
Stochastic learning methods for dynamic neural networks:
simulated and real-data comparisons 1

Krzysztof Patan 2 and Thomas Parisini 3

Abstract

In the paper some stochastic methods for dynamic
neural network training are presented and compared.
The considered network is composed of dynamic
neurons, which contain inner feedbacks. This network
can be used as a part of fault diagnosis system to
generate residuals. Classical optimisation techniques,
based on back propagation idea, suffer from many
well–known drawbacks. Two stochastic algorithms
are tested as training algorithms to overcome these
difficulties. Efficiency of proposed learning methods is
checked on two examples: modelling of an unknown
linear dynamic system basing on simulated data and
modelling of the actuator behaviour in the first section
of the evaporation station in the Sugar Factory, Lublin
using real data measurements. In these two significant
examples, the stochastic learning algorithms are ex-
tensively compared from many different perspectives.

1 Introduction

With increasing demands on the reliability and safety
of technical processes, various Fault Detection and Iso-
lation (FDI) approaches have been proposed. The
quantitative model-based approach, most frequently is
based on the idea of analytical redundancy [2, 5, 6] that
requires of an analytical mathematical model of the
system. However, in practice it is difficult to meet the
demands of such a method due to the inevitable model
mismatch, noise, disturbances and inherent nonlinear-
ity. In this case, the use of knowledge-model-based
techniques, i.e. artificial intelligence [4, 12] either in
the framework of diagnosis expert systems [3] or in
combination with a human operator is the only fea-
sible way. One of the possible solutions is to use neural
networks. Neural networks under consideration belong
to the class of locally recurrent globally feed-forward
[9]. They have an architecture that is similar to the
feed-forward multi-layer perceptron and dynamic char-
acteristics included in their processing units. The net-
works under consideration are designed using the Dy-

1This research has been partially supported by the EU RTN
Project “DAMADICS”.
2Institute of Control and Computation Engineering, Univer-

sity of Zielona Góra, ul. Podgórna 50, 65-246 Zielona Góra,
Poland, k.patan@issi.uz.zgora.pl.
3Dept. of Electrical, Electronic and Computer Engineer-

ing, University of Trieste, Via Valerio 10, 34127 Trieste, Italy,
parisini@univ.trieste.it.

namic Neuron Models (DNM). A single dynamic neu-
ron consists of an adder module, linear dynamic system
– Infinite Impulse Response (IIR) filter, and nonlinear
activation module. When such neurons are connected
into a multi-layer structure, a powerful approximating
tool may be obtained. Taking into account that neuron
by itself has dynamic characteristics, it is not required
to introduce any global feedback to the network struc-
ture. In this way a simple architecture is obtained,
what makes it relatively easier to elaborate a proper
learning algorithm and contrary to recurrent networks
to keep stability of the neural model. Taking into con-
sideration dynamic characteristics of the network, it is
possible to apply it for modelling and identification of
nonlinear systems. It is especially useful when there
are no mathematical models of the modelled system,
and analytical models and parameter-identification al-
gorithms cannot be applied [4, 11]. Based on the dy-
namic neural networks, the fault detection and isola-
tion system for diagnosis of industrial processes can be
designed [2, 11]. In recent few years this kind of neu-
ral networks was successfully applied in several fault
diagnosis applications such as fault detection and iso-
lation in a two tank laboratory system or fault de-
tection of the instrumental faults in chosen parts of
the sugar factory [7, 10]. The fundamental training
method for the considered dynamic networks is the Ex-
tended Dynamic Back-Propagation (EDBP) algorithm
[9]. This is very simple algorithm utilizing the back-
propagation error scheme. This algorithm may have
both on-line and off-line forms, and therefore it can be
widely used in the control theory. The identification of
dynamic systems, however, is an example where train-
ing of the neural network is not a trivial problem. The
error (cost) function is strongly multimodal, and during
training, the EDBP often gets stuck in local minima.
Even multi-starting of the EDBP cannot yield the ex-
pected results. Therefore other methods that belong
to the class of global optimisation should be applied.
To overcome above problems, it is proposed to use a
stochastic method, so called Adaptive Random Search
(ARS) [16]. Additionally, to carry out more detailed
analysis and comparison, it is applied another stochas-
tic approach Simultaneous Perturbation Stochastic Ap-
proximation (SPSA) [1, 14]. The paper is organised as
follows: in Section 2 the brief description of the neu-
ral structure is presented. Sections 3 and 4 present
the ARS and SPSA learning methods and in Section 5

2577

extensive simulations and comparisons are reported.

