xn)} {f(x,)} to satisfy the condition fof(d,.d. — p*I)f(x.)} above,
satisfies noise conditions C1)-C5) almost surely. due to the structure 2°f the matrix
Proof: Let z, = a,L(dan —Df(zn), zn = [Zn1y- -, z,LI,]T. ((]:[1) 1_ P (ddm;]’n? ) T Zm(;np
i o in2n1 712)_ —p ot ln2Unp
Since dyd” oI = . . . D
E(zo | Fuor) = Elan (dnrl = I) f(2n) | Faor] =0 1 1 i
[ o) = Bl Jlea) | o] Qs dupduz =+ (dup)? =
{3>/_, z«} is a martingale. Furthermore (12)
E(|zni]") < o Although we are allowed to choose smallér; (the same is not

true for SPSA smce— needs to be bounded), the diagonal terms

for all i < p by the boundedness dfd.}, {r.}. {f(x»)}, and aways give a Welght around the quantlyy Furthermore, if we

-, ah. Hence by thel? convergence theorem for martingales [5try to choosep® = p? such thatp? = (d.i)> and letp,, — 0, the
eq. (4.4), p. 217], the Sequenéik | 2k} converges almost surely. resylting sequence of function? f (:L,,)} in (9) may not satisfy
Therefore{(d,.r, —I)f(+,)} satisfies condition C4) and hence theassumptions A1) and A2) and the algorithm may not converge.
noise conditions Cl) C5). U However, similar to the case for the SPSA algorithm, we can derive

In [2] and [11], d, is assumed to be a vector of mutually the following sufficient probabilistic condition of,. As before, we
independent random variables independent7of—;. Under this z5sume below thaltd,, } and{e,} are random sequences.
assumption, it is clear that the condition in Proposition 1 can be Proposition 2: Let F, be the c-algebra generated by

satisfied by assuming eithéf(d,;) = 0, as in [2], orE( ) =0, {dgYp=1..n and {ex}im1,..n. Assume that> > al < oo

as in [11]. for someq > 1, and E(dnd’ | Fn_1) = p*I. Suppose thafd,}
and {f(x,)} are bounded. Theq(d,dX — p*I)f(x,)} satisfies
B. RDKW Algorithms condltlons C1)-C5) almost surely.

The RDKW algorithm with random directions of different dis-
tributions has been studied by several authors; see, for example,
[6], [8], and [12]. In this section, we study the convergence of IV.  ConcLusion
the RDKW algorithm for a general direction sequengg,}. We As pointed out in Section IIl, the SPSA and RDKW algorithms
establish deterministic necessary and sufficient conditions on both tire very similar in form. In fact, under a probabilistic framework,
direction sequencéd,, } and the noise sequence for the convergenage can show that these two algorithms have the same asymp-
of the RDKW algorithm (Theorem 3). We compare and contrast thegstic performance under optimized conditions. In [10], Sadegh and

conditions to those of Theorem 2. Spall show that the random direction sequefide} with Bernoulli
The RDKW algorithm can be described by distribution for each component is asymptotically optimal for the
+ SPSA algorithm. Following the same approach, we can show that
Tyl = Ty — ann "I g, (8) the Bernoulli distribution is also optimal for the RDKW algorithm,
where 2en based on the asymptotic distribution established by Chin in [4] for
N N the RDKW algorithm. These two algorithms are clearly identical in
Yn = Lwn + cndn) + e, this case and hence exhibit the same performance (see [13, Sec. 5.4]
Y, = L(zn — cndyn) + ¢, . for a proof).

Although the probabilistic approach used in [4] and [11] is useful
As in the case of the SPSA algorithm, we can rewrite the algorithf} assessing the asymptotic performance of stochastic approximation

(8) into a Robbins—Monro algorithm algorithms, it provides little insight into the essential properties of ran-
_ d €n domized directions that contribute to the convergence and efficiency
mn+1 = Tn — (l/nf ('rn)dn + an_dn . . .
‘ 2¢n of the SPSA and RDKW algorithms. Furthermore, simulation results
= 20— anp (@) + anbndn +an,e—"dn suggest_th_at _the SPSA alg.orithm_ (or' the RDKW algorithm) with
2¢cn Bernoulli distributed randomized directions outperforms the standard

— an (ddfz - p2I)f(l’n) (9) KW algorithm not only in the average but also along each sample
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path. This phenomenon certainly is not reflected in the probabilisti¢3]
analysis of [11] or [4]. Our deterministic analysis does shed some

light on what makes the SPSA and the RDKW algorithms effective

Perhaps a comple}te answer can be obtained by further analyz
the sequencd(d,r. — I)f(xn)} (of {(dndl — p*I)f(a,)} for
the RDKW), which is the difference between the SPSA (or th

ihd

ed]

RDKW) algorithm and the standard KW algorithm. In the case where

dn; = +1, as in the case of Bernoulli distribution, the matfix- —T
(or d,,dX — I) has a unique structure

d d
0 ni ni
4 dnz jnp
n2 0 n2
da 1 dnp
‘Inp dnp 0
dn1  dn2
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