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Constrained Optimization via Stochastic Approximation
with a Simultaneous Perturbation Gradient
Approximation*
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Abstract—This paper deals with a projection algorithm for
stochastic approximation using simultaneous perturbation
gradient approximation for optimization under inequality
constraints where no direct gradient of the loss function is
available and the inequality constraints are given as explicit
functions of the optimization parameters. It is shown that,
under application of the projection algorithm, the parameter
iterate converges almost surely to a Kuhn-Tucker point. The
procedure is illustrated by a numerical example. € 1997
Elsevier Science Ltd.

1. Introduction

The simuitaneous perturbation stochastic approximation
(SPSA) algorithm has recently attracted considerable
attention for multivariate optimization problems where only
noisy measurements of the loss function are available (i.e. no
gradient information is directly available): see e.g. Cauwen-
berghs (1994). Chin (1994), Parisini & Alessandri (1995),
Maeda et al. (1995), and Rezayat (1995).

SPSA was introduced in Spall (1987) and more thoroughly
analyzed in Spall (1992). The algorithm is a variant of the
stochastic approximation (SA) in a Kiefer—Wolfowitz setting
(Kushner and Clark. 1978) where only noisy measurements
of the loss function are available (used for gradient
approximations). The essential feature of SPSA is its highly
efficient gradient approximation that requires only two
loss-function measurements regardless of the number of
optimization parameters. The gradient approximation is
generated by simultaneous (random) perturbation relative to
the current estimate of the parameter 6. Note the contrast of
two function measurements with the 2p measurements
required in the classical finite-difference-based Kiefer—
Wolfowitz SA algorithm, where p is the number of
parameters. Under reasonably general conditions, it was
shown in Spall (1992) that the p-fold saving in function
measurements per gradient approximation translates directly
into a p-fold saving in the total number of measurements
needed to achieve a given level of accuracy in the
optimization process.

The original SPSA algorithm as presented in Spall (1992)
is an unconstrained algorithm. Constraints, on the other
hand, are essential parts of almost all real-world optimization
applications. The present work may be regarded as the
extension of the convergence result of Spall (1992) to
constrained optimization problems. This paper presents a
projection SPSA algorithm that can handle inequality
constraints. A similar approach is pursued in L'Ecuyer and
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Glynn (1994) for optimization of queuing systems using
stochastic approximation. Here we focus on SPSA and treat
more general constraints. However, we restrict attention to
constraints that are given as explicit functions of the
optimization parameter. In the Kiefer—-Wolfowitz stochastic
approximations, function evaluations often mean real
measurements on the system. We are interested in situations
where the constraints are determined by the feasible
operating conditions of the system. Hence we assume that
function evaluations at the points where the constraints are
violated are not feasible. This is stronger than the
requirement of restricting the solution to the feasible domain
(as in constrained versions of Robbins—Monro-type SA
algorithms: see Kushner and Clark, 1978). In this regard, the
projection algorithm is advantageous relative to other
constrained SA optimization techniques such as the
Lagrangian method (Kushner and Clark, 1978) where the
parameter iterate only asymptotically lies in the feasible set.
We establish the almost-sure convergence of the parameter
iterate to a Kuhn-Tucker point under application of the
projection algorithm.

The organization of the rest of the paper is as follows.
Section 2 studies the projection SPSA algorithm and the
convergence result. Section 3 presents a numerical example
where the procedure 1is illustrated and tested using
(finite-sample) numerical experimentations. Finally, Section
4 offers concluding remarks.

2. Projection SPSA algorithm and strong convergence
In this section, we treat a projection SPSA algorithm for

minimization under constraints, i.e. the problem of

min L(0),

8e(;
where. similarly to the regularity conditions for the
unconstrained case (Spall, 1992), the loss function L(@) is
continuously differentiable on an open set containing G. The
reader is referred to Spall (1992) for a detailed treatment of
the (unconstrained) SPSA algorithm. We deal with inequality
constraints and introduce the following assumption.

Assumption 1. The set G={6:4;(8)<0, i=1,...,s} is
non-emply and bounded, and the functions ¢,(8), i=
1.....s, are continuously differentiable. At each @ e dG,
where o denotes the boundary, the gradients of the active
constraints are linearly independent. Furthermore, there
exists an €<( such that the set G~ ={0:q(6)=<r,
i=1,....s}is non-empty for e =r <0 (i.e. the set G has a
non-emply interior).

