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The authors propose a heuristic recursive algorithm to find the
minimum point of a function without using the gradient of the
function. This algorithm is based on the time diiference and
simultaneous perturbation method. However, it does not need an
additional measurement of the function to update the estimated
pomt.

Introduction: In this Letter we consider a simple optimisation
problem: finding the optimal parameter that minimises a function,
while supposing that we cannot use the gradient of the function.
The most basic recursive approach to the problem is the finite dif-
ference method; we add a small perturbation to a point and make
measurements at the point and the perturbed point. Using a differ-
ence approximation, we can estimate the gradient of the function
at the point. This estimated gradient is used to modify the point.
However, if the dimension of the parameter » increases, (1 large)
we have to repeat this procedure n times.

The simultaneous perturbation (SP) technique overcomes some
of these problems. Instead of adding perturbation to all parame-
ters one by one, the SP technique adds perturbations to all
parameters simultaneously. Then, we can obtain an estimated gra-
dient such as the finite difference. In this procedure twice the
number of measurements are required, even if n is large. This
method was originally proposed by Spall [1 — 3], and independ-
ently devised by the author [4] and Alespector et al. [5]. Further-
more, some applications of this method are reported [6 — 8]. In
this method we need twice the measurements of the function.

We propose a heuristic method based on a time difference and
SP technique. Basically we use the SP idea. However, we do not
make the additional measurement with a perturbed point. When
we update an estimator of the optimal point, we use an estimated
gradient vector and a perturbation vector simultaneously as a
modifying quantity of the point. The estimated gradient of the
function derives from past measurements using the SP technique.
The perturbation is necessary to estimate the gradient in the next
iteration.

Time difference simultaneous perturbation method: Letu e R be a
parameter vector, and J(u) be a function to be minimised. We
would like to find an optimal point u. = ™" J(u). We propose the
following algorithm:
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where Aw, ; denotes the ith component of the vector Au,. o is a pos-
itive gain coefficient. s, is a sign vector whose components are +1
or -1 and E(s,) = 0. 5., represents the ith component of the vector
s, and E(s_.; s.,;) = 0 (i#)). ¢ (>0) denotes the magnitude of the
perturbation. By means of the term cs,, random perturbations -+c
or ~c are added to all parameters. Signs of perturbations are dif-
ferent in different parameters.

In eqn. 1, the vector Aw, represents an estimated gradient vector
derived from the second procedure, eqn. 2. Perturbations are
added to all parameters simultaneously by the third term of eqn.
1. Since the expectation of the sign vector is zero, the estimator u,
is updated only by the second term in terms of expectation.

In eqn. 2 the difference between the values of the function at
time 7 and time (z-1) is divided by the magnitude of the perturba-
tion. This gives an estimated gradient. However, J(1,) includes the
effect of Au,_,. When we expand J(u,) at u,,, there exists u,, such
that
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Therefore, since s,_,; = 1, we have
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where J/(u_,) = oJ(u._)0u,,, E(s_,) = 0 because s>, = 1 and
E(s,,) = 0. Thus, the expectation of the last term of the right-
hand side of eqn. 4 is zero. Moreover, since E(s,,; 5,.,;) = 0 (i#))
and E(s_;,) = 0, taking the expectation of eqn. 4 gives

E(Auy ) = Ji(us ) (5)

That is, the modifying vector Ay, is the gradient of the function in
the terms of the expectation, 1.e. this procedure is a stochastic gra-
dient method similar to the SP method. Details of this method is
shown in Fig. 1.

begin ‘
* Measure a value of the function J(u,).
¢ Subtract the value J(u,) from the previous value of J(u,_,).
(* Obtain time difference of the function *)
fori:=1tondo
begin
e Multiply the time difference by as, 4 ; /c.
* ahu *)
* Generate new sign randomly. (*s, ; *)
» Add the perturbation to aAu, ; . (* 0tAu, ; + ¢, ; %)
e Update the parameter.
end;
Renew the iteration (* t = ¢ + 1 *)
end.

Fig. 1 Algorithm

Simulation: To confirm the viability of this method, we apply this
to a simple multidimensional optimisation problem. The function
is as follows:

J(u) = uf +2ud +3ud+4ud+5ud+urug Husug+ugug (6)

As initial values, we set up w,; = w;; = ;3 = w4 = w5 = 5.0. The
result of the time difference simultaneous perturbation method
using eqns. 1 and 2 is shown in Fig. 2. The magnitude of the per-
turbation ¢ is 0.01 and o is 0.001. Ay,

max

is 0.1. These are deter-
mined empirically.
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Fig. 2 Simulation result
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Moreover, to compare with our result, we show results using
the simple random search, the finite difference technique and the
SP technique. In the random search used here, random vectors in
[-5 S are generated using uniform distribution. The result shown
in Fig. 2 is an average for 20 trials.

In the finite difference method, a difference approximation is
used instead of the gradient. We fix on the constant perturbation ¢
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(=0.1). The gain coetficient is 0.01. To guarantee the convergence
of the estimator, the perturbation has to tend to zero, whether or
not it is quadric. As was expected, the estimator did not converge
to zero.

Details of the SP used here are described in [4]. In this case the
gain coefficient was 0.01 and the magnitude of the perturbation
was 0.01. As a result, the SP method is superior to the other meth-
ods. The time difference SP method is better than the random
search but inferior to the SP and the finite difference.

However, as we stated before, there are some applications
where the SP or the finite difference methods are not applicable.
We can provide another option. Like the other methods, this algo-
rithm contains some adjustable coefficients. The suitable coeffi-
cients depend on an unknown objective function. However, we did
find a heuristic strategy.

The role of Auw,,, is preventing a remiss modification via an
error in the estimated gradient. However, too small a value of
Au,,,. will cause a slower convergence when the estimated gradient
is nearly correct or an estimator is far from an optimal point.
Conversely, in the neighbourhood of the optimal point, a smaller
Au,,. is preferable.

Eqn. 2 gives the estimated gradient using SP. Then, we must
add only perturbation to the parameters and measure the value of
the function. This process is eqn. 1 in my method. However, eqn.
1 includes not only the perturbation in the third term but also the
modification term of the second term. This causes the error in the
estimated gradient. In this sense it seems that a smaller coefficient
o and/or a larger perturbation give a better estimated gradient.
However, if the perturbation term is larger than the modification
term in eqn. 1, modification of the parameters is not carried out
properly because of the perturbation term. Good results were
obtained when the magnitudes of the modification term and the
perturbation term are balanced. The gradient of the function var-
ies, depending on the position of the estimator. However, that
would be a clue to determining the gain coefficient o and the per-
turbation c.

To guarantee the convergence of this algorithm, the perturba-
tion ¢ must tend to zero, because the perturbation always disturbs
movements of the estimator to a proper direction in eqn. 1, and
the constant perturbation does not give an exact estimation of the
gradient in eqn. 2. Since the perturbation is constant in this exam-
ple, it was foreseen that the estimator will remain in the neigh-
bourhood of the optimal point.

Conclusion: A heuristic optimisation method has been proposed,
based on a combination of time difference and the SP method.
The ordinary finite difference needs » times measurements, and the
SP method needs twice the measurements to obtain a modifying
quantity for all parameters in every iteration. However, the time
difference simultaneous perturbation method proposed here needs
no additional measurement. We can anticipate some applications
of this technique, such as neural networks. At the same time,
proving the convergence of the algorithm and accelerating the
convergence speed are important. For stochastic approximation
we need further study.
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