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Abstract. The choice of the learning scheme is very important in the implementation of neural networks to take
advantage of their learning ability. Usually, the back-propagation method is widely used as a learning rule in neural
networks. Since back-propagation requires so-called error back propagation to update weights, it is relatively diffi-
cult to realize hardware neural networks using the back-propagation method. In this paper, we present a pulse density
neural network system with learning ability. As a learning rule, the simultaneous perturbation method is used. The
learning rule requires only forward operations of networks to update weights instead of the error back-propaga-
tion. Thus, we can construct the network system with learning ability without the need for a complicated circuit
that calculates gradients of an error function. Pulse density is used to represent the basic quantities in this system.
The pulse system has some attractive properties which includes robustness against a noisy environment. A combina-
tion of the simultaneous perturbation learning rule and the pulse density system results in an interesting architec-
ture of hardware neural systems. Results for the exclusive OR problem and a simple identity problem are shown.
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1. Introduction

Artificial neural networks (NNs) are modelled on
biological neural systems. NNs have a number of
applications nowadays in which the NNs are usually
implemented on an ordinary digital computer.
However, this kind of an implementation does not
take advantage of the essential idea; parallelism in
biological NNs. In order to fully utilize this feature,
suitable implementation is required. Implementation
using hardware elements such as very large scale
integration (VLSI) is advantageous in this respect.

When we consider the hardware implementation of
NNs, one of the difficulties is to realize a learning
mechanism. The concept of ‘‘Learning on Silicon’’ is
very important [1,2].

The back-propagation method is widely used in
many cases. However, it is very complex to
implement the back-propagation method, for
example, in an electronic system, since the learning
rule uses derivatives of an error function to up-
date weights. In particular, it is difficult to implement
large scale NNs with learning ability via the gradient
method because of the complexity of the realizing

mechanism that derives the gradient. From this point
of view, we need a learning rule that is easy to realize.

The simplest solution for the problem is the finite
difference known as the weight perturbation in the
field of NNs [3].

J(w + ce') — J(w)

Aw' = o

(D)

where, Aw' is a modifying quantity for the i-th weight.
w is a weight vector, J(-} denotes an error function. ¢
represents a magnitude of the perturbation and « is a
positive coefficient. ¢ is the fundamental vector
whose i-th component is 1 and the others are 0.

However, the learning rule is not efficient for large
scale NNs. A. J. Montalvo et al. described an analog
VLSI NN using the chain rule perturbation method [4]
that is an extension of the simple finite difference
technique. In this method, instead of simple serial
weight perturbation [3], outputs of neurons Ao are
used as follows;

J(w+ce') —J(w) Ao

Aw' = p— 2
" Ao c (2)

where, Ao is an output of a corresponding neuron.
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On the other hand, the simultaneous perturbation
method was introduced by J. C. Spall [5.,6].
J. Alespector et al. [7] and G. Cauwenberghs [8]
presented the same idea., Y. Maeda also indepen-
dently proposed a learning rule using the
simultaneous perturbation and reported a feasibility
of the learning rule [9-11]. At the same time, the
merit of the learning rule was demonstrated in
VLSI implementation of analog NNs using this rule
[12,13].

The advantage of the simultaneous perturbation
method is its simplicity. The method is even
simpler than the chain rule perturbation method,
since there is no need to use outputs of neurons for
the chain rule. From a hardware implementation
point of view, the exclusion of the intricate
mechanism required for deriving the gradient of
the error function is preferable. The simultaneous
perturbation can estimate the gradient using only
the values of the error function. Therefore, the
implementation of this learning rule is relatively
easy, compared with that of the other learning rule.
The details of the learning rule will be given in
Section 2.

Pulse techniques including pulse width and pulse
stream are also investigated to realize artificial
NNs. For example, E.LLEI-Masry et al. presented a
current-mode pulse width modulation artificial
NN that enables efficient implementation of arti-
ficial NNs [14]. A.FMurray et al. also proposed
a VLSI NN using analog and digital techniques
[15].

The pulse density type of NNs has attractive
properties. For example, the system is invulnerable to
noisy conditions. Moreover, we can handle quantized
analog quantities, based on the digital technology that
is relatively effortless to implement. The analogy to
biological neural systems is intriguing as well. Eguchi
et al. reported a pulse density neural system [16].
They used the back-propagation method as a learning
rule.

In this paper, we present a pulse density type of a
NN system with learning ability using the simulta-
neous perturbation method. The combination of the
pulse density system and the simultaneous perturba-
tion learning rule results in an easy configuration
which can be implemented in the hardware neural
network system. In our hardware implementation,
pulse density is used to represent the weight values,
outputs and inputs.