The proof of convergence to a Kuhn-Tucker point that
follows later is based on Theorem 5.3.1 of Kushner and Clark
(1978). where the assumption on G (Kushner and Clark,
1978. p. 190, A5.3.1) states that G is the closure of its interior
rather than the non-emptiness of G~ in Assumption 1. It is
easy Lo see that because of the continuity of the ¢,(8), the set



890 Brief Papers

{6:9:(8)<0, i=1,...,s}is open and indeed equal to int G
(where int denotes interior). This, together with the
non-emptiness of G, yields G =intG. Assumption 1 is
formulated with the goal of easing later presentation.

Another type of constrained problems involves constraint
functions that can only be observed in the presence of noise
(see e.g. Ljung er al., 1992). Such constraints will not be
examined here.

Let 8, denote the estimate for 6 at the kth iteration, and
for all @ € R”, let P(6) be the nearest point to 8 on G, where
the norm is defined as the usual Euclidean norm. The
projection algorithm has the general form

ékn = P(ék - akgk(ék))v 1)

where the gain sequence {a,} must satisfy certain conditions
(see below) and §,(8,) is an approximation to the gradient at
8. The simultaneous perturbation estimate for the gradient
at 6, g(0), is defined as follows. Let A, € R” be a vector of p
mutually independent zero-mean random variables
{Ax1, Aia, . . ., A} satisfying certain conditions (Spall, 1992).
A condition on random perturbations is norm-boundedness,
ie. |Afl=aq for some a,>0. In Spall (1992), the
boundedness condition is [|A; || =, a.s. Noting that the user
has full control over random perturbations, for simplicity we
follow the strict boundedness assumption. Consistent with
the usual framework of stochastic approximations, we have
noisy measurements of the loss function. In particular, at the
kth iteration,

yi ' = L0+ c A + €,
yio = L0 —cAy) + €,
where {c,} is a gain sequence and €\"’ and €\ represem
measurement noise terms that satisfy E{et"’ — e, | 6, A,} =
0. The gain sequences {a;} and {c,} are positive for all k and
tend to zero as k—x. Moreover, X;_qa;, ==, and
Zi-o(ag/cy)*<=. For convenience, we take c; =c/k”,
=0
The basic simultaneous perturbation (SP) form for the
estimate of g(@) at iteration k is defined by

A
2CkAk1
g(e)=
v =y
ZCkAkp

Note that at each iteration, only two measurements are
needed to form the estimate. The main features of our
proposed solution compared with the unconstrained SPSA
algorithm are as follows. Firstly, the projection P(-) always
restricts the iterates 6, to remain within G, which is
obviously not needed for the unconstrained case. The
projection is indeed an essential feature of the constrained
algorithm: eliminating P(.), the iterates may vary anywhere
in R” as a result of noisy observations, no matter how the
gain or random perturbation sequences of the algorithm are
selected. Secondly. in the unconstrained algorithm, we have
88, = g,("((-)k) Such an approximation cannot be directly
used here, since it may happen that 8, G but
O, +cA, ¢ G. Especially. in the case 8, e dG, there is
always a (random) direction A, such that 6, + c,A, ¢ G, no
matter how small the gain ¢, is selected. Note that the case
0, € 0G is expected to occur frequently in the very relevant
situation where the true optimum belongs to the boundary of
the feasible domain. Except for simulation-based optimiza-
tion cases, function evaluations involve real measurements
on the system, and it is usually not allowed to take
measurements outside the feasible domain. To overcome this
problem, we further project 8, onto a (closed) set Gy
contained within G to obtain PA(Ok) which will (only) be
used for computing an SP gradient approximation at the kth

iteration. If the distance d, between the nearest points on ¢G
and 9G, is equal to or larger than ¢, a, then Pk(ék) +c A e

G, ensuring that the SP approximation to the gradient at
P.(8,) (instead of 8,) requires no function measurement
outside G. The SP gradient approximation at Pi(6,)
obviously introduces an (extra) error term relative to the SP
gradient approximation at 8,. However, if G, > G as k —»
then continuous differentiability of L(8) yields that the extra
error term tends to zero. This line of argument will be used
in the proof of convergence later. But first, we describe a
procedure for selecting the G, (a simple case of this is given
in the illustrative example). Define G, cG by G, =
{6:9,(0)<r, <0, i=1,...,s}, where r,—»0 as k-—>cx,
Assumption 1 states that there exists an € <0 such that G, is
non-empty for e<r, <0, k=1,2,.... Hence select
€ =r; <0 and select ¢ such that d, = ¢, a,. Once c is selected,
choose r,—0 such that dy=c,a, (note that ¢,—0 as
k— x).

