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Abstract

We study the convergence of the simultaneous pertur-
bation stochastic approximation algorithm and establish
deterministic necessary and sufficient conditions on both
perturbation and noise sequences. We discuss the dif-
ference between the algorithm and a stochastic approx-
imation with random directions, and propose ideas on
further research in analysis and designs of these algo-
rithms.

1. Introduction

The Kiefer-Wolfowitz (KW) algorithm is an application
of stochastic approximation to local optimization based

tions on both the perturbation and noise for convergence
of the SPSA algorithm. We believe that our sample-path
characterization sheds light on what makes the SPSA al-
gorithm effective.

2. Stochastic Approximation with
Simultaneous Perturbations

Consider the problem of recursively estimating the
minimum of an objective function L : R* — R based
on noisy measurements of L. We assume that L satisfies
the following conditions:

(A1) The gradient of L, denoted by f = VL, exists and

is uniformly continuous.

on a finite-difference estimate of the gradient. For an ob- (A2) There exist 2* € R? such that

jective function with dimension p, the finite-difference es-
timation requires 2p observations at each iteration. This
requirement usually results in unrealistic computational
complexity when the dimension of the problem is high.
In [9], Spall presents a KW type algorithm based on
a “simultaneous perturbation” gradient approximation
that requires only 2 observations at each iteration. It
is suggested in [9] that the proposed algorithm can be
significantly more efficient than the standard KW pro-
cedure. We refer to Spall’s algorithm as the simultane-
ous perturbation stochastic approzimation (SPSA) algo-
rithm. In [1], Chen et al. propose a modification of the
SPSA algorithm and prove its convergence under weaker
conditions.

Although the convergence of Spall’s algorithm has
been established, it is not clear (at least intuitively) why
random perturbations used in the algorithm would result
in faster convergence. In both Spall’s [9] and Chen’s [1]
results, conditions on random perturbations for conver-
gence are stated in probabilistic settings. These stochas-
tic conditions do not provide much insight into the es-
sential properties of perturbations that contribute to the
convergence and efficiency of the SPSA algorithm.

In this paper, we develop a deterministic framework
for the analysis of the SPSA algorithm. We present five
equivalent deterministic necessary and sufficient condi-
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e f(z*) =0; and

e for all § > 0, there exists hs > 0 such that
flz — z*{| > & implies
(@) (z ~z") > hsllz — z*||.

We define the random perturbations as a sequence of
vectors d, = [d, -~ ,dP]T, d, € RP, di, # 0. Next
we define a sequence of vectors {r,} related to {d,} by
™ = [gr,-*-, #|7. The SPSA algorithm is described
by
<+ - p—

yn_zcny—nrnv (1)
where a,, is the positive step-size satisfying the usual
conditions

ZTn4l = Tn —CQp

oo .
lim a, =0, E a, = o0;

n—oo

(2)

n=1
{en} is a positive sequence with lim,_, cn = 0; and
¥} and y, are noisy measurements of the function L at
perturbed points, defined by
L(zn + cndn) + €,
Lz, — cndy) + €,

+

Yn

Yn =

with additive noise e;} and e, respectively. For conve-
nience, we write

Tn + Cnln) = L(Tn = cndn)

_ K
fd(zn) = 2,

3).
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as an approximation to the directional derivative, (C4) There exist sequences {f,} and {gn} withe, = fn+

dz; f(zn).
For the purpose of analysis, we rewrite the algorithm
(1) into a Robbins-Monro type of algorithm

Zntt = Zn = an(d] f(@n) = bu)rn +angra, (4
= Zn — anf(Zn) + anbn + anz2rs
= an(rady = 1) f(2zn), (5)
by defining
b = dff(za) = fAzn), (6)
en = e; —et.

The sequence {b,} represents the bias of the directional
derivative approximation. The effective noise for the al-
gorithm is the scaled difference between two measure-
ment noise values, ﬁfrn. Applying sample-path conver-
gence results for Robbins-Monro algorithms [5, 10, 12],
we can obtain sample-path conditions on both random
perturbation {d,} and noise sequence {e,} for conver-
gence of the algorithm (1). We first provide the necessary
tools.

3. Convergence of Robbins-Monro Algorithms

We rely mainly on the following convergence theorem
from [10] to derive conditions on perturbations and noise.