2 Dynamic neural network

The artificial neural network under consideration, has
structure similar to feed-forward multi-layer percep-
tron. The neurons are organized in layers, where the
last one is called the output layer and other layers are
called the hidden layers. The information flows in one
direction only, from successive layer to the following
one. Dynamics is introduced to the neuron in such a
way that the neuron activation depends on its inter-
nal states. It is done by introducing a linear dynamic
system – the IIR filter – to the neuron structure [9].
Therefore this kind of neural network is often called
locally recurrent globally feed-forward. Each neuron in
the dynamic network reproduces the past signal values
with the input up(k), for p = 1, 2, . . . , P , where P is
the number of inputs, and the output y(k). Figure 1
shows the structure of this neuron with many inputs,
which is called the Dynamic Neuron Model. In such
models one can distinguish three main parts: a weight
adder, a filter block and an activation block. The be-
haviour of the dynamic neuron model is described by
the following set of equations:

x(k) =
P∑

p=1

wpup(k)

ỹ(k) = −
n∑

i=1

aiỹ(k − i) +
n∑

i=0

bix(k − i)

y(k) = F (g · ỹ(k) + c)

(1)

where wp denotes the input weights, ỹ(k) is the fil-
ter output, ai, i = 1, . . . , n and bi, i = 0, . . . , n are
the feedback and feed-forward filter parameters, respec-
tively, n denotes the filter order, and g and c are the
slope parameter and the threshold of the nonlinear ac-
tivation function F (·), respectively. In this dynamic
structure the slope parameter g can change. Thus, the
dynamic neuron can model the biological neuron bet-
ter. Introduction of the slope parameter g to the acti-
vation operation can be very helpful, particularly in the
case of non-linear squashing activation functions, i.e.:
sigmoidal or hyperbolic tangent. This kind of activa-
tion function are characterized by saturation ranges.
Let us assume that the non-linear model is the logistic
function, e.g. sigmoidal one. This is a limited func-
tion, for large positive x(k) the function tends to one,
and for large negative x(k) the function tends to zero.
In the case when activation data are large, the activa-
tion function drives into its own saturation range and
response of the neuron could become a constant value
or a signal with negligible small amplitude. This is a
very undesirable effect, which can be compensated by
application of the slope parameter g. In limit, when

�

w1

w2

wP

..
.

u k1()

y k()u k2()

u kP()

x k() y k()~

c

g F().
linear

dynamics

Figure 1: Structure of the DNM with P inputs.

g → ∞, the sigmoidal function tends to become the
sign function with an angle equal to Π

2 for x(k) = 0.
On the other hand, when g → 0 the sigmoidal function
tends to become the constant function y(k) = 0.5.

Taking into account the fact that this network has
no recurrent links between neurons, to adapt the
network parameters, a training algorithm based on
the back-propagation idea can be elaborated. The
calculated output is propagated back to the inputs
through the hidden layers containing dynamic filters.
As a result the Extended Dynamic Back Propagation
can be defined [7]. This algorithm can work in both
the off–line and the on-line modes. The choice of the
suitable algorithm depends on the specific problem.