Remark 1. Tt follows from the above that the bottom line in
computing an SP gradient approximation at P(6,) is to
ensure the feasibility of function evaluations. There may
therefore exist different methods to obtain a point 6 € G for
the SP gradient approximation at iteration & such that
0 t¢A, e G, and, in some sense, the magnitude of
8}, — @, is small for all k (to avoid large error terms on the
gradient approximations) and becomes infinitesimally small
as k— <. The proposed solution of the paper provides a
suitable technique that can be generically applied to all types
of constrained problems where Assumption 1 holds.

Finally, it should be noted that projections in general are
unfortunately not very easy to compute unless linear
approximations to ¢;(@) at the current iterate are obtained
first. Such approximations can often be justified in practice,
since a, — 0.

Proposition 1. Let Assumption 1 above and Assumptions
Al-AS5 and the conditions of Lemma 1 (for simplicity,
replace the a.s. boundedness of A, by strict boundedness) of
Spall (1992) hold where all the regularity conditions on L()
hold on an open set containing G. Then, under the projection
algorithm (see 1)), where £,(8x) = g3P(P(8y)), as k — =

@k — KT as.,

where KT is the set of Kuhn-Tucker points (i.e. the set of
points € where there are A;=0 such that g(8)+
21:;,,19):0 A; dq,(ﬂ)/dﬂ =0).

Proof. Decompose the error 8:(8,) — g(ek) gZP(Pk(ék)) -
g(6y) into a sum of bk =E(gi"(P(6,)) | 6s) — g(P(8))),

ex = g¥(Pe(8:)) ~ E(giP(P(8,)) | 6,) and bY = g(Pul6y))
- g(8,). Identically to the proof of Lemma 1 and Proposition
1 of Spall (1992), it can be shown that

(i) sup [b}|< = and b} —0 a.s. as k — x;
k

m

Zae,

=k

(ii) hm Pr(sup

m=k

>n)=0f0r any >0,

where Pr(.) denotes probability; moreover, since G is
bounded, G,— G, and L(8) is continuously
differentiable at all 8 € G:

(iii) supb}|< > and b{' >0 as k — =,
k

Then the assumptions of Theorem 5.3.1 of Kushner and
Clark (1978) are satisfied, and the proposition follows. O

Remark 2. In the above proof, we have used (ii) rather than
AS5.3.2 of Kushner and Clark (1978, p. 191). which states that,
for some 7;,>0 and any n >0,
m(jTy+n—1
ae;
iz (iTy)

lim Pr (sup max = n) =0, (2)

n— izn st
where m(f) =max{n:2/-}a, <t} for +=0 and m()=0
otherwise. Equation (2) is indeed the assumption used to
prove Theorem 5.3.1 of Kushner and Clark (1978). However,
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(ii) is a stronger condition and implies (2): see Kushner and
Clark (1978, p. 28-29).

Remark 3. Referring to Kushner and Clark (1978, p. 51),
conditions (i) and (ii) of Proposition 1 also hold for the basic
(two-sided) finite-difference  stochastic  approximation
(FDSA). Adjusting the G, to the component-wise perturba-
tion of parameters for gradient approximations, it then
follows that the same convergence proof holds for the
projection FDSA.

3. Hlustrative example

We study a simple numerical example of finding the
optimal temperature profile in a tubular reactor for two
first-order irreversible consecutive reactions. See Fan (1966)
for details. The first-order reactions A — B — C take place in
the reactor. The reaction A— B has the specific rate k()
and B—C has the rate k,(r) at time . Denoting the
concentration of A by x,(¢) and the concentration of B by
x(t), we arrive at the following state-space equation
describing the dynamics of the reactions (Fan, 1966):

(1) = — ki (Ox1 (1),
£5(1) = ky(£)x,(£) — ko(2)x,(2).

The specific rates are given by k(1) = ke £YR7® and
ky(1) = kyye  EZRTO, where T(r) is the temperature profile
(the control variable), and k,, ks, E,, E, and R are
constants.

We wish to find the temperature profile that (starting from
time ¢, =0) maximizes x,(;), i.e. the concentration of the
product B at ¢ =1,. By selecting a sampling time, the problem
becomes a multivariate optimization problem where the
temperature values at discrete time points should be
determined such that the final concentration of B is
maximized. We present solutions both under no constraints
and under the situation that the applied profiles should
satisfy 335 < T'(r) =< 342. Unlike the (unconstrained) solution
given in Fan (1966), our solution is in principle based on
trials and experimentations on the system. The trials consist
of applying temperature profiles to the system and
performing measurements on x,(t;) for each applied profile.
We shall not require any model in order to find the optimum.
Nor do we require knowledge of the values of the constants.
In this example, we use the presented model for (and only
for) simulation, data generation and testing our procedure.

Let us assume the following numerical values (Fan, 1966):
ki9=534X10"min~",  ky=0461x10"min~', £,=
18000 caimol ™!, E,=30000calmol™', R=2calmol 'K},
t¢= 8 min, x,(0) = 0.8160 mol | 7!, x,(0) = 0.2260 mol 1.

Let us further assume that the temperature 7'(¢) is constant
for i—-1=r<i, i=1,2,...,8 (i.e. a piecewise-constant
input). The ith element of the eight-dimensional optimization
parameter 8 is equal to 7(z) for i —~ 1 =1 <i.

The following constants are used throughout the example
unless otherwise specified. The number of iterations for the
SPSA algorithm is 250, the random perturbations are
Bernoulli-distributed with magnitude one, ie. Pr(j; =
+1)=05fori=1,...,8 and all k=1,2,..., and the gain
sequences are selected as a, = 1000/k"%2, ¢, =1/k"1",
These decay rates for a, and ¢, are empirically found to yield
optimal performance for the unconstrained SPSA algorithm
in finite sample cases (see Spall, 1996). It should, however,
be noted that the optimal sequences for the constrained case
may be quite different, and finding good gain sequences may
in general be difficult. It is moreover assumed throughout the
example that the measured values of x,(t;) are corrupted
with additive i.i.d. Gaussian noise with standard deviation
0.0005, and, finally, the initial temperature profile 7,,(¢) for
the optimizations is chosen to be 342K at r =0 and to drop
by 1K min~".

In order to determine the true optimal profiles, we use
standard techniques that, unlike SPSA, make use of the
model given by (3) and assume noise-free data. Equation (3)
can be written as x(t) = A(r)x(r), where x(¢) is the state
vector and A(f) is a piecewise-constant matrix (A(r) is
constant in the interval i—1=<r<i, i=1,..., 8). The

3)

explicit relation between the objective function and the
control  variable is obtained using x(;=8)=
exp [Zi) A(j)}x(0), and standard optimization algo-
rithms can be applied to find the optimal profiles. We use the
MATLAB® optimization toolbox functions CONSTR and
FMINS (Grace, 1994) for the constrained and unconstrained
cases respectively.

Now, let us try both the constrained and unconstrained
SPSA algorithms to estimate the optimal profiles. We define
G, ={0:335+¢,<6,<342—¢,, i=1,...,8} for the con-
strained case. For each of the constrained and unconstrained
cases, we estimate the optimal profile 500 times (i.e. 500
cross-sections for each algorithm). The obtained estimates
are denoted by T7T.(r) and T7,(r) respectively (note the
randomness in the iterates due to measurement noise for
SPSA). As expected, all the 500 realizations of T.(t) are
restricted to lie within [335, 342] (for all 0 <t <8), while the
largest value (among 500 realizations) of max, T,(z) is 345.5.
For each realization of 7.(r) and T,(1), we compute (i) the
relative error defined by

Ty
)

{['ro-rora/[ ro-nor al”,

where T.(r) and T*(¢) are the relevant realization and true
optimal profile (as computed previously), and (ii) the
noise-free value of x,(f;) corresponding to the realization
(hence randomness in this computed value is only due to
randomness in 7,(f) and 7,(t)). By averaging over these
computed values, we obtain an average relative error (ARE)
and an average final-product value (AFP) for both the
constrained and unconstrained cases. The results are
summarized in Table 1, where OFP denotes the relevant
optimal final product value as given by the true optimal
profiles.

In order to investigate the effect of the extra error on the
gradient approximation (introduced to make the measure-
ments feasible), we estimate the constrained optimal profile
500 times using the projection SPSA algorithm, but we use
8:(0:)=g3%(6,). The corresponding ARE and AFP
values for this case are 0.1561 and 0.6988 respectively.
Comparing the obtained ARE with 0.1819 (see Table 1)
indicates improvement, but at the expense of infeasibility of
the measurements.

It is also of interest to assess the convergence rate of the
constrained algorithm. We estimate the optimal profile 500
times using constrained SPSA with 1000 iterations (and with
the same algorithm constants as before) for each
cross-section, which yields an ARE value of 0.1139. We then
use —log (0.1819/0.1139)/log (250/1000) = 0.338 as an as-
sessment of the convergence rate. Using Proposition 2 of
Spall (1992), the (asymptotic) convergence rate of the
unconstrained algorithm for the gain sequences of this
example is equal to 0.2, which is considerably less than the
computed rate 0.338.

Finally, we apply the constrained two-sided FDSA
algorithm 500 times with the same algorithm constants as for
the constrained SPSA, but 32 iterations for each cross-
section. Note that the total number of measurements for the
FDSA algorithm with 32 iterations is equal to 32X2xX8=
512, which is slightly larger than the total number of
measurements for the SPSA algorithm with 250 iterations
(250 X2 =500). The ARE and AFP values become 0.2117
and 0.6988. The ARE value for the constrained FDSA is
noticeably larger than 0.1819 obtained for the constrained
SPSA algorithm for (almost) the same number of
measurements.

Table 1. Constrained and unconstrained optimization
using 500 cross-sections of SPSA. All the final product
values are based on noise-free evaluations of x,(t;)

Constrained Unconstrained

ARE  AFP OFP ARE  AFP OFP
0.1819 0.6988 0.6989 0.3291 0.6996 0.6999
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It should be noted that a formal treatment of the
convergence rate and accuracy of the estimate of the
constrained SPSA algorithm is required before one is able to
draw any definitive conclusion about the behavior of the
algorithm.

4. Concluding remarks

This paper has presented a projection algorithm for
constrained optimization via stochastic approximation with a
simultaneous perturbation gradient approximation where no
gradient information is directly available. The algorithm can
handle inequality constraints given as explicit functions of the
parameter. The constraints should define a set with a
non-empty interior. We have considered the case where
measurements outside the constraint set are not feasible,
which is stronger than restricting the solution to the feasible
domain. We have established almost-sure convergence of the
iterate to a Kuhn-Tucker point.

Possible directions for future study are the performance of
the algorithm, distribution or convergence rate of the iterate,
possible error bounds on the estimate, and optimal tuning of
the algorithm constants, i.e. optimal selection of gain
sequences. Finally, an identical proof of convergence can be
applied to a projection FDSA algorithm (see Remark 3). It
will be of interest to compare the number of measurements
that constrained SPSA and constrained FDSA need to reach
a certain level of accuracy (see Section 1 and Spall (1992) for
a similar comparison in the unconstrained case).

Acknowledgments—This work is partly supported by the
Danish Research Academy, Grant $950029. I should also like
to thank Professor Jan Holst, Lund Institute of Technology,
for his valuable comments.

References
Cauwenberghs, G. (1994) Analog VLSI autonomous systems
for learning and optimization. PhD thesis, Department of

Electrical Engineering, California Institute of Technology.

Chin, D. C. (1994) A more efficient global optimization
based on Styblinski and Tang. Neural Nets 7, 573~-574.

Fan, L. T. (1966) The Continuous Maximum Principle.
Wiley, New York.

Grace, A. (1994) Optimization Toolbox for Use with
MATLAB®. The Math Works Inc., Natick, MA.

Kushner, H. J. and Clarke, D. S. (1978) Stochastic
Approximation for Constrained and Unconstrained Syst-
ems. Springer-Verlag, Berlin.

L’Ecuyer, P. and Glynn, P. W. (1994) Stochastic optimization
by simulation: convergence proofs for the GI/G/! queue in
steady-state. Management Sci. 40, 1562-1578.

Ljung, L., Pflug, G. and Walk, H. (1992) Stochastic
Approximation and Optimization of Random Systems.
Birkhauser, Berlin.

Maeda, Y., Hirano, H. and Kanata, Y. (1995). A learning
rule of neural networks via simultaneous perturbation and
its hardware implementation. Neural Nets 8, 251-259.

Parisini, T. and Alessandri, A. (1995) Non-linear modeling
and state estimation in a real power plant using neural
networks and stochastic approximation. In Proc. American
Control Conf., Seattle, WA, pp. 1561-1567.

Rezayat, F. (1995). On the use of an SPSA-based model free
controller in quality improvement. Automatica, 31,
913-915.

Spall, J. C. (1987). A stochastic approximation technique for
generating maximum likelihood parameter estimates. In
Proc. American Control Conf., Minneapolis, MN,
pp. 1161-1167.

Spall, J. C. (1992). Multivariate stochastic approximation
using a simultaneous perturbation gradient approximation.
IEEE Trans. Autom. Control AC-37, 332-341.

Spall, J. C. (1996). Implementation of simultaneous
perturbation algorithm for stochastic optimization. Subm-
itted to /EEE Trans. Aerospace Electron. Syst.