Theorem 1. Consider the stochastic approzimation al-
gorithm

()
where {z,}, {en}, and {y.} are sequences on RP,
f: RP — RP satisfies Assumption (A2), {an} is a
sequence of positive real numbers satisfying (2), and
limpeo yn = 0. Suppose that the sequence {f(zn)} is
bounded. Then for any z; in RP, {z,} converges to z* if
and only if {e,} satisfies any of the following conditions:

(C1)
) B 0
for some T > 0, where
m(n,T) £ max{k:an +---+ax <T}.

(C2)

Tntl = Tn, — Anf(Tn) + Gnen + AnYn,

k
D aies

i=n

lim sup
N2 \ n<k<m(n,T)

k
D ases

i=n

sup

n—oo n<k<m(n,T)

):0.

(C8) For any a,B > 0, and any infinite sequence of non-
overlapping intervals {I;} on N there exists K € N
such that for all k > K,

S anen

nely

li ! lim
TIEIO T Sup

<ad an+p

nel;

gn for all n such that

n
E ar fr converges, and lim g, = 0.
k=1 n—oo

The condition (C1) is the well-known Kushner and
Clark condition [6}; the condition (C2) is a modification
of Kushner and Clark’s condition presented by Chen [2};
the condition (C3) is proposed by Kulkarni and Horn
in [5]; while the decomposition condition (C4) has been
widely applied in the literature {2, 3, 7, 8].

As shown in [11], all the four conditions described
above are equivalent to convergence of a form of general-
ized average of {e,}. We define precisely the generalized
average of a sequence on RP. -

Definition 1. The generalized average of a sequence
{en} on RP with respect to a positive sequence {a,},
a1 =1,0<a, <1,n > 2, is asequence {&,} defined by

n

_ 1
€n = — Yk€k,
Bn &=
where
1 n=1,
ﬂn = n 1 .
[Ix=2 =o; otherwise,
Yn = Gnfn.

In this paper we consider only generalized averages
with respect to the step-size sequence {a,}. For simplic-
ity, we assume in the sequel that the step-size {a,} also
satisfies the condition in the above definition. Note that
these additional assumptions on the step-size are only
for convenience and are not crucial to our results. The
convergence of the generalized average of {e,} is closely
related to the convergence of stochastic approximation
algorithms. We can establish the following equivalence
[11]):

Lemma 1. Each of the conditions on {e,} in The-
orem 1 holds if and only if its generalized average

g% Z:=1 ’Ykek} converges to 0.

Proof. See [11] for a proof of the equivalence be-
tween convergence of the generalized average and con-
dition (C4). O

For ease of presentation, we will refer to the above gener-
alized average condition as condition (C5). The following
simple lemma concerning conditions {C1-5) will be used
to prove our main result.

Lemma 2. Let {z,} and {yn.} be sequences on RP.
Suppose that {z,} satisfies conditions (C1-5). Then
{zn +yn} satisfies conditions (C1-5) if and only if {yn}
satisfies conditions (C1-5).
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With the above results we can derive necessary and
sufficient conditions on both random perturbations d,
and noise e,, for convergence of the algorithm in (1).

4. Convergence of SPSA

We present a convergence theorem that provides a
sample-path (deterministic) characterization for the ran-
dom perturbations d,. First, we show that a simple ap-
plication of the mean value theorem yields the conver-
gence of the finite-difference estimates of the directional
derivatives. This result will be used to establish conver-
gence of the algorithm (1).

Lemma 3. Suppose that L: RP — R satisfies Assump-
tion (A1), {cn} converges to 0, and {d,} is bounded.
Then the sequence {b,} defined by (6) converges to 0.

Proof. By the Mean Value Theorem,

L(zn + cndn) — L(zy —
de(-’L'n) - 2,

dr[f(zn) = £(2n + (220 = L)endn)],

where 0 < A, < 1for all n € N. Since f is uniformally
continuous, for any € > 0 there exists § > 0 such that
iz — yll < & implies ||f(z) — fF(W)I| < Sy~ Further-
more, by the convergence of {c,} there exists N € N
such that ||(2\, — 1)endnjl < 6 for all n > N. Hence, for
all n2 N

lall < lldnllllf(zn) = f(Zn + (22 — Denda)ll,

€
< suplld,||———— =¢.
P Nl S T

Therefore {b,} converges to 0. O

b = Cndn)

With the help of Theorem 1, Lemma 1, and Lemma 3,
we establish a necessary and sufficient condition for con-
vergence of the SPSA algorithm in the following theorem.

