

QUANTITATIVE DECISION SUPPORT FOR UPGRADING

COMPLEX SYSTEMS OF SYSTEMS

By

RONALD R. LUMAN

B.A. May 1976, Middlebury College
M.S. May 1978, Michigan State University
M.S. May 1986, Johns Hopkins University

A Dissertation submitted to

The Faculty of

The School of Engineering and Applied Science
of the George Washington University in partial satisfaction

of the requirements for the degree of Doctor of Science

November 19, 1997

Dissertation directed by

Dr. Howard Eisner
 Professor of Engineering Management

Systems Engineering

 ii

ABSTRACT

 The engineering of complex systems of systems has been receiving greatly
increased amounts of attention in recent years. Within the Department of Defense,
“system of systems” terminology is now widely used to describe how the successful,
combined operation of many platforms, weapon systems, and communication systems is
necessary to achieve an overall warfare objective, especially in joint operations.
Although the characteristics and system engineering challenges associated with systems
of systems are becoming well understood, effective architecting approaches that enable
cost/performance trades are still immature.

 A systematic approach to considering how best to upgrade specific, complex
systems of systems is postulated and demonstrated. The process treats cost as the
independent variable (CAIV) and seeks to find the “best” point design that may involve
upgrading all component systems simultaneously, not just one at a time. The process has
been demonstrated on a naval mine countermeasures (MCM) system of systems
representation of sufficient complexity and detail to demonstrate the feasibility of the
approach. The process formulates a constrained, nonlinear optimization problem whose
objective function is a representation of the top-level measure of effectiveness (MOE),
with constraints represented by functionalized Performance Based Cost Models,
secondary MOEs, and technology-driven bounds on system measures of performance
(MOPs). Both closed-form and simulation-based optimization approaches have been
demonstrated and differences quantified, including the suboptimality of considering just
one system at a time.

 Due to the nature of complex system of systems interactions, implementation of
this optimization technique on problems of national interest will require a simulation to
represent the mapping of system MOPs to single system MOEs and on to the overarching
system of systems MOE. A stochastic simulation of the MCM system of systems was
therefore also implemented and optimized utilizing a constrained variant of the
Simultaneous Perturbation Stochastic Approximation method.

This process therefore demonstrates a disciplined, quantitative approach to
developing system of systems upgrade options for very complex situations, which can
result in more effective and comprehensive systems acquisition and technology
investment strategies. A secondary benefit is that the process can be used as a framework
for the utilization of campaign-level simulations to support acquisition decisions.

 iii

TABLE OF CONTENTS

 ABSTRACT.. ii

 TABLE OF CONTENTS ... iii

 LIST OF ILLUSTRATIONS... v

 Chapter

1. INTRODUCTION... 1
Background .. 1
Systems of Systems Definitions and Concepts .. 3

2. MANAGEMENT ISSUES.. 6
Usual Approach.. 6
System of Systems Upgrade Decision Objectives.. 9

3. APPROACH ... 12
 Dissertation Objective .. 12
 Proposed Quantitative Decision Support Process .. 13
 Development Approach.. 15

4. GENERAL SYSTEM OF SYSTEMS PERFORMANCE MODEL............... 20

5. MINE COUNTERMEASURES SYSTEM OF SYSTEMS PERFORMANCE

MODEL... 27
 S1: MCM Reconnaissance System.. 29
 S2: MCM Neutralization System .. 33
 S: MCM Clearance System of Systems... 36
 Performance Based Cost Model (PBCM) and Parameter Bounds 41

6. OPTIMIZATION APPROACH .. 59

 Applicable Methods ... 59
 Constrained Simultaneous Perturbation Stochastic Approximation
 (SPSA) Method ... 64
 Model Reformulation via Penalty Function Methods 71

 Limitations and Scope of Research .. 76

 iv

7. PHASE I RESULTS: CLOSED FORM OBJECTIVE FUNCTION 80

 Constrained SQP .. 81
 Single System vs. System of Systems Optimization 85
 Constrained SQP Optimization Via Penalty Function Methods 90
 First Order Constrained SPSA Optimization Via Penalty Function
 Method ... 94
 Second Order Constrained SPSA Optimization Via Penalty Function
 Method ... 96