3 Adaptive Random Search

In this section, algorithms which have iterative char-
acter are considered. Assuming that the sequence of
solutions θ̂0, θ̂1, . . . , θ̂k is already appointed, a way of
achieving next point θ̂k+1 is formulated as follows [16]:

θ̂k+1 = θ̂k + rk (2)

where θk is the estimate of the θ� at the k-th itera-
tion, and rk is the perturbation vector generated ran-
domly according to the normal distribution N (0, σ).
New solution θ̂k+1 is accepted when the cost function
J(θ̂k+1) is less than J(θ̂k) otherwise θ̂k+1 = θ̂k. To
start the optimization procedure, it is necessary to de-
termine the initial point θ̂0 and the variance σ. Let
θ� be a global minimum to be located. When θ̂k is
far from θ�, rk should have a large variance to allow
large displacements, which are necessary to escape the
local minima. On the other hand, when θ̂k is close θ�,
rk should have a small variance to allow exact explo-
ration of parameter space. The idea of the ARS is to
alternate two phases: variance-selection and variance-
exploitation [16]. During the variance-selection phase,
several successive values of σ are tried for a given num-
ber of iteration of the basic algorithm. The competing
σi is rated by their performance in the basic algorithm
in terms of cost reduction starting from the same initial
point. Each σi is computed according to the formula:

σi = 10−iσ0, for i = 1, . . . , 4 (3)

and it is allowed for 100/i iterations to give more trails
to larger variances. σ0 is the initial variance and can be
determined, e.g. as a spread of the parameters domain:

σ0 = θmax − θmin (4)

2578

where θmax and θmin are the largest and lowest
possible values of parameters, respectively. The best
σi in terms the lowest value of the cost function is
selected for the variance-exploitation phase. The best
parameter set θ̂k and the variance σi are used in
the variance-exploitation phase, whilst the algorithm
(2) is run typically for one hundred iterations. The
algorithm can be terminated when the maximum
number of algorithm iteration nmax is reached or
when assumed accuracy Jmin is obtained. Taking
into account local minima, algorithm can be stopped
when σ4 has been selected a given number of times.
It means that algorithm get stucks in local minimum
and cannot escape its basin of attraction. Apart from
its simplicity, the algorithm possesses the property of
global convergence. Moreover, adaptive parameters
of the algorithm, cause that a chance to get stuck in
local minima is decreased.

4 Simultaneous Perturbation Stochastic
Approximation

In recent years has been observed a growing interest in
stochastic optimisation algorithms that do not depend
on gradient information or measurements. This class of
algorithms is based on an approximation of the gradient
of the loss function. The general form of Stochastic
Approximation (SA) recursive procedure is as follows
[14]:

θ̂k+1 = θ̂k − akĝk(θ̂k) (5)

where ĝk(θ̂k) is the estimate of the gradient ∂J/∂θ̂
based on the measurements of the loss function L(·).
The essential part of this equation is the gradient ap-
proximation. The SPSA has all elements of θ̂ randomly
perturbed to obtain two measurements L(·), but each
component ĝki(θ̂k) if formed from a ratio involving the
individual components in the perturbation vector and
the difference in the two corresponding measurements.
For two-sided simultaneous perturbation, estimation of
gradient is obtained according to the formula [15]:

ĝki(θ̂k) =
L(θ̂k + ck∆k) − L(θ̂k − ck∆k)

2ck∆ki
(6)

where the distribution of the user-specified p-
dimensional random perturbation vector, ∆k =
(∆k1,∆k2, . . . ,∆kp)T is independent and symmetri-
cally distributed about 0 with finite inverse moments
E(|∆ki|−1) for all k, i. One of the possible distribu-
tions that satisfies these conditions is the symmetric
Bernoulli ±1. Two commonly used distributions that
not satisfy these conditions are the uniform and normal
ones. The rich bibliography presents sufficient condi-
tions for convergence of the SPSA (θ̂k → θ� in the
stochastic almost sure sense). However, the efficiency
of the SPSA depends on the shape of the J(θ), the val-
ues of gain sequences {ak} and {ck} and distribution of

the {∆ki}. The choice of the gain sequences is critical
to the performance of the algorithm. In the SPSA the
gain sequences are calculated as follows [14]:

ak =
a

(A + k)α
, ck =

c

kγ
(7)

where a, c, A, α and γ are non-negative coefficients.
To apply the SPSA to global optimisation, it is needed
to use a stepwise (slowly decaying) sequence {ck} [15].