2. Simultaneous Perturbation Learning Rule

The simultaneous perturbation learning rule is
described as follows;

Wi = W, — aldw, (3)

J(w, + cs(,f) J(w,) s ()
where, w is the weight vector including the threshold
of all neurons, « is a positive constant. Aw is a
modifying vector and Aw' represents the i-th element
of the vector Aw. s, and s' denote the sign vector and
its i-th element that is 1 or — 1, respectively. The sign
of s/ is randomly determined. Moreover, the sign of s
is independent of the sign of the j-th element s; of the
sign vector. That is, E(s') = 0, E(sis})) = 0(i £)). E
denotes the expectation, ¢ is a magnitude of the
perturbation. J(w)(=|o — d|) denotes the error func-
tion defined by an output of the NN o and a
corresponding teaching signal d. The details of this
algorithm are shown in Fig. 1.

When we expand the right-hand side of equation
(4) at the point w,, there exist w,, such that

7o (w) C_-Visr 62‘/(“(”"91)) 5
t
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We take an expectation of the above quantity. From

the conditions of the sign vector s,, we have
i a‘](wr)
E(aw) =57 (©)

That is, Aw;] approximates 8J,(w,)/dwi. Since the
right-hand side of equation (4) is an estimated value of
the first-differential coefficient in the sense of the
expectation, the learning rule is a type of a schismatic
gradient method [11,12].

An important point is that this learning rule
requires only two values of the error function. That
is, it requires only two forward operations of the NN
in order to obtain estimators of the first differential
coefficients of the error function with respect to all
weights in the network.

3. Architecture of the Neural Network System

Fig. 2 shows the configuration of our pulse density NN
system. The system consists of three kinds of units;
weight unit, neuron unit and learning unit. The weight
unit calculates the multiplication of the input signals
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begin

[ ]
®  Subtract the perturbation csy.
[ ]
[ ]

begin

end;
® Update the weight vector.
® Renew the iteration.
end.

for p:=1 to Pax do (* Pmax is a total number of patterns *)

®  Add the perturbation csy to the weight vector wy.
Obtain a value of the error function J(w+ csy).

Obtain a value of the error function J(wy).
Calculate the difference between these values. (* J(w+ csg)— J(wp) *)

for i:=1 to n do (* n is a total number of the weight *)

@ Multiply the difference by «a sti/c.

Fig. 1. Procedure for the learning rule.
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Fig. 2. Configuration of the NN system.

and weight values. The neuron unit gives the weighted
sum of outputs. The learning unit achieves the so-
called learning process using the simultaneous
perturbation method and sends modifying quantities
to the weight units. In this system, the input signals,
the teaching signals and some timing signals used in
all the units are generated by a personal computer.
Figs. 3 and 4 are photos of our system. Fig. 3 shows
the overall system. Basically, the system is composed
of individual elements such as ICs, resistors and
capacitors. Fig. 4 shows the circuit board in which the
weight units and the neuron units are implemented.
Next, we detail the features of these units.

3.1. The Weight Unit

After a modification of a weight value stored in the
weight unit, the weight unit adds the perturbation
to the value. Then, the unit multiplies the weight
value and an output of a neuron in the previous
layer.

The weight unit consists of a weight calculation
part and a pulse generation part. The weight
calculation part carries out addition or subtraction of
the perturbation and updates the weight value based
on the quantity by the learning unit. The pulse
generation part generates a pulse stream for which the
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Fig. 3. Fabricated pulse density neural network system.

Fig. 4. A board for weight units and neuron units.

number of pulses per unit time is proportional to the If the sign of the result is positive, the output is sent
weight value. An AND operation of these pulses and to a positive side of the neuron unit. If the sign is
the input pulses means a multiplication of the weight negative, the output is sent to a negative side. The

value and the input value. block diagram is shown in Fig. 5.
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Fig. 5. The weight unit.

3.1.1. The Weight Calculation Part. This part
consists of counters, flip-flops (FFs) and the other
logical elements and performs the modification of the
weights. Moreover, it achieves an addition or a
subtraction of the perturbation.

First of all, we store the initial values of all weights
and their corresponding signs in counters and FFs,
respectively. The modifying quantity corresponding
to each weight is sent from the learning unit. This
quantity is connected to one of the counters. Counting
up or down is decided by the sign of the modifying
quantity stored in the FE This procedure results in a
new weight value.

Another role of the weight calculation part is to add
a perturbation to the weights. This is simultaneously
done for all the weights. Counters are used for this
operation as well. The sign of the perturbation is
generated in the pulse generation part described below.

3.1.2. Pulse Generation Part. This part converts the
weight values calculated in the weight calculation part
into pulse series. It consists of comparators and a
ROM. 32768 uniform random numbers are stored in
the ROM. We compare a weight value with a random
value stored in the ROM. Then, if the weight is larger
than the random number, this circuit generates a
single pulse, if not, no pulse is generated. We repeat
this procedure for unit time. New random numbers are
used step by step. Therefore, a large weight results in
many pulses and a small weight results in very few
pulses. This means that the weights in our system are
represented by pulse density.

3.2. Neuron Unit

This unit consists of a logical operation part and a
waveform shaping part. The former part calculates
the sum of all inputs by means of a simple OR
operator. The input-output characteristics are
realized by the saturation of pulse density. That is,
even if the weighted sum for a neuron is extremely
large, the maximum number of pulses per unit time
is restricted. In our system, the maximum number of
pulses per unit time is 256. No pulse means a
negative limitation of the weight value. Thus, the
system uses the linear function with limitation instead
of the sigmoid function. The block diagram is shown
in Fig. 6.