8. PHASE II RESULTS: SIMULATION OBJECTIVE FUNCTION 103
 Simulation Description... 103

Second Order Constrained SPSA Optimization Via Penalty Function and
Simulation .. 104

 Practical Selection of Initial MOP Estimates and Final Results 109

9. VERIFICATION AND VALIDATION ISSUES.. 117

 What is Important and Why ... 119
 Selection Strategies For Ultimate Design Of The Process VV&A

Approach(es) .. 122
 Perspectives on the Limitations of V&V Approaches 123

10. SUMMARY AND CONCLUSIONS.. 125
 Conclusions .. 126
 Future Research.. 128

APPENDIX A: Constrained SQP Optimization MATLAB Code, Example, and

Results .. 130

APPENDIX B: Single System vs. System of Systems Optimization................. 138

APPENDIX C: Constrained SQP Optimization (Penalty Function) MATLAB

Code and Results.. 153

APPENDIX D: First Order Constrained SPSA MATLAB Code, Example, and

Results .. 160

APPENDIX E: Second Order Constrained SPSA MATLAB Code
 and Results ... 173

APPENDIX F: MCM System of Systems MATLAB Simulation Code and

Results .. 184

 v

 LIST OF ILLUSTRATIONS

Figure

1. System of Systems (S2) Engineering Elements ... 5

2. Minefield Layout and Area to be Searched/Cleared ... 29

3. Probability of Localization as a Function of Re-Acquisition Range........................... 35

4. Clearance Confidence Level as a Function of Required Clearance Rate 39

5. Mine Clearance System of Systems Parameter Dependency Diagram 40

6. Mine Clearance System of Systems MOE/MOP Structure... 42

7. PBCM for Area Coverage Rate... 44

8. PBCM for Classification Probability .. 46

9. PBCM for False Alarm Rate ... 47

10. PBCM for Time to Classify... 49

11. PBCM for Navigation Accuracy ... 51

12. PBCM for Re-Acquisition Range ... 53

13. PBCM for Time to Prosecute False Target ... 55

14. PBCM for Time to Neutralize... 57

15. Summary of MCM System of Systems Optimization Problem 58

16. Asymptotic Penalty Gain Function ... 74

17. Constrained SQP Optimization Results for S.. 83

18. Single System Optimization Results ... 87

19. Single System Optimization Assuming Better/Worse Other System Performance 89

20. Constrained SQP Optimization (Penalty Function) Results for S 92

21. Penalty Function vs. Baseline Numerical Comparison ... 93

 vi

22. 1SPSA Results—5000 Function Evaluations ... 95

23. 2SPSA Results—5000 Function Evaluations ... 97

24. 2SPSA Initialized at Baseline Optimum ... 98

25. Comparison of System of Systems MOE Results ... 99

26. Comparison of Optimization Algorithm MOE, Cost, and q(x) Results.................... 100

27. Comparison of 1SPSA vs. 2SPSA Clearance Rate Results 101

28. Comparison of 1SPSA vs. 2SPSA System of Systems Cost Results........................ 102

29. MCM Simulation Block Diagram... 103

30. 2SPSA Simulation Results—5000 Function Evaluations... 107

31. 2SPSA Simulation vs. Analytic Model Results .. 108

32. 2SPSA Simulation Results for Clearance Rate ... 108

33. 2SPSA Simulation Results (MOE and Normalized MOPs)--2000 Iterations with
Ramp Interpolation Initialization .. 111

34. 2SPSA Simulation Results (MOP Values)--2000 Iterations with Ramp Interpolation
Initialization .. 112

35. 2SPSA Simulation vs. Analytic Model Results .. 113

36. 2SPSA Simulation Clearance Rate Results... 114

37. 2SPSA Simulation Cost Results ... 114

38. 2SPSA Simulation Costfactor Results by Individual System 115

 1

CHAPTER 1

INTRODUCTION

Background

 The engineering of complex systems of systems has been receiving greatly

increased amounts of attention recently. Within the Department of Defense, system of

systems terminology is now widely used to describe how the successful, combined

operation of many platforms, weapon systems, and communication systems is necessary

to achieve an overall warfare objective, especially in joint operations. This increased

level of complexity has become a concern at the highest levels of command, as General

John Sheehan, Commander in Chief of U.S. Atlantic Forces, recently wrote:

“Victory will depend on the ability to master the ‘system of systems’ composed of
multiservice hard- and soft-kill capabilities linked by advanced information
technologies.” 1

And Admiral Owens, Vice Chairman of the Joint Chiefs of Staff notes that systems of

systems have arisen not by design, but in response to the vision of users who recognize

the tremendous potential of systems working together towards broad, common objectives:

“We have cultivated a planning programming and budgeting system that tends to
handle programs as discrete entities…Yet, the interactions and synergisms of
these systems constitute something new and very important. What is happening is
driven in part by broad conceptual architectures---and in part by serendipity: It
is the creation of a new system of systems.” 2

1 Sheehan, Gen. J.J., “Next Steps in Joint Force Integration”, Joint Force Quarterly (Supplement, 1/6/97),

Autumn 1996.
2 Owens, Adm. W.A., “The Emerging System of Systems”, U.S. Naval Institute Press, May 1995.

 2

Although the characteristics and system engineering challenges associated with

systems of systems are becoming well understood, effective architecting approaches are

still immature for systems of systems 3,4.

 This dissertation specifically addresses the issue of how best to upgrade a

complex system of systems, once the need to do so has been realized. The system of

systems is considered as a whole entity and a quantitative methodology for determination

of an optimal upgrade suite under cost and technology constraints is demonstrated. The

methodology utilizes a multi-disciplinary approach including operations analysis, cost

modeling, nonlinear optimization, and stochastic modeling and simulation.

3 Manthorpe, W.H.J., Jr., “The Emerging Joint System of Systems: A Systems Engineering Challenge and

Opportunity for APL”, Johns Hopkins APL Technical Digest, Vol. 17, No. 3, 1996.
4 Luman, R.R., and Scotti, R.S., (1996). “The System Architect Role in Acquisition Program Integrated

Product Teams”, Acquisition Review Quarterly, DSMC Press, Fort Belvoir, VA; Vol.3 No.2.

 3

Systems of Systems Definitions and Concepts

 A complex system of systems is generally viewed as having the following

characteristics:5

• comprised of several independently acquired systems, each under a nominal

systems engineering process

• time phasing between each system’s development is arbitrary and not

contractually related

• system couplings are neither totally dependent or independent, but rather

interdependent

• individual systems are generally uni-functional when viewed from the system

of systems perspective

• optimization of each system does not guarantee overall system of systems

optimization

• combined operation of the systems constitutes and represents satisfaction of an

overall mission or objective

 Some examples of existing, complex systems of systems that exhibit all of these

characteristics are:

• National Aviation System: planes, airports, airways, air traffic control

• Naval Mine Countermeasures Force: search, sweep, neutralization systems

• Naval Surface Fire Support: reconnaissance, targeting, weapon systems

• Theater Ballistic Missile Defense: surveillance, tracking, interceptor systems

5 Eisner, H., Marciniak, J., and McMillan, R., “Computer-Aided System of Systems (S2) Engineering”,

Proceedings of the 1991 IEEE International Conference on Systems, Man, and Cybernetics, 13-16 October
1991, University of Virginia, Charlottesville, VA.

 4

Although it is difficult to know where to draw the line to form a boundary to

describe a particular system of systems, it is generally viewed as a coherent entity when

there is a recognition that overall management control over the autonomously managed

systems has become mandatory. Unfortunately, it is rare that a large, complex system of

systems is developed under a single, architecture resulting from a strategic development

decision. Component systems are developed one by one, and the full system of systems

evolves over a period of time that may be measured in decades as various leadership

entities develop enhanced visions of how systems can be used together to achieve larger

objectives. And although each system may have been justified and designed based upon

sound system engineering principles to fulfill a perceived functional or performance need,

its requirements and design most likely did not develop in response to concerns over the

complete system of systems objectives.

A framework for conducting system engineering at the system of systems (S2)

level has been developed6, but has not achieved widespread acceptance. Figure 1 lists the

elements of S2 Engineering and highlights those aspects that require a quantitative

analysis of alternatives to upgrading an extant system of systems—the subject of this

dissertation.

6 Eisner, H., Marciniak, J., and McMillan, R., “Computer-Aided System of Systems (S2) Engineering”,

Proceedings of the 1991 IEEE International Conference on Systems, Man, and Cybernetics, 13-16 October
1991, University of Virginia, Charlottesville, VA.

 5

1. Integration Engineering
1.1 Requirements
1.2 Interfaces
1.3 Interoperability
1.4 Impacts
1.5 Testing
1.6 Software V&V
1.7 Architecture Development

2. Integration Management
2.1 Scheduling
2.2 Budgeting/Costing
2.3 Configuration Mgmt.
2.4 Documentation

3. Transition Engineering
3.1 Transition Planning
3.2 Operations Assurance
3.3 Logistics Planning
3.4 P3I

• Impacts
– Compare system performance vs. requirements
– Assess effects of proposed upgrades
– Utilize M&S to predict performance

• Architecture Development
– Define top-level functional capability
– Assure inter-system performance
– Verify S2 is truly an integrated architecture vs.

random collection of systems
– Attempt to “optimize” overall system performance

• Transition Planning
– Develop transition alternatives/strategy
– Assess and select
– Document

• Pre-Planned Product Improvement (P3I)
– Review all component system P3I plans
– Identify key areas from S2 perspective
– Feed results/priorities back to system activities

System of Systems (S2) Engineering

Requires Quantitative Analysis Of Alternatives

Figure 1. System of Systems (S2) Engineering Elements

 6

CHAPTER 2

MANAGEMENT ISSUES

Usual Approach

 Often, as in the case of the DoD, a program executive officer will be responsible

for a collection of system acquisition programs, each of which can be viewed as part of a

larger system of systems—though this collection may not necessarily fully comprise that

system of systems. Were (s)he to have the luxury to architect a complete system of

systems from scratch, it could be done by applying an extension of the usual system

engineering approach, treating each acquisition system as a sub-system of the larger

entity7.

 Rather than architecting a system of systems in its entirety, the programs

executive is often faced with deciding how best to upgrade an existing system of systems.

This generally means either beginning a new acquisition program to add a new system to

the overall system of systems (additional functionality) or inserting advanced technology

into an existing system via the upgrade or modification process8. Significant constraints

and boundary conditions are placed upon these executives, including budgets, politics, ill-

defined and competing mission objectives, and of course, technology itself. Many new

initiatives are underway under the umbrella of “Acquisition Reform” to encourage

7 Eisner, H., McMillan, R., Marciniak, J., Pragluski, W., “RCASSE: Rapid Computer-Aided System of

Systems (S2) Engineering,” Proceedings of the National Council on Systems Engineering, 26-28 July 1993,
Washington, D.C.

8 Evans, LtCol. T.R., Lyman, Cdr. K.M, and Ennis, LtCol. M.S., “Modernization in Lean Times:
Modifications and Upgrades”. Report of the 1994-1995 DSMC Military Research Fellows, Defense
Systems Management College Press, Fort Belvoir, VA, July 1995.

 7

acceleration of systems development time, delivery of affordable systems, and risk

mitigation through adoption of commercial off the shelf (COTS) components or

technologies. These attempts at accelerating the usual acquisition cycle include such

innovative and complementary measures as Advanced Technology Demonstrations

(ATDs) and Advanced Capability Technology Demonstrations (ACTDs); often described,

respectively, as "technology pushes" and "military need pulls"9.

 Although these initiatives promote the quick fielding of new, militarily useful

technologies, they do not represent a disciplined approach to considering how best to

upgrade specific, complex systems of systems under the constraints mentioned above.

Development of such an approach is the objective of this dissertation effort.

 The usual approach in DoD to assessing whether to go forward with a new system

development has been to conduct a Cost and Operational Effectiveness Analysis (COEA).

The objective of the COEA (or the replacement “analysis of alternatives” procedure) is to

determine whether the proposed system is the most cost effective alternative to meeting a

certified military need10. A typical analysis approach is to utilize modeling and

simulation (M&S) to estimate the marginal utility of proposed system point designs

(across a range of system measures of performance (MOPs)) to a larger warfare or

campaign objective. The simulation is run on a carefully selected set of applicable

scenarios with and without the system alternatives to determine the best alternative

among those hypothesized. A multi-objective metric that reflects costs and other relevant

9 Lynn, L., “The Role of Demonstration Approaches in Acquisition Reform”, Acquisition Review Quarterly,

(1994, Vol. 1, No. 2).
10 Department of Defense. (1996). DoD 5000.2-R, "Mandatory Procedures for Major Defense Acquisition

Programs and Major Automated Information Systems,. Washington, DC.