Theorem 2. Suppose that the assumptions (A1-2) hold,
and {dn}, {rn}, and {f(zn)} are bounded. Then, {z,}
defined by (1) converges to z* if and only if the sequences
{(rndX = I)f(z4)} and {fgﬂ-rn} satisfy conditions (C1-

5).

Proof. (=) Suppose that {z,} converges to z*. Then
{f(zn)} converges to f(z*) = 0 by the continuity of
f. Since {dn} and {r,} are bounded, ||r,dZ — I|| is
bounded and {(r,d¥ — I)f(z,)} converges to 0. Thus
{(rndf — I)f(z,)} satisfies conditions (C1-5). By

Theorem 1, {(rndz If(za) — £ ,,} satisfies condi-

tion (C1-5). Therefore {-,fcﬂ-rn} satisfies condition (C1-

5) by Lemma 2.
(¢==) This follows directly from Lemma 2 and Theo-
rem 1. a

In Theorem 2, the condition on the random per-
turbation d,, although tight, is “coupled” with the
function values f(z,) and cannot be verified directly.
It seems possible to design an adaptive perturbation
scheme based on the estimate of f(z,) so that the con-
dition presented in Theorem 2 is satisfied. However this
idea is not only difficult to justify theoretically but also
hard to carry out due to the special structure of the ma-
trix

2
dl o4
% 0 %
radl —I=| % o ®
. 2
z @ 0

We can see that it is difficult to scale the elements in the
matrix according to {f(z,)}. One solution to this is to
establish probabilistic sufficient conditions on the pertur-
bation to guarantee that the deterministic condition in
Theorem 2 holds almost surely, as in [1, 9]. We present a
general sufficient condition based on the martingale con-
vergence theorem. In the following, we assume that {d,}
and {e,} are random sequences.

Proposition 1. Let F, be the o-algebra generated by
{di}k=1,. n ond {ex}r=1,.. n. Assume that Y o> al <
oo for someq > 1, and E (—ﬂ]-',,- ) =0 fori#j. Sup-
pose that {d,}, {rn}, and {f(z.)} are bounded. Then

{(rndf — I)f(za)} satisfies conditions (C1-5) almost
surely.

Proof. Let z, = an(rn
Since

E(24|Fn-1) = Elan(rndE = I) f(2n)| Fa-1] = 0,

=D f(zn); 2n = 23, , AT

{3%_; 2} is a martingale. Furthermore,
E(j25]%) < o0

for all i < p by the boundedness of {d,}, {rn} , {f(zs)},
and Y o2 af. Hence by the L9 convergence theorem
for martingales (4, (4.4), p.217), the sequence {3 ;_, zx}
converges almost surely. Therefore {(rndX — I)f(z.)}
satisfies condition (C4). O

In [1, 9], dn, is assumed to be a vector of p mutu-
ally independent random variables independent of F,,_.;.
Under this assumption, it is clear that the condition
in Proposition 1 can be satisfied by assuming either

E(di) =0, as in 9], or E () =0, as in [1].
5. Some Remarks on Random Perturbation

As shown in [9], under appropriate assumptions, the
SPSA algorithm exhibits better asymptotic behavior
than the standard KW algorithm in the sense that the
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former attains a smaller asymptotic mean square error
when both of them converge. However, it is still not fully
understood why the random perturbation can improve
the performance, and which type of distributions for the
random perturbation are more desirable. We believe that
these questions can be answered via a sample path anal-
ysis. Here we propose some possible approaches.

From (4), we can see that, besides the fact that the
standard KW algorithm requires 2p observations for each
iteration instead of 2 for the SPSA, the differences be-
tween the SPSA and the standard KW algorithm lie
mainly in three terms: the bias term b,, the noise term
fc“;rn, and the difference between the directional deriva-
tive and the gradient. It seems unlikely for the first two
factors to contribute significantly to the performance im-
provement by the SPSA algorithm. Therefore it is im-
portant to study the difference between the following two
algorithms:

(9)
(10)

Tn — and:,‘f(zn)rn;

T — an.f(in)a

Tn+1

Tyl

under the consideration that Z, requires p times more
observations than z,. We do not have theoretical results
at this stage. However, simulation results do not indicate
any clear advantage of (9) over (10).

In (6], Kushner and Clark consider an algorithm simi-
lar to the SPSA algorithm, which they refer to as the ran-
dom directions stochastic approximation (RDSA). The
algorithm can be described by

+__
N Sl WY

Tn+r = ZTp 2, (11)
€
= Znp—apVf(zy) + anbp + an-z—c'i-dn
- an(dndz; - ‘UI)f(.Tn), (12)

where y;', y-, bs, and e, are defined as for the SPSA al-
gorithm, and v > 0 is an arbitrary constant real number.
As can be seen from (1) and (11), the RDSA algorithm
differs from the SPSA algorithm only in the direction it
takes in each iteration. The RDSA algorithm “moves”
in the direction d, along which the directional derivative
is estimated. Following the same arguments as in Sec-
tion 4, we also obtain necessary and sufficient conditions
for convergence of the RDSA algorithm.

Theorem 3. Suppose that the assumptions (A1-2) hold,

{dn} and {f(z,)} are bounded. Then, {z,} defined by

(11) converges to z* if and only if the sequences {(dndZ —
vI)f(zn)} and {'ﬁ.’d"} satisfies conditions (C1-5).

As in the case of the SPSA algorithm, it is difficult
to design {d,} based on {f(z.)} to satisfy the condition
for {(dndZ — vI)f(z,)} above, due to the structure of

the matrix
dndt — vl =
(d;)?-v  didi dndp,
ﬁﬁh Mﬁf—v d%m (19)
&l @k (@) v

Although we are allowed to choose smaller d, (the
same is not true for SPSA since EI;T needs to be bounded),
the diagonal terms always give a “weight” around the
quantity v. Furthermore if we try to choose v = v, such
that v, = (d3)?, the resulting step-size anvn, in (12) may
decreases too fast and the algorithm may not converge.
However, similar to the case for the SPSA algorithm, we
can derive the following sufficient probabilistic condition
on d,. As before, we assume below that {d,} and {e,}
are random sequences.

Proposition 2. Let F, be the o-algebra generated by
{dk}r=1,.. n ond {€x}r=1,.. ,n. Assume that Y oo, al <
oo for some ¢ > 1, E[(di)*|Fn-1] = v, and
E(didi|Fn_y) = 0 for i # j. Suppose that {d.} and
{f(zs)} are bounded. Then {(dndZ —vI)f(z.)} satisfies
conditions (C1-5) almost surely.

In [6], Kushner and Clark assume that {d,} is a
sequence of independent vectors, each distributed uni-
formly over the surface of the unit p-sphere. They also
state that the RDSA algorithm with this random direc-
tion distribution does not give better asymptotic per-
formance than the standard KW algorithm. Together
with the results in [9], this statement implies that the
SPSA algorithm is asymptotically superior to the RDSA
algorithm studied by Kushner and Clark. However, un-
der the deterministic framework used in this paper, it
is not clear whether the same is true for general choices
of directions {d,}. Furthermore, in the case where a
Bernoulli-type distribution (which seems to be a good
choice as illustrated by the simulation result in [9]) is
used, the SPSA and RDSA algorithms are identical. To
fully understand this issue, we believe that it is essential
to compare the behaviors of the algorithm described by
(9) and the algorithm described by

Tntl = Tn — andz.f(xn)dn- (14)

Since the matrix r,d% is positive semi-definite,
f(xn)Trnde(zn) 2> 0. Hence if qu:f(zn) # 0 and
dT f(zn) # O, the directional derivatives dZ f(z,) and
rT f(z,) have the same sign. Therefore, it seems that
the difference in performance between algorithms (9) and
(14), if any, should be a result of the choice of {d,} (or
{rn}) but not of the difference between their structures.
A more detailed analysis is needed to fully understand
how to design the random direction to achieve better
performance.
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6. Conclusion

In this paper we presented a deterministic analysis for
SPSA algorithms. We establish deterministic necessary
and sufficient conditions on both perturbation and noise
for convergence of the algorithm. The result illustrates
that a sample-path analysis may provide better insight
into stochastic problems. Further research is needed to
fully understand why algorithms with random perturba-
tions may outperform algorithms based on better gradi-
ent approximations.
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