In Fig. 6, + or — symbols indicate the sign of the
weight; outputs of the weight unit. That is, positive
and negative weights are transmitted separately. IN +
and IN — represent the positive and negative sum of
weighted inputs, respectively.

Digital elements have some sort of time delay. It is
important to take this into account, when we design a
digital circuit. To avoid malfunction caused by this
time delay, we use the waveform shaping part. The
part consists of two FFs. When the first FF latches a
signal of the logical operation part at time ¢, another
FF outputs a signal of time (z—1). At the next
sampling time (7 + 1), this FF latches a signal of time
(r + 1) and the first FF outputs the signal of time 7. As
a result, one clock time delay occurs. However, this
prevents malfunction caused by the time delay of the
other elements.
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Fig. 6. The neuron unit.

3.3. Learning Unit

Learning ability is the most important factor for NNs.
Therefore, it is crucial to realize a hardware NN
system with learning ability. This unit actualizes this
ability. Concretely, this unit gives modifying quan-
tities for all weights using teaching signals and
outputs of the NN. The block diagram is shown in
Fig. 7. The pulse generation part in this unit has the
same structure as that in the weight unit. The learning
of this unit is based on the simultaneous perturbation
learning rule. One of the features of this learning rule
is that it requires only forward operations of the NN.

Output of up o] Pulee
a neuron E | |generation
Teaching _idown | % part ’_l AND

signal
@ PulseT

[ generation
part

In other words, if we use the ordinary back-
propagation method, we have to realize so-called
error back propagation in order to obtain a derivative
of the error function. However, this learning rule
requires only values of the error function. This means
that we need only forward operation of the network to
carry out the learning of the weights. Details of the
operations of this unit are as follows.
1. Reset the counters 1 and 2 in the learning unit.
2. Forward operation of the NN with perturbations.
The output counts up the counter 1. Next, the
teaching signals count down the counter 1. The
pulse generation part produces pulses using the

OR
o) Pulse
£ }{generation
g part +
[\S)

Fig. 7. The learning unit.



value stored in the counter 1. After AND operation
of these pulses and pulses corresponding to the
constant o/2¢, we set the value in the counter 2.

3. Reset counter 1. Forward operation without the
perturbations. The output counts up the counter 1.
Next, the teaching signals count down the counter
1. The pulse generation part produces pulses using
the value stored in the counter 1. After AND
operation of these pulses and pulses corresponding
to the constant o/2¢, we set the value in the counter
2.

4. Using a counter, we obtain the difference of these
values.

5. The result is sent to all weight units in order to
update the weight values.

4. Results

Now the Exclusive OR problem is considered. The
network is a three layered feed forward type.
The numbers of neurons in each layer are 2, 2 and
1. The inputs, teaching signals and the results are
shown in Figs. 8 and 9. Logical representations 0 and
1, are realized in the pulse density form as shown in
Figs. 8 and 9. 256 pulses for unit time denote logical |
and no pulse for unit time means logical 0. We can
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find a good agreement between the teaching signal
and output of the system, which means that the system
works well. The system requires about 60 seconds to
learn the relation on average. The clock frequency in
this example is about 50 KHz. Fig. 10 shows the case
that the system could not learn the exclusive OR
relation. In this case, the system was captured in the
so-called local minimum.

Next, we handle the learning of the linear function
y=2x and the function y =1—x. We select five
learning points; 0.0, 0.3, 0.5, 0.7 and 1.0. The numbers
of the neurons in each layer are 1, 4 and 1. The density
of pulses for a unit time denotes a value of x or y. The
results are shown in Figs. 11 and 12. On an average,
we require 90 seconds and 150 seconds for y = x and
y = 1 — x, respectively. The clock frequency is about
10 kHz. Details of the output pulses are shown in Fig.
13.

Since this system is fabricated using individual
discrete parts, it was difficult to work under a high
clock frequency. However, our purpose is to confirm
the feasibility of the idea of the pulse density NN
system via the simultaneous perturbation learning
rule. From this point of view, we could confirm a
viability of the idea. Implementation by FPGA or
ASIC will contribute to the realization of a high-speed
and high-stability system using this idea.
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Fig. 8. Exclusive OR during training.
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Fig. 9. Exclusive OR after training.
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5. Conclusion

In this paper, we described the fabrication of a pulse
density NN system using the simultaneous perturba-
tion learning rule. The pulse density system converts
complicated operations using ordinary analog NN
systems into simple digital gate operations. Combined
with the simplicity of the simultaneous perturbation
learning rule, the pulse stream NN became a
fascinating alternative. Furthermore, Y. Maeda and
J. C. Spall propose one-measurement type of
simultaneous perturbation techniques; the time dif-
ference simultaneous perturbation [17] and the one-
measurement simultaneous perturbation [18], respec-
tively. These methods require only one forward
operation of a NN to obtain the first derivatives of
an error function with respect to all weights in the

network. This will make hardware implementations
more tractable.
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