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Abstract—There exists a growing realization that quality will
be gained by implementing statistical process control and
engineering process control in a complementary fashion. This
study continues in that direction by considering the batch
polymerization example of Vander Wiel ez al., but it assumes
no knowledge about the dynamics of process. It uses
concurrently the special-cause control chart and the
simultaneous perturbation stochastic approximation (SPSA)-
based control approach proposed by Spall and Cristion to
monitor, signal and readjust the levels of viscosity of
simulated batches of polymer around the target value. This
study also compares the performance of the SPSA-based
adaptive control and one-step feedback controller when the
process dynamics changes.

1. Introduction

In recent years the importance of quality has become
increasingly apparent. Quality control in manufacturing has
moved from detecting nonconforming products through
inspection to continuously reducing variability in product
performance and production process. Two existing fields that
have been contributing to quality are statistical process
control and engineering process control. There has been a
growing realization that both of these approaches should be
implemented in a complementary fashion, and that quality
will be gained through appropriate process adjustment and
through elimination of the root cause of variability (see e.g.
Vander Wiel et al., 1992; Box and Kramer, 1992; Box, 1993).
This paper continues in that direction, with one critical
difference: it assumes that no knowledge about the exact
process dynamics exists, and uses, concurrently, the
special-cause control (SCC) chart (Alwan and Roberts,
1988)—a statistical process control technique, for monitoring
and signalling out of control process—and the SPSA-based
neural network (NN) controller proposed by Spall and
Cristion (1992, 1994)—an adaptive control technique.

The NN controller uses the simultaneous perturbation
stochastic approximation (SPSA) technique for training the
NN; it is appropriate when the system can tolerate
non-optimal control (training process) and the regularity
conditions in Spall (1992) are met; it is novel in that it
employs only one NN as a controller, and does not need
information about the process dynamics or a second NN to
model the process (as needed in a back-propagation-type
approach). The unique attribute of SPSA is that it can
efficiently solve an optimization problem without requiring
detailed information about the characteristics of the system.
SPSA is based only on noisy measurements of the objective
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function, and does not require direct gradient or
higher-derivative computation. The main input at each
iteration of SPSA is an approximation to the gradient vector
that is based on two measurements of the objective function,
independent of the problem dimension p (i.c. the number of
the parameters to be optimized).

The belief is that most often the cxact relationship
between the value of inputs and outputs is unknown to
quality control practioners; or, even if it is known in
principle, owing to its complicated nature or to complicated
boundary conditions, it may be virtually impossible (or at
least very expensive) to compute. In practice, after the
control factors (critical inputs or inputs whose level can be
manipulated) are identified, the adjustment of the level of
control factors are often done subjectively by experts. It is
believed that using the SPSA-based NN controller to adjust
the level of control factors, along with statistical process
control charts for monitoring output and signalling
out-of-control process, leads to better output quality,
especially when the process design is relatively new and/or
an expert is not available.

This work is continuation of the earlier work by Rezayat
(1993), with the emphasis here being on comparing the
performance of the NN controller with the one-step feedback
controller when the process dynamics changes, and on using
statistical process control, concurrently with adaptive
controllers, to monitor and signal the output variations
around the target value.

The remainder of the paper is organized as follows.
Section 2 reviews briefly the SPSA/NN-based adaptive
controller employed in this study, and statistical control
charts. Section 3 provides simulation experiments and
analysis of their findings related to reducing a polymer’s
viscosity deviations around a target value (using the example
given by Vander Wiel et al., 1992).

2. Preliminaries

2.1. A brief review of the SPSA-based NN controller. To
design a NN, in general, one has to determine the number of
nodes and layers, and iteratively estimate its parameters
(weights). The goal of the weight estimation process is to find
a vector of weights that results in a sequence of control
values that drive the process output close to the target value,
given knowledge of the current state of the system. Existing
literature estimates the NN weights ©, using a stochastic
approximation algorithm of the form

O = Ok 1 — 4 fu(Ok- 1), 6]
where (:)k denotes the estimate of ©, at the kth iteration, a,
is a scalar gain sequence satisfying certain conditions, and
£,(+) is an estimate or observation of the gradient of the loss
function. Traditional NN controllers use standard gradient-
based search techniques to estimate NN weights (see e.g.
Narendra and Parthasarathy, 1990), and the value of g.(-)
requires knowledge of the process dynamics (say, as in
back-propagation).

When the process dynamics are unknown, onc¢ cannot
implement standard gradient-based search techniques. Spall
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and Cristion (1992, 1994) propose estimating the NN weights
by using the output error along with the ‘simultancous
perturbation” approximation of g,(-) (Spall, 1992). Essen-
tially this approximation, at each &, is based on two
instantaneous observed values of loss function L,. say L{*,
which are based on target vectors 7, ,, and observed values of
the state x, to estimate the NN weights without the need to
estimate or assume a separate model for the equations
governing the dynamics of the system. For more on the
SPSA approximation see Spall and Cristion (1994, pp.
11-13). The hth component of the gradient estimate, g,,(-),
h=1,2,...,p,is calculated via SPSA as follows:

LXN—[L*)

5, (0, )=
8in(©_y) 200

h=1,2,....p. )

where p represents the number of connection weights of the
NN; A, ={A.} is a vector of p symmetrically distributed
(about 0) ii.d. random variables with E(A.7?) uniformly
bounded. Note that these are general conditions, but that
A, may not be either uniformly or normally distributed (it
can be symmetrically Bernoulli =1 distributed, which we
shall use in this study); {c,} is a sequence of positive numbers
satisfying certain regularity conditions; L§*’ are observed loss
values based on 1, ,, x§*), and u«{*’ (note that all p elements
of the gradient vector use the same two loss values); u$*’ are
control values, and they are the NN output. Their values are
based on the NN p-element weight vector ©, =0, _| £ ¢, A,
fe g and x&; x(3), are the process output based on ui*’; the
Iy +1 are the desired target values for x§*,. The SP gradient
approximation is typically much more efficient than the
standard finite-difference-based approach in terms of the
amount of data required. As shown in Spall (1992), SPSA
provides the same level of accuracy in estimating the NN
weights  with  orders of magnitude fewer system
measurements.

Note that the SPSA-based NN controller is implemented
as an interactive program such that the number of ‘control
factors’ can be changed by an operator as additional
information becomes available. If one can identify the factor
that is the source of out-of-control process (in standard ways
such as brainstorming or experiment design) and provide it
to the SPSA-based NN controller, the controller can then
adjust the level of that factor. When it is difficult or
expensive to identify the source of the problem, most often,
the SPSA-based NN controller is able to compensate for the
source of the problem.

2.2. Statistical process control charts. The statistical process
control approaches are commonly used to identify the
existence of variations beyond those resulting from inherent
system limitations, as well as the cause of variations. When
the statistical process control approaches arc used (for
monitoring, signalling out-of-control process and identifying
the control factors) concurrently with the NN controller (for
readjusting the levels of the control factors), a higher-quality
performance, in general, will be reached. In this study we use
control charts, a statistical process control technique, for
monitoring the process and signalling variations in observed
values beyond the specification range of the target value.

Statistical control charts provide a set of criteria that
enable one to judge, at any given time, whether the process
generates observations within an acceptable variation range.
The Shewhart control charts (X-bar and R Charts) are
commonly used for monitoring a production process and also
for reduction of variations even within specification limits.
When dealing with autocorrelated data, the traditional
Shewhart control charts are not appropriate tools for
monitoring the process (Alwan and Roberts, 1988).
Therefore this study uses the special-cause control (SCC)
chart under the assumption that the noise of the opcrations
process are additive, and identically and independently
distributed. With the SCC chart, the residuals or
one-step-ahead forecast errors arc plotted. This chart is
based on the assumption that when the process is ‘stable’ and
appropriate control action is applicd, the residuals are
random, and are i.i.d. with small variance. A stable process is
a process that exhibits only variation resulting {from inhcrent

system limitations. But, if there are any disturbances to the
process, the residuals will begin to show a departure from
statistical control (for more on this see Wardell er al. (1994)
and related discussions).

3. Simulation experiments

In this section the batch polymerization example provided
by Vander Wiel er al. (1992) is used to study the performance
of the SPSA-based NN controller. This example is used
merely to examine the performance of the SPSA-based NN
controller using a published example when another controller
(one step feedback controller) is available for comparison.

In the batch polymerization example, intrinsic viscosity, a
key quality characteristic of the polymer, is measured at the
completion of each batch. Turnaround time is such that the
viscosity measurement from the most recent batch produced
in a given reactor is available when the reactor is prepared
for a new batch, and autocorrelation exists among viscosity
measurements. The level of catalyst has the highest effect on
the level of viscosity. Based on the observed intrinsic
viscosity deviations from its target value and the catalyst
deviations from its nominal value, Vander Wiel er al
provided the following empirical model for the batch k:

1-0.22B

1-088 " (3)

X =15u, |+

where B is the backshift operator (Bx, =x,_,), X, is
observed viscosity deviation from a 100-unit target viscosity,
u,_, is catalyst deviation from nominal (50 units),
w, ~ independent N(0, %), with o,, = 2.798. Vander Wiel et
al. provided the pure-one-step adjustment rule based on the
minimum mean-square errors:

U = 08uy 5 — 0.4x, 4)

This simulation study compares the SPSA-based NN
controller with the algorithm (4) for nonstationary and
nonlinear systems. It will generate data according to the
empirical model (3) and will assume that the SPSA controller
does not have knowledge of (3). The loss function is the
same as that in the Vander Wiel et al. study (the
mean-square output deviation from the target value). The
SCC chart with control limits of +30, will be used
concurrently with both controllers for monitoring the
viscosity variations and signalling the existence of a special
cause of variations,

Before performing the comparison, let us examine the
learning rate of the NN controller in a no-change mode.
Fifteen independent simulation runs, each of 1000 iterations,
are conducted. Each simulation run represents the
performance of one reactor. For every simulated reactor and
every sequence of 100 simulated batches, the study calculates
the number of simulated production batches whose viscosity
deviations from the target value fall outside the SCC control
chart limits. Figure 1 presents the average performance of
the 15 simulated reactors. As the figure indicates, the
percentage of batches whose viscosity deviations fall outside
the SCC control chart limits decreases over time, and the
rate of reduction (the SPSA-based NN controller learning) is
relatively fast. Note that when (3) is the true representation
of the model, one expects that the controller in (4) will
perform better than the NN controller. But, since a true
system model is seldom exactly known, it is appropriate to
examine their relative performance for cases in which the
process dynamics change or is unknown.

Now we consider a case where the systems dynamics are
nonstationary. Following Vander Wiel ef al., we assume that,
beginning with period 84, the process mean has shifted by an
amount of 10.9. The SCC chart is used to monitor the
viscosity variations. For this experiment also 15 independent
simulation runs, cach of 1000 iterations, are conducted for
the two different controllers: the NN controller and the
one-step controller (based on (4), which does not include
knowledge of the system change). The criterion for
evaluating the performance of controllers is the speed of
cach controller in readjusting the process performance after
the change.
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Fig. 1. Percentage of simulated viscosity deviation values that are outside the SCC chart limits.

The results of the simulation runs indicate that, for
both controllers, the SCC chart provided signals almost
at the same time (on average, on the 84th batch when the
one-step control rule is used, and on the 84.6th batch
when the SPSA-based NN controller is used). When
the one-step feedback controller is used, the average
RMSE value through simulated production time does
not change significantly (e.g. the average RMSE for the
100th iteration is 3.11, for the 400th it is 3.14, for the 600th
it is 3.23, and for the 1000th it is 3.5); whereas when
the SPSA-based NN controller is used, a significant reduction
of its value through the simulated production period is
observed (e.g. the average RMSE for the 100th iteration
is 5.58, for the 400th it is 4.75, for the 600th it is 3.55,
and for the 1000th it is 2.89). These simulation results
indicate when the mean has shifted, the NN controller
performance is relatively close to that of the optimal one-step
feedback controller, and, more importantly, it learns how
to improve its performance, in contrast to the one-step
controller.

To illustrate a more general case, at period 84, the system
is changed to a nonlinear system (instead of just shifting the
mean). In particular, it is supposed that at period 84 the
structure of the process changes to

X = 0.8x,_y +0.25u, 1 x, -1 + 1.5u;, _,

—1.2up 5+ w — 022w, 4. 5)
As above, the findings indicate that for both cases the SCC
chart provided signals almost at the same time (at
approximately 95th batch). The NN controller was able to
compensate for the source of the problem and reduce the
RMSE to 3.02 after peaking at 95th period as a result of the
change in system dynamics. Not surprisingly, the controller
in (4) performed poorly, because it was not able to readjust
to the change in the process and caused the system to
go hopelessly unstable within 10-25 iterations after the
change.

On the whole, the findings of the simulation study indicate
that the SPSA-based NN controller can readjust the level of
inputs and perform well for distinct types of changes.
Further, the SCC control chart performed well in signaling
the changes and monitoring a process whose underlying
structure was unknown. These offer a promising combination
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of techniques in quality improvement problems when system
dynamics are difficult to model.
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