5 Simulation studies

All training methods are implemented in Borland C++
BuilderTM Enterprise Suite Ver. 5.0. Simulations are
performed using a PC Computer with Athlon K7 550
processor and 128 MB RAM. To check efficiency of the
training methods, two examples are studied: modelling
of an unknown linear dynamic system and modelling of
the actuator behaviour in the first section of the sugar
evaporation station in the Lublin Sugar Factory.

5.1 Modelling of an unknown dynamic system
The second order linear process under consideration is
described by the following transfer function [13]:

G(s) =
ω

(s + a)2 + ω2
(8)

Its discrete form is given by:

yd(k)=A1yd(k−1)+A2yd(k−2)+B1u(k−1)+B2u(k−2)
(9)

Assuming that parameters of the process (8) are a = 1,
and ω = 2π/2.5, and the sampling time T = 0.5 s,
the coefficients of the equation (9) are: A1 = 0.374861,
A2 = −0.367879, B1 = 0.200281 and B2 = 0.140827.
Taking into account the structure of the DNM, only
one neuron with the second order IIR filter, and the
linear activation function is required to model this pro-
cess. Training of the dynamic neuron network was
carried out using the off-line EDBP, ARS and SPSA
algorithms. In order to compare different learning
methods, assumed accuracy is set to 0.01 and several
performance indices such as the Sum of Squared Er-
rors (SSE), the number of Floating Operations (FO),
the number of Network Evaluations (NE) and train-
ing time are observed. Learning data is generated
feeding a random signal of the uniform distribution
|u(k)| � (a2+ω2) to the process, and recording its out-
put signal. In this way, the training set containing 200
patterns is generated. After training, the behaviour
of the neural model was checked using the step signal
u(k) = (a2 + ω2)/ω.

EDBP algorithm. The learning process was carried
out off-line. To speed up the convergence of the learn-
ing, the adaptive learning rate is used. The initial value
of the learning rate η is 0.005. Initial network param-
eters were chosen randomly using uniform distribution

2579

from the interval [−0.5; 0.5]. Figure 2 shows the course
of the output error. The assumed accuracy is reached
after 119 algorithm iterations.

ARS algorithm. The next experiment was performed
using the ARS algorithm. As in the previous example,
the initial network parameters are generated randomly
using uniform distribution in the interval [−0.5; 0.5].
The initial variance σ0 is 0.1. In Fig. 2, one can see the
error course for this example. The assumed accuracy
is achieved after 9 iterations. The initial value of σ0 is
very important for convergence of the learning. When
this value is too small, e.g. 0.0001, the convergence is
very slow. On the other hand when the value of σ0 is
too large, e.g. 10, many cost evaluations are performed
at very large variances and this results in too chaotic
search. These steps are not effective for performance of
the algorithm and cause that the learning time is much
longer.

SPSA algorithm. The last training example uses the
SPSA algorithm. The initial parameters were gener-
ated randomly with uniform distribution in the inter-
val [−0.5; 0.5]. After some experiments, the algorithm
parameters which assure quite fast convergence are as
follows: a = 0.001, A = 0, c = 0.02, α = 0.35 and
γ = 0.07. The learning results are shown in Fig. 2.
The assumed accuracy is obtained after 388 iterations.

Sum of Squared Errors

Iterations

SPSA

EDBPARS

350300250200150100500

102

101

100

10-1

10-2

Figure 2: Learning error for different algorithms.