 8

factors may be used to compare alternatives. This metric may attempt to reflect expert

opinion as to military value of the alternatives that are not captured by the quantitative

analysis due to limitations of fidelity or scope. However, the primary shortcoming of the

general approach to making upgrade decisions to a system of systems is that just one

component system is considered at a time, in a “stovepipe” fashion. It cannot generate

the “best” alternative from the system of systems perspective, since it considers

replacement or addition of just one component system rather than enhancements across

the full system of systems.

 A significant observation is that the DoD acquisition community strongly prefers

quantitative “engineering analysis” over qualitative “decision support” methods such as

the Analytic Hierarchy Process. This is perhaps because the community is dominated by

engineers and scientists who eschew attempts to convert opinion and judgments into

metrics—hence the heavy emphasis on modeling and simulation as the basis for

decisionmaking. A recent article in IEEE Engineering Management shows this to be

widespread throughout the technical and scientific community.11

 In summary, we are focused on “upgrading” vs. “design” of systems of systems

because (1) all proposed systems/upgrades must fit into an extant system of systems, (2)

there is rarely an opportunity to architect a major system of systems from scratch, (3)

requirements usually evolve in consideration of legacy systems’ capabilities and

management, and (4) we can often take advantage of available M&S that can be adapted

for decision support use if we take the view of upgrading an extant system of systems.

11 Cabral-Cardoso, C. and Payne, R. L., “Instrumental and Supportive Use of Formal Selection Methods in

R&D Project Selection”, IEEE Transactions on Engineering Management, Vol. 43, No. 4, November
1996, pp. 402-410.

 9

System of Systems Upgrade Decision Objectives

 The decision maker is generally trying to solve one of two problems, though not

always in an explicit manner: (1) maximize the system of systems’ performance subject

to a cost constraint or (2) minimize additional cost under performance constraints. Cost

constraints usually appear very rigid at the outset. Recent DoD acquisition reform

initiatives have softened hard budget allocations in favor of an approach known as Cost

as Independent Variable (CAIV). Application of the CAIV approach requires a

representation of a system’s performance as a function of cost, referred to as a

Performance-Based Cost Model (PBCM). This is almost never applied at the system of

systems level, however. Explicit performance constraints are expressed as minimum

performance requirements and may be self-imposed for political or strategic reasons, or

perhaps externally mandated due to advanced competition/military threats. Implicit

performance constraints are generally due to technological limitations. Again, the effects

of component systems’ performance constraints on overall system of systems’

effectiveness is almost never well-understood.

 These upgrade decisions are generally made and reviewed annually for all warfare

or program areas as part of strategic planning and budgeting processes in DoD. Upgrade

options generally take four forms, depending upon which forcing conditions are most

pressing:

1. a new type of system (i.e., additional functionality) must be added to the

system of systems

 10

2. additional numbers of existing component systems must be procured

(enlarging the scope and capability of the system of systems and offering an

opportunity to insert advanced technology)

3. existing component systems must be replaced due to aging or obsolescence

(also offering an opportunity to enhance the system of systems’ performance

and/or functionality through advanced technology insertion)

4. existing component systems must be upgraded due to requirements pressure or

availability of advanced technology

 Of course, final acquisition upgrade decisions are based upon a variety of factors,

many of which are not amenable to quantification and objective analyses. However,

decision makers generally agree that their decisions are easier when a thoughtful analysis

that provides a measure of the marginal utility of each upgrade option to their system of

systems’ effectiveness is available. This is easy to say, but hard to do. The most

common approach in DoD to getting a grip on system of systems’ effectiveness is through

the use of wargames and campaign-level simulations. Unfortunately, these approaches

are often insensitive to all but the most dramatic changes in capability. That is, it is often

impossible to isolate the contribution to an overall campaign due to small changes in

component systems’ functionality and/or performance. Therefore, acquisition trade

analyses similar to the COEA M&S analysis described above are often done on a scale

more amenable to quantitative analysis. Some of the challenges inherent in objectively

trading off system upgrade options:

• the system of systems itself is not well defined (i.e., what is the boundary of

the system of systems with regard to environment and other systems?)

 11

• the measures of effectiveness (MOEs) for the system of systems are not well-

defined

• field data on (MOPs) for existing component systems is limited or altogether

non-existent (a challenging M&S VV&A issue)

• MOPs and CONOPS for upgrade options are not well-defined

• budget constraints are not fixed and usually shrinking (both current and out-

year)

• marginal utility of proposed additional functionality and/or enhanced

performance is not well understood

 Regarding models and simulation, a well-accepted and validated representation of

the system of systems is not usually available that would be suitable for MOE/MOP

analysis purposes. This is a reflection of the usual single-system focus as well as the

tendency to create sophisticated M&S first and seek ways to use it afterwards.

 12

CHAPTER 3

APPROACH

Dissertation Objective

The dissertation objective is to develop a quantitative process/methodology to

support system of systems upgrade decisions so we can answer the question: “From the

system of systems perspective, where are the limited upgrade resources best applied?”

The overall approach is to develop and demonstrate a process that will enable a

domain expert systems architect or engineering team to generate an optimal suite of

upgrade design requirements subject to stated constraints in accordance with a specified

MOE for a particular complex system of systems. This process will be demonstrated on a

real world, contemporary system of systems in sufficient detail to demonstrate the

feasibility of the approach—a practical, proof-of-principle demonstration. The mature

process will feature a constrained, nonlinear optimization algorithm whose objective

function is a simulation that represents the defined system of systems’ effectiveness. This

is necessary to take advantage of substantial investments in system of systems M&S and

to avoid unnecessary simplification of the system abstraction required to obtain closed

form expressions of typical, complex systems of systems behavior. As is usually the case,

a balance must be struck between model fidelity and execution time due to intense

computational burden of advanced M&S. These considerations will drive selection of the

system of systems’ MOE/MOP and PBCM structure.

 13

Proposed System of Systems Quantitative Decision Support Process

 Key steps of the process are as follows:

1. Define the overall system of systems, its components, and its missions or

scenarios of interest.

2. Define critical MOPs and MOEs:

a) overarching MOE for the full system of systems that expresses the

decision makers’ objective

b) one characteristic MOE for each system and how it contributes to the

overarching MOE

c) component systems’ MOPs

3. Specify initial boundary conditions for the upgrade process

a) cost constraints on component systems and the overall system of systems

b) technological and requirements constraints on MOPs

c) force structure constraints, such as minimum and maximum numbers of

each type of system

d) potential secondary MOE threshold function constraint

4. Formulate Performance Based Cost Models (PBCM) for each component system

by parameterizing system cost as a function of its MOPs.

5. Formulate an appropriate first order model that will capture the mapping from

component system MOPs to system MOEs and eventually the overarching MOE.

Alternatively, select an appropriate M&S implementation that evaluates the

desired objective function and MOE constraints as a function of component

 14

systems’ MOPs. (Constructing expressions that model the system of systems’

top-level performance is important for initial problem understanding, but will

probably not be sufficient to adequately capture system interactions and

performance drivers. It is envisioned that this step will expose the requirement to

utilize advanced M&S to represent sufficient complexity necessary to provide

credible analyses to support decisions regarding complex, high value systems.)

6. Solve the resulting constrained, nonlinear (stochastic) system of systems

performance optimization problem under sets of constraints and scenarios as

defined by the expert system architect that are sufficiently broad to provide a

complete range of applicable upgrade options to the decision maker. [A solution

to a specific constrained problem formulation yields parameters that represent one

system of systems requirements suite, or upgrade option. The solution will still

require further evaluation to determine design implications for each system. In

this way, the process provides support to the decision process rather than make

the decision per se.]

7. Effectively communicate results of the process to the decision maker or decision

making body.

 15

Development Approach

The process will be developed utilizing an evolutionary prototyping approach in a

cycle of problem formulation, solution, evaluation, refinement, expansion and

generalization. Critical stages in the development are as follows:

• Formulate the general nonlinear optimization problem for this process. The particular

form has two nonlinear constraints, upper and lower MOP bounds, and a nonlinear

objective function, as shown in Chapter 4.

• Apply the optimization process to an existing, complex system of systems for which

the author has current domain expertise: naval mine countermeasures (MCM).

Model formulation has two parts:

1. System Performance Model. A simplified, but realistic performance model of

a dual system of systems is described in Chapter 5, in which closed form

expressions for MOPs, MOEs, and constraints are developed. Through this

example, it became clear that the objective function is generally a non-linear

function of all component systems’ MOPs. This non-linear objective function

therefore represents complex interactions between component systems. As

simplifying assumptions (engagement rules, environmental dependencies, etc.)

are relaxed, it becomes impractical to obtain closed-form expressions that map

MOPs up to system of system level MOEs. However, it is assumed that the

rules governing the interaction between the component systems and the

environment are known and can be simulated.

 16

2. System Cost Model. A variant of a “Cost-Based Performance Model” is also

formulated in Chapter 5, in which cost is parameterized by the MOPs.

Essentially, each MOP is considered to be a cost driver to an identifiable

subsystem, who’s cost can be estimated based on the cost-driver MOP values.

• Investigate various applicable optimization techniques and select the most promising

for this particular application. Although constrained, nonlinear optimization does not

appear to have yet been applied to the system of systems upgrade problem,

optimization and simulation have been combined before, and the literature has been

further examined for practical insights.12,13,14 Algorithm efficiency has been a

primary consideration, with the long term perspective that the objective function will

eventually be evaluated via simulation (see Chapter 6).

• Solve the MCM closed form problem to gain insight into process viability and

experience with the candidate search techniques. Then, revise the process and general

problem formulation as necessary.

• Generalize and demonstrate the process for the case where it is impractical to obtain

closed form expressions for the objective function to sufficiently represent the

complex interactions of systems, environment, and scenario. For a complex system of

systems, the use of advanced modeling and simulation will be necessary to overcome

the difficulties in obtaining closed form expressions for the objective function.

12 Lee, K-H, Eom, I-S, Park, G-J, Lee, W-I, (1996). “Robust Design for Unconstrained Optimization

Problems Using the Taguchi Method”, AIAA Journal, Vol.34, No.5, 1059-1063.
13 Fu, M.C., (1994). “Optimization via Simulation: A Review”, Annals of Operations Research, 53, 199-

248.

 17

Embedding a simulation inside a non-linear, constrained search algorithm has been

done before to determine control settings on a variety of single system simulation

types15,16. Extension of that application to efficiently determine system design

parameters in the system of systems context described here can revolutionize the way

campaign-level M&S is utilized to support acquisition decisions. A variety of

simulation products and system domains were considered for this proof-of-concept

analysis. Candidate system of system domains that were investigated to varying

degrees include:

• Naval Air Defense. Systems: aircraft, missiles, radars, acquisition and

tracking software, etc. Available simulation: TACAIR (Tactical Air).

• Anti-Submarine Warfare. Systems: submarines, torpedoes, sonars. Available

simulation: ORBIS (Object Oriented Rule Based Interactive Simulation).

• Ballistic Missile Defense. Systems: sensors, platforms, battle management

system (identification, tracking, targeting, battle damage assessment, etc.) and

interceptor missiles/devices. Available simulation: EADSIM (Extended Air

Defense Simulation).

• Naval MCM. Systems: ships, aircraft, detection, classification, identification,

neutralization sensors and devices.

14 Glynn, P.W., (1989). “Optimization of Stochastic Systems via Simulation”, Proceedings of the 1989

Winter Simulation Conference, ed. E.A. MacNair, K.J. Musselman, P. Heidelberger, IEEE, Piscataway,
NJ, 90-105.

15 Hill, S.D. and Fu, M.C., (1997). “Optimization of Discrete Event Systems via Simultaneous Perturbation
Stochastic Approximation”, Transactions of the Institute of Industrial Engineers, Special Issue on
Operations, Engineering, and Simulation, Vol. 29, Issue #3, pp.233-243.

16 Kleinman, N.L., Hill, S.D., and Ilenda, V.A., (1997). “SPSA/SIMMOD Optimization of Air Traffic
Delay Cost”, Transportation Science, to appear.

 18

• Air Traffic Control. Systems: aircraft, radars, positioning systems, tracking

systems, air traffic delays. Available simulation: SIMMOD (Simulation

Model).

Balancing simulation (1) availability, (2) validity, (3) applicability (including

PBCM aspects), (4) efficiency, and (5) author’s domain expertise, it was decided to

generate an analytic naval MCM system of systems model (Chapter 5) and implement it

both analytically (expected value sense) and as a Monte Carlo Simulation using

MATLAB (Chapters 7 and 8). This facilitates a self-consistent comparison of the closed

form analytic model results and those obtained via simulation.

Finally, the fully developed process should be compared against existing

processes and evaluated for its utility to the decision maker when attempting to upgrade a

complex system of systems. We are investigating a new process for supporting

acquisition decisions, which is not unlike an expert system, except that we have no

accepted knowledge base to capture. For expert systems, validation efforts generally

concentrate on comparisons against documented test cases. O’Keefe et al17, recommend

testing against a small number of complex cases and asking a panel of experts to assess

how well the process handles them.

The appropriate process to compare against is that of the COEA. Unfortunately,

utilization of quantitative methods in COEAs are somewhat unique to each study, and

concentrate on a single system. Furthermore, optimization methods have not been

17 O’Keefe, R.M, Balci, O., and Smith, E.P., “Validating Expert System Performance”, IEEE Expert,

Winter 1987, pp. 81-87.

 19

applied in COEA analyses in the sense of a rigorous “search” for the best set of system

requirements. Rather, a “best” option is selected from a finite set of point

designs/requirements.

The comparison approach selected here (Chapter 7) is to compare system of

systems optimization results to results obtained by optimizing one system at a time. This

verifies implementation, self-consistency, and quantifies the improvement to be realized

in taking the system of systems viewpoint for the MCM situation. It also highlights

assumptions (implicit and explicit) that a single system analyst must make concerning the

other systems in the system of systems, and assesses the impact of self-consistent but

erroneous assumptions.

 20

CHAPTER 4

GENERAL SYTEM OF SYSTEMS PERFORMANCE MODEL

 Consider n types of systems, Si, that comprise a system of systems, S, with the

following characteristics and constraints:

• { }S S Sn= 1 , ,l [note: could index as Sij to indicate the jth system of type i)

• There are mi systems of type i, and the total number of systems is

m mi
i

n

=
=
∑

1
, { }m = m mn1, ,l . The minimum number of each system type

required for the system of systems is designated as mL .

• Each system type has a set of ri measures of performance (MOP):

{ }p i i i rp p i= , ,, ,1 l . Thus each pi has dimension ri and r ri
i

n

=
=
∑

1
.

• Each system type has one overall measure of effectiveness (MOE),

()Ei i n= f , , ,m p p1 l , developed specifically to reflect how it contributes to

the overarching MOE for S. Each component system’s effectiveness may

depend upon the MOPs of other systems in the system of systems as well as

how many of each type. Implications of this point are further discussed below

and are illustrated by the example in Chapter 5.

 21

• Each system’s MOPs are constrained by low performance threshold

specification values, p i
* , and realistic technology limitations at the high

performance end, resulting in the following upper and lower bound

constraints: p p pi
L

i i
U≤ ≤ , or p p p jij

L
ij ij

U≤ ≤ ∀, . Note that for some

parameters, such as navigation accuracy, small values are better than large

values, hence p i
* is not simply the lower bound, p i

L . In the most general case,

these MOP constraints could be functions of time as well, in anticipation of

requirements creep and advancing technology.

• Each system’s unit cost is a (possibly nonlinear) function of performance,

expressed in terms of its critical MOPs: ()ci i i= h p , { }c = c cn1 , ,� . We

denote ()ci i i
* *h= p as the cost associated with the threshold system. This

performance based cost model (PBCM) is generated by considering each

critical MOP as a cost driver of a particular subsystem, whose cost can be

parameterized on that MOP. (Clearly, more complex cost models representing

various aspects of life cycle costs could be formulated, but this form is

sufficiently complex to demonstrate feasibility.) Total system of systems’ cost

is then: C T= mc .

 The system of systems has one overarching performance metric, E, a function of

each system’s overall MOE and the number of systems: ()E E En= g , , ,m 1 � . If any Ei

depends upon not just pi but some elements of p j where i j≠ then the system of

systems is interdependent. So in general, E will turn out to be complicated function of

 22

the full set of component systems’ MOPs: ()E n= G , , ,m p p1 � . That is, some systems’

performance impacts other systems’ performance.

 When describing a system of systems comprised of relatively simple component

systems, or utilizing simplified models of complex systems, each ()f , , ,i nm p p1 � can be

expressed in closed