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Abstract

Modeling dynamic human control strategy (HCS) is becoming
an increasingly popular paradigm in a number of different re-
search areas, ranging from robotics to intelligent vehicle highway
systems. Usually, HCS models are derived empirically, rather
than analytically, from real human input-output data. While
these empirical models offer an effective means of transferring
intelligent beh s from h to robots and other machines,
the models are not explicitly optimized with respect to potentially
important performance criteria. In this paper, we therefore pro-
pose an iterative algorithm for optimizing an initially stable HCS
model with respect to an independent, user-specified performance
criterion. We first collect driving data from different individu-
als through a real-time graphic driving simulator. Nezt, we de-
scribe how we model each individual’s control strategy through
flezible cascade neural networks. Once we have initially stable
HCS models, we propose simultaneously perturbed stochastic ap-
prozimation (SPSA) to optimize these models with respect to a
chosen performance criterion, Finally, we describe and discuss
some experimental results with the proposed algorithm.

1 Introduction

HCS models, which accurately emulate dynamic hu-
man behavior, find application in a number of research
areas ranging from robotics to the intelligent vehi-
cle highway system. Because human control strategy
(HCS) is a dynamic , nonlinear stochastic process, de-
veloping good analytic models of human control strate-
gies tends to be difficult. Therefore, recent work in
modeling HCS has focused on learning empirical mod-
els, through, for example, fuzzy logic {1, 2], and neural
network techniques [3]. Since these HCS models are
empirical, few if any guarantees exist about their the-
oretical performance. Thus, performance evaluation is
an integral aspect of HCS modeling research, without
which it is impossible to rank or prefer one HCS con-
troller over another.

Performance evaluation, is, however, only part of the
solution for effectively applying models of human con-
trol strategy. While humans are in general very capa-
ble of demonstrating intelligent behaviors, they are far
less capable of demonstrating those behaviors without

0-7803-4465-0/98 $10.00 © 1998 IEEE 983

occasional errors and random (noise) deviations from
some nominal trajectory. Any empirical learning al-
gorithm will necessarily incorporate those problems in
the learned model, and will consequently be less than
optimal. Furthermore, control requirements may differ
between humans and robots, where stringent power or
force requirements often have to be met. A given indi-
vidual’s performance level, therefore, may or may not
be sufficient for a particular application.

Hence, in this paper we propose an iterative opti-
mization algorithm, based on simultaneous perturbed
stochastic approximation (SPSA), for improving the
performance of learned HCS models. This algorithm
leaves the learned model’s structure in tact, but tunes
the parameters of the HCS model in order to improve
performance. It requires no analytic formulation of per-
formance, only two experimental measurements of a
user-defined performance criterion per iteration. The
initial HCS model serves as a good starting point for
the algorithm, since it already generates stable control
commands.

In this paper, we first introduce the dynamic graphic
driving simulator from which we collect human control
data and with which we investigate the modeling and
evaluation of human control strategies. We then show
how we model individual’s driving control strategies
using the flexible cascade neural network learning ar-
chitecture. Next, we describe two performance criteria
specifically related to the task of driving. In the follow-
ing section, we then propose the iterative optimization
algorithm for improving performance in the HCS mod-
els. Finally, we describe and discuss some experimental
results with the algorithm.

2 Experimental setup

For this work, we collect human driving data from a
real-time graphic simulator, whose interface is shown in
Figure 1. In the simulator, the human operator has in-
dependent control of the vehicle’s steering as well as the
brake and gas pedals. The simulated vehicle’s dynam-
ics are given by the following second-order nonlinear
model:



Figure 1: The driving simulator gives the user a perspective
preview of the road ahead.
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where,
6 = angular velocity of the car, (5)
ve = lateral velocity of the car, (6)
vy = longitudinal velocity of the car, )
Fg = pF, (6% — (sgnd)ad /3 + &3 /27) x
V1= P2 [Fa) + PE, ke {f,r} ®)
& = cpar/(WFerk), k€{fir} 9
as = front tire slip angle = § — (50 + v¢) /vy, (10)
ar = rear tire slip angle = (1,0 — ve)/vn, (11)
Fy 5 = (mgly — (Py + Pr)h)/(l5 + 1),
Fyr = (mgly + (Pg + Pr)h) /(5 + 1), (12)
£, n = body — relative lateral, longitudinal azis, (13)
cfycr = 50000N/rad, 64000N/rad (14)
ep = air resistance = 0.0005m ™! (15)
p = coef ficient of friction =1,
Fji, = frictional forces,j € {£,1}, k€ {f,r} (16)
Fr= 2;,13:, 1%0< 0, ky=0.34 an
m = 1500kg, I = 2500kg —m?, l; = 1.25m,
l, =1.5m, h=0.5m, (18)

and the controls are given by,
—8000N < Py < 4000N (19)
—0.2rad < 6 < 0.2rad (20)

where Py is the longitudinal force on front tires, and
d is the steering angle.
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We ask each individual to navigate across several
randomly generated roads,which consist of a sequence
of (1) straight-line segments, (2) left turns, and (3)
right turns. The map in Figure 1, for example, illus-
trates one randomly generated 20km road for which
human driving data was recorded. Each straight-line
segment as well as the radius of curvature for each turn
range in length between 100m and 200m. Nominally,
the road is divided into two lanes, each of which has
width w = 5m. The human operator’s view of the road
ahead is limited to 100m. Finally, the entire simulator
is run at 50Hz.

3 HCS modeling

In this paper, we choose the flexible cascade neu-
ral network architecture with node-decoupled extended
Kalman filtering (NDEKF) [6] for modeling the hu-
man driving data. We prefer this learning architec-
ture over others for a number of reasons. First, no a
priori model structure is assumed; the neural network
automatically adds hidden units to an initially minimal
network as the training requires. Second, hidden unit
activation functions are not constrained to be a par-
ticular type. Rather, for each new hidden unit, the
incremental learning algorithm can select that func-
tional form which maximally reduces the residual er-
ror over the training data. Typical alternatives to the
standard sigmoidal function are sine, cosine, and the
Gaussian function. Finally, it has been shown that
node-decoupled extended Kalman filtering, a quadrat-
ically convergent alternative to slower gradient descent
training algorithms (such as backpropagation or quick-
prop) fits well within the cascade learning framework
and converges to good local minima with less compu-
tation [6].

The flexible functional form which cascade learning
allows is ideal for abstracting human control strategies,
since we know very little about the underlying structure
of each individual’s internal controller. By making as
few a priori assumptions as possible in modeling the
human driving data, we improve the likelihood that
the learning algorithm will converge to a good model
of the human control data.

In order for the learning algorithm to properly model
each individual’s human control strategy, the model
must be presented with those state and environmen-
tal variables upon which the human operator relies.
Thus, the inputs to the cascade neural network should
include: (1) current and previous state information
{ve, vy, 6}, (2) previous output (command) informa-~
tion {4, Py}, and (3) a description of the road visible
from the current car position. More precisely, the net-
work inputs are,

{Us(k - n_,), T ,Vf(k - 1)’ Vﬁ(k)7
vy(k = ng), -+, vg(k — 1), vy(k), . 1)
Ok ~ ng), -+, 0(k — 1), 6(k)}
{8(k —ne), -+, 8(k — 1), 8(k),
Ps(k —nc), -+, Ps(k — 1), Ps(k)} (22)



{m(l)iz(2)’ Tt z(77'7‘)’ y(l): y(2), e 1y(n1‘)} (23)
where n; is the length of the state histories and n. is
the length of the previous command histories presented
to the network as input. For the road description, we
partition the visible view of the road ahead into n,
equivalently spaced, body-relative (z,¥) coordinates of
the road median, and provide that sequence of coordi-
nates as input to the network. Thus, the total number
of inputs to the network n; is,

n; = 3ns + 2nc + 2n, (24)

The two outputs of the cascade network are {§(k +

1), P¢(k + 1)}. For the system as a whole, the cascade

neural network can be viewed as a feedback controller,
whose two outputs control the driving of the vehicle.

4 Performance criteria

Once we have abstracted models of driving control
strategies from human control data, we would like to
evaluate the skill or performance inherent in these mod-
els. Below, we review two such criteria for the task of
human driving [5], which we will use subsequently in
our performance optimization algorithm.
4.1 Obstacle avoidance

In real driving, obstacles such as rocks and debris
can unexpectedly obstruct a vehicle’s path and force
the driver to react rapidly. Thus, obstacle avoidance is
one important performance criterion by which we can
gauge a model’s performance. Since our HCS models
receive only a description of the road ahead as input
from the environment, we reformulate the task of ob-
stacle avoidance as virtual path following. Assume that
an obstacle appears a distance 7 ahead of the driver’s
current position. Furthermore, assume that this obsta-
cle completely obstructs the entire width of the road
(2w) and extends for a distance d along the road. Then,
rather than follow the path of the actual road, we wish
the HCS model to follow a virtual path as illustrated in
Figure 2. This virtual path consists of (1) two arcs with

N
SN

e oo bt

Figure 2: Virtual path for obstacle avoidance.

radius of curvature v, which offset the road median lat-
erally by 2w, followed by (2) a straight-line segment of
length d, and (3) another two arcs with radius of cur-
vature v which return the road median to the original
path.
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By analyzing the geometry of the virtual path, we
can calculate the required radius of curvature « of the
virtual path segments as [5],

72w

Y=gty (25)
and the corresponding sweep angle p as,
p = sin "} (L) = sin~1 (=) (26)
i o

Consider an obstacle located 7 = 60m ahead of the
driver’s current position. For this obstacle distance
and w = 5m, v evaluates to 92.5m. This is less than
the minimum radius of curvature (100m) that we allow
for the roads over which we collect our human con-
trol data. Hence, a particular HCS model may deviate
significantly from the center of the road during the ob-
stacle avoidance maneuver. In general, as the obstacle
detection distance T decreases, the maximum lateral
offset increases [5]. Consequently, for a given model
and initial velocity vipitiar, there exists a value Tpin
below which the maximum offset error will exceed the
lane width w, We define the driving control for obstacle
distances above 7,i, to be stable; likewise, we define
the driving control to be unstable for obstacle distances
below Tin

Now, we define the following obstacle avoidance per-
formance criterion Ji:

Jy = —min (27
Vinitial
where Uinitiqr is the velocity of the vehicle when the
obstacle is first detected. The J; criterion measures to
what extent a given HCS model can avoid an obsta-
cle while still controlling the vehicle in a stable man-
ner. The normalization by v;pitie is required, because
slower speeds increase the amount of time a driver has
to react and therefore avoiding obstacles becomes that
much easier.
4.2 Tight turning

Here we analyze performance as a function of how
well a particular HCS model is able to navigate tight
turns. First, we define a special road connection con-
sisting of two straight-line segments connected directly
(without a transition arc segment) at an angle (. For
small values of ¢, each HCS model will be able to suc-
cessfully drive through the tight turn; for larger values
of ¢, however, some models will fail to execute the turn
properly by temporarily running off the road or losing
complete sight of the road.

Now, define the maximum lateral offset error cor-
responding to a tight turn with angle ¢ to be ¢. We
can determine a functional relationship between 3 and
¢ for'a given HCS model. First, we take N measure-
ments of p for different values of ( where we denote
the ith measurement as ({;,1;). Then, we assume a
polynomial relationship between 1 and ¢ such that,

vi=opltap 1l 4+ tanGi+aote  (28)



The least-squares estimate of the model (&) is given
by,

a=(TH™ {79 ' (29)
where

b = 1,2, on)T (30)
g g o a 1],
P P 1

¢ = ?2 :Cz ce @1)
’Cﬁr Gt v 1

& = [aPaaP—h"'vaO}T (32)

Previously, we have observed that the linear coeffi-
cient r; dominates the polynomial relationship in equa-
tion (28) [5]. Hence, as a first-order approximation, we
define the following tight-turning performance criterion
Ja :

h=a (33)

5 Performance optimization

In section 4, we introduced two performance mea-
sures for evaluating the performance of our driving
models. Below, we develop an algorithm for optimizing
a learned control strategy model with respect to one of
those (or for that matter, any other) performance cri-
terion. There are two primary reasons why this may
be necessary in order to successfully transfer control
strategies from humans to robots.

First, while humans are in general very capable of
demonstrating intelligent behaviors, they are far less
capable of demonstrating those behaviors without occa-~
sional errors and random (noise) deviations from some
nominal trajectory. The cascade learning algorithm
will necessarily incorporate those in the learned HCS
model, and will consequently be less than optimal. Sec-
ond, control requirements may differ between humans
and robots, where stringent power or force require-
ments often have to be met. Thus, a given individual’s
performance level may or may not be sufficient for a
particular application.

Since a HCS model does offer an initially stable
model, however, it represents a good starting point
from which to further optimize performance. Let,

w=[ws w2 --- wn] (34)
denotes a vector consisting of all the weights in the
trained HCS model I'(w). Also let J(w) denote any
one performance criterion (e.g. J; or Js in the previous
section). We would now like to determine the weight
vector w* which optimizes the performance criterion
J(w). This optimization is difficult in principle because
(1) we have no explicit gradient information

) = 2 J(w) (35)
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and (2) each experimental measurement of J(w) re-
quires a significant amount of computation. We lack
explicit gradient information, since we can only com-
pute our performance measures empirically. Hence,
gradient-based optimization techniques, such as steep-
est descent and Newton-Raphson are not suitable. And
because each performance measure evaluation is poten-
tially computationally expensive, genetic optimization,
which can requires many iterations to converge, also
does not offer a good alternative. Therefore we turn
to simultaneously perturbed stochastic approximation
(SPSA) to carry out the performance optimization.
Stochastic approximation (SA) is a well known it-
erative algorithm for finding roots of equations in the
presence of noisy measurements. Simultaneously per-
turbed stochastic approximation (SPSA) [7] is a partic-
ular multivariate SA technique which requires as few as
two measurements per iteration and shows fast conver-
gence in practice. Hence, it is well suited for our ap-
plication. Denote wy as our estimate of w* at the kth
iteration of the SA algorithm, and let wy be defined by
the following recursive relationship:

w1 = wg — axGy (36)

where Gy, is the simultaneously perturbed gradient ap-
proximation at the kth iteration,

14
N 1 S b
1/Akw
(+) (=) 1
. J = J
G = Sk 1/ Ak, (38)
Ck
I/Akw"

Equation (37) averages p stochastic two-point mea-
surements G, for a better overall gradient approxima-
tion, where,

J,(c+) = J(wr +cplg) (39)
Jé_) = J(wg —cpApg) (40)
B = Bk Ok Drw,]” (41)

and where Ay is a vector of mutually independent,
mean-zero random variables (e.g. symmetric Bernoulli
distributed), the sequence {Ax} is independent and
identically distributed, and the {ax}, {ci} are positive
scalar sequences satisfying the following properties:

ar =0, ¢ —0ask— oo, (42)
oo o0

— QK 2
Zak_co, Z(ck) < 00 (43)
k=0 k=0

The weight vector wp is of course the weight repre-
sentation in the initially stable learned cascade model.
Larger values of p in equation (37) will give more ac-
curate approximations of the gradient. Figure 3 illus-
trates the overall performance-optimization algorithm.
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Figure 3: Stochastic optimization algorithm.

6 Experiment

6.1 Results

Here, we test the performance optimization algo-
rithm on control data collected from two individuals,
Harry and Dick. In order to simplify the problem some-
what, we keep the applied force constant at Py = 300N.
Hence, the user is asked to control only the steering .

For each person, we train a two-hidden-unit HCS
model with n; = n, = 3, and n, = 15; because we are
keeping P; constant, the total number of inputs for the
neural network models is therefore n; = 42.

Now, we would like to improve the tight-turning per-
formance criterion J; defined in equation (33) for each
of the trained models. In the SPSA algorithm, we em-
pirically determine the following values for the scaling
sequences {ax}, {ck}:

oy = 0.000001/k,
¢ = 0.001/4%-25,

k>0
k>0

(44)
(45)

We also set the number of measurements per gradi-
ent approximation in equation 37 to p = 1. Finally,
denote J¥ as the criterion J, after iteration k of the
optimization algorithm; hence, J§ denotes the perfor-
mance measure prior to any optimization.

Figure 4 plots 100 x J5¥/J9, 0 < k < 60, for the
HCS models corresponding to Dick and Harry. We note
that for Dick, the performance index J, improves from
J? = 255 to J$° = 12.5. For Harry, the improve-
ment is less dramatic; his model’s performance index
improve from JJ = 17.7 to J$° = 16.1. Thus, the per-
formance optimization algorithm is able to improve the
performance of Dick’s model by about 55% and Harry’s
model by about 9% over their respective initial mod-
els. In other words, the optimized models are better for
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negotiating tight turns without running off the road.
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Figure 4: Performance improvement in stochastic opti-
mization algorithm.

From Figure 4, we observe that most of the improve-
ment in the optimization algorithm occurs in the first
few iterations. Then, as k — oo, J§ converges to a sta-
ble value since ag, ¢, = 0. Clearly, the extent to which
we can improve the performance in the trained HCS
models depends on the characteristics of the original
models. Dick’s initial performance index of J§ = 25.5
is much worse than Harry’s initial performance index
of J§ = 17.7. Therefore, we would expect that Dick’s
initial model lies further away from the nearest local
minimum, while Harry’s model lies closer to that local
minimum. As a result, Harry’s model can be improved
only a little, while Dick’s model has much larger room
for improvement.

6.2 Discussion

Below we discuss some further issues related to per-
formance optimization, including (1) the effect of per-
formance optimization on other performance criteria,
and (2) the similarity of control strategies before and
after performance optimization.

First, we show how performance improvement with
respect to one criterion can potentially affect perfor-
mance improvement with respect to a different crite-
rion. Consider Dick’s HCS model once again. As we
have already observed, his tight turning performance
criterion improves from J$ = 25.5 to J$¥ = 12.5. Now,
let JP denote the obstacle avoidance performance cri-
terion for Dick’s initial HCS model, and let J§® denote
the obstacle avoidance performance criterion for Dick’s
HCS model, optimized with respect to J». Figure 5
plots the maximum offset from the road median as a
function of the obstacle detection distance T for Dick’s
initial model (solid line) and Dick’s optimized model
(dashed line), where vipitia; = 35.

From Figure 5, we can calculate J? and J$0:

_

— = 1.20

42
35
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Figure 5: Maximum lateral offset for original (solid) and
final (dashed) HCS models.

36
JO = =1.03 47
1N (47)

Thus, Dick’s optimized HCS model not only improves
tight turning performance, but obstacle-avoidance per-
formance as well. This should not be too surprising,
since the tight turning and obstacle avoidance behav-
iors are in fact tightly related. During the obstacle
avoidance maneuver, tight turns are precisely what is
required for successful execution of the maneuver.

Second, we would like to see how much performance
optimization changes the model’s control strategy away
from the original human control approach. To do this
we turn to a hidden Markov model-based similarity
measure [4] developed for comparing human-based con-
trol strategies. Let H, denote the human control tra-
jectory for individual z, let M, denote control trajecto-
ries for the unoptimized model corresponding to indi-
vidual z, and let O, denote control trajectories for the
optimized model (with respect to J2) corresponding to
individual z. Also let 0 < o(A,B) < 1 denote the
similarity measure for two different control trajectories
A and B, where larger values indicate greater similar-
ity, while smaller values indicates greater dissimilarity
between A and B.

For each individual, we can calculate the following
three similarity measures:

o(Hz, M2) (48)
o(Hz,02) (49)
O‘(M,; ? O‘") (50)

Table 1 lists these similarities for Dick and Harry.

z = Dick | z=Harry |
o(Hy, M) 0.762 0.573
o(H,,0,) | 0434 0.469
o(M,,0,) | 0.544 0.823

Table 1: Control strategy similarity

From our experience with this similarity measure, we
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note that all the values in Table 1 indicate significant
similarity. Specifically, the similarities for o (H,, O;) (
0.434 and 0.469) suggest that even after performance
optimization, a substantial part of the original hu-
man control strategy is preserved. Furthermore, the
other similarity measures are consistent with the de-
gree of performance improvement in each case. For
Dick, where a substantial performance improvement of
55% was achieved, the similarity between the initial
and optimized models is far less than Harry, where the
performance improvement was more incremental.

7 Conclusion

In this paper, we have proposed an iterative opti-
mization algorithm, based on simultaneously perturbed
stochastic approximation (SPSA), for improving the
performance of learned models of human control strat-
egy. The algorithm keeps the overall structure of the
learned models in tact, but tunes the parameters (i.e.
weights) in the model to achieve better performance. It
requires no analytic formulation of performance, only
two experimental measurements of a defined perfor-
mance criterion per iteration. We have demonstrated
the viability of the approach for the task of human
driving, where we model the humans control strategy
through cascade neural networks. While performance
improvements vary between HCS models, the optimiza-
tion algorithm always settles to stable, improved per-
formance after only a few iterations. Furthermore, the
optimized models retain important characteristics of
the original human control strategy.
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