Comparison of the algorithms. All the considered
algorithms have reached the assumed accuracy. It must
be taken into account, however, that these methods
need different numbers of floating operations per one
iteration as well as different numbers of network evalu-
ations, in order to calculate values of the cost function.
The characteristic of algorithms are shown in Table 1.
The ARS has reached the assumed accuracy at the low-
est number of iteration but during one algorithm step
it is required much more floating operations than for
the others algorithms. It is caused by a large num-
ber of network evaluations (see Table 1). Therefore,
the learning time for this algorithm is the greatest. In
turn, the EDBP uses the least number of network eval-
uations, but calculating of a gradient is time consum-
ing operation. In result, the simplest algorithm, taking
into account the number of floating operations per one
iteration, is the SPSA. However, the SPSA approxi-

Table 1: Characteristics of the learning methods

Characteristics EDBP ARS SPSA
Learning time 2,67 sek 10,06 sek 3,995 sek
Iterations 119 9 388
SSE 0.0099 0.006823 0.00925
FO 2.26 · 106 7.5 · 106 2.9 · 106

NE 119 2772 776
FO/iteration 1.89 · 104 8.33 · 105 8.58 · 103

NE/iteration 1 308 2

mates the gradient and it is needed to perform more
algorithm steps to obtain a similar accuracy as for the
gradient based one. For this simple example, the EDBP
is the most effective algorithm. But it should be keep
in mind that the examined system is a linear one and
the error surface has only one minimum. The next ex-
ample shows behaviour of the learning methods for a
nonlinear dynamic case.

5.2 Sugar Factory actuator
In this section, the sugar evaporation station in the
Lublin Sugar Factory (Poland) is presented [10]. In a
sugar factory, sucrose juice is extracted by diffusion.
This juice is concentrated in a multiple-stage evapo-
rator to produce a syrup. The liquor goes through a
series of five stages of vapourisers, and in each passage
its sucrose concentration increases. The first three
sections are of Roberts type with a bottom heater-
chamber, while the last two are of Wiegends type with
a top heater-chamber. The sugar evaporation control
should be performed in such a way that the energy
used is minimised to achieve the required quality of
the final product. The main inconvenient features
that complicate the control of the evaporation process
are [8]:

• a highly complex evaporation structure (large
number of interacting components),

• large time delays and responses (configuration of
the evaporator, their number, capacities),

• strong disturbances caused by violent changes in
the steam,

• many constrains on several variables.
Figure 3 shows the first evaporation stage with four
preheaters. The actuator to be modelled is the valve
marked by dotted square. For this valve, LC51 03.CV
denotes the control value to the valve on the juice inlet
to the evaporation section (the actuator input), and
F51 01 is the juice flow on the inlet to the evaporation
station (the actuation). With these two signals the
neural model of the actuator can be defined as:

F51 01 = FN (LC51 03.CV) (10)

where FN denotes the nonlinear function.

Experiment. During the experiment, the neural

2580

R

R

R

%

%

%

%

Valve

m /h
3

F51 01_

LC51 01_

LC51 03_

TC51 05_

PC51 01_

kPa

C
o

Figure 3: The first section of the evaporator.

model of the structure N2
1,5,1 (two processing layers,

one input, five neurons in hidden layer and one output),
is trained using in turn the EDBP, ARS and SPSA
methods. Taking into account dynamic behaviour of
the valve each neuron in the network structure pos-
sesses first order filter. The model of the valve is
identified using real process data from the sugar fac-
tory recorded during the sugar campaign in October
2000. In the sugar factory control system, the sam-
pling time is equal to 10 s. Thus, during one work
shift (6 hours) approximately 2 160 training samples
per one monitored process variable are collected. For
many industrial processes, measurement noise is of a
high frequency [8]. Therefore, to eliminate this noise,
a low pass filter of the Butterworth type of the sec-
ond order was used. Moreover, the input samples were
normalized to zero mean and unit standard deviation.
In turn, the output data should be transformed tak-
ing into consideration the response range of the output
neurons. For the hyperbolic tangent activation func-
tion, this range is [-1;1]. To perform such kind of trans-
formation, the simple linear scalling can be used. Addi-
tionally, to avoid saturation of the activation functions,
the output was transformed into the range [-0.8;0.8]. It
is necessary to notice that, if the network will be used
with other data sets, it is required to memorise max-
imum and minimum values of the training sequence.
To perform experiments two data sets were used. The
first set, containing 500 samples, was used for training
and another one, containing 1 000 samples, was used to
check the generalisation ability of the networks.

EDBP algorithm. The algorithm was run over 20
times with different initial points. The learning pro-
cess was carried out off-line performing 5 000 steps.
To speed up the convergence of learning, the adaptive
learning rate is used. The initial value of the learn-
ing rate η is 0.005. The obtained accuracy is 0.098.
To check quality of the modelling, the neural model is
tested using another data set of 1 000 samples. Figure 4
shows the testing phase of the neural model. As it can
be seen, the generalization abilities of the dynamic net-
work are quite good.

ARS algorithm. Many experiments were performed
to find the best value of initial variance σ0. Eventually,
this value was found to be σ0 = 0.05. With this initial

Discrete time

900

900

900

800

800

800

700

700

700

600

600

600

500

500

500

400

400

400

300

300

300

200

200

200

100

100

100

0

0

0

0,5
a)

b)

c)

0,5

0,5

0,4

0,4

0,4

0,3

0,3

0,3

0,2

0,2

0,2

0,1

0,1

0,1

0

0

0

Figure 4: Testing phase: EDBP (a), ARS (b) and
SPSA (c). Valve (black), neural model (grey).

variance algorithm was carried out for 200 iterations.
The modelling results for the testing set are presented
in Fig. 4. The characteristics of the algorithm are in-
cluded in Table 2. The ARS is time consuming, but
it can find a better solution than the EDBP. The in-
fluence of the initial network parameters are examined
also. The most frequently used range of the parame-
ters values is [−1; 1]. The simulations show that more
narrow intervals e.g. [-0.7;0.7] or [-0.5;0.5] assure faster
convergence.

SPSA algorithm. This algorithm is a simple and very
fast procedure. However, choice of the proper param-
eters is not a trivial problem. There are 5 parameters
which have a crucial influence on convergence of the
SPSA. In spite of speed of the algorithm, a user should
spend a lot of time to select proper values. Some-
times it is very difficult to find good values and algo-
rithm fails. The experiment was carried out for 7 500
iterations using the following parameters a = 0.001,
A = 100, c = 0.01, α = 0.25 and γ = 0.05. The
modelling results for the testing set are presented in
Fig. 4. The parameter γ controls the decreasing ratio
of sequence {ck} and is set to a small value to enable
a property of global optimisation. Parameter a is set
to a very small value to assure convergence of the al-
gorithm. The dynamic neural network is very sensitive
to large changes in parameters values (dynamic filters)
and large values of a like 0.4 can cause that learning
process will be divergent. Taking into account that the
first value of the sequence ak is small, the parameter
α is set to 0.25 (the optimal value is 1, Spall [15] pro-
poses to use 0.602). In spite of difficulties in selection
of the network parameters, the modelling results are
quite good. Moreover, generalisation ability for this
case is better than for both the EDBP and the ARS.

2581

Table 2: Characteristics of the learning methods

Characteristics EDBP ARS SPSA
Learning time 12.79 min 33.9 min 10.1 min
Iterations 5 000 200 7 500
SSE – training 0.098 0.07 0.0754
SSE – testing 0.564 0.64 0.377
FO 3.1 · 109 1.6 · 1010 2.5 · 109

NE 5 000 61 600 15 000
FO/iteration 6.2 · 105 8 · 107 3.3 · 105

NE/iteration 1 308 2

Comparison of the methods. The characteristics
of the learning methods are shown in Table 2. The
best accuracy was obtained using the ARS. Slightly
worse result was achieved using the SPSA and the worst
quality was obtained using the EDBP. In this example,
the actuator is described by nonlinear dynamic rela-
tion and the algorithms belonging to the global opti-
misation techniques performed their task with better
quality than gradient based one. Simultaneously, the
SPSA is much faster than the ARS. Moreover, concern-
ing the same accuracy, the generalisation ability of the
neural model trained by the SPSA is better than the
neural model trained by the ARS.

6 Concluding remarks

The main objective of this work was to perform com-
parative studies between some stochastic methods and
the off-line version of the gradient based algorithm to
train dynamic neural networks using both simulated
and real data. The performed simulations show that
stochastic approaches can be an effective alternative to
gradient based methods. The ARS is a very simple al-
gorithm. This algorithm can be very useful in practice
for engineers, because a user should only determine one
parameter to start the optimisation procedure. In con-
trary, the SPSA is much faster than the ARS, but to
start the optimisation process, five parameters should
be determined. To define these values, a user should
possesses a quite large knowledge about this method,
to use it properly. Taking into account the property of
global optimisation, both stochastic approaches can be
effectively used for modelling of nonlinear processes.

References

[1] A. Alessandri and T. Parisini. Nonlinear mod-
elling of complex large-scale plants using neural net-
works and stochastric approximation. IEEE Trans.
Systems, Man, and Cybernetics – A, (27):750–757,
1997.

[2] J. Chen and R. J. Patton. Robust Model-Based

Fault Diagnosis for Dynamic Systems. Kluwer Aca-
demic Publishers, Berlin, 1999.

[3] Z. Fathi, W. F. Ramirez, and J. Korbicz. Analyti-
cal and knowledge-based redundancy for fault diagnosis
in process plants. AIChE J., 39(1):42–56, 1993.

[4] P. M. Frank and B. Köppen-Seliger. New devel-
opments using AI in fault diagnosis. Artificial Intelli-
gence, 10(1):3–14, 1997.

[5] J. Gertler. Fault Detection and Diagnosis in En-
gineering Systems. Marcel Dekker, Inc., New York,
1999.

[6] R. Isermann, editor. Supervision, Fault Detection
and Diagnosis of Technical Systems – Special Section
Control Engineering Practice 5(5). 1997.

[7] J. Korbicz, K. Patan, and A. Obuchowicz. Dy-
namic neural networks for process modelling in fault
detection and isolation systems. International Jour-
nal of Applied Mathematics and Computer Science,
9(3):519–546, 1999.

[8] S. Lissane Elhaq, F. Giri, and H. Unbehauen.
Modelling, identification and control of sugar evapora-
tion – theoretical design and experimental evaluation.
Control Engineering Practice, (7):931–942, 1999.

[9] K. Patan. Artificial Dynamic Neural Networks
and Their Application in Modelling of Industrial Pro-
cesses. Ph.D. dissertation., Warsaw University of Tech-
nology, Faculty of Mechatronics, Warszawa, 2000.

[10] K. Patan and J. Korbicz. Application of Dy-
namic Neural Networks in an Industrial Plant. In Proc.
SAFEPROCESS’2000, Budapest, Hungary, pages 186–
191, 2000.

[11] R. J. Patton, P. M. Frank, and R.N. Clark. Issues
of Fault Diagnosis for Dynamic Systems. Springer-
Verlag, Berlin, 2000.

[12] R. J. Patton and J. Korbicz, editors. Advances
in Computational Intelligence – Special Issue Interna-
tional Journal of Applied Mathematics and Computer
Sceince 9(3). 1999.

[13] D. T. Pham and X. Liu. Training of Elman net-
works and dynamic system modelling. International
Journal of Systems Science, 27:221–226, 1996.

[14] J.C. Spall. Multivariate stochastic aproximation
using a simultaneous perturbation gradient approxima-
tion. IEEE Trans. Automatic Control, (37):332–341,
1992.

[15] J.C. Spall. Stochastic optimization, stochastic
approximation and simulated annealing. In J.G. Web-
ster, editor, Encyclopedia of Electrical and Electronics
Engineering, New York, 1999. John Wiley & Sons.

[16] E. Walter and L. Pronzato. Identification of
Parametric Models from Experimental Data. Springer,
London, 1996.

2582

	MAIN MENU
	PREVIOUS MENU

	Search CD-ROM
	Search Results
	Print

	footer:
	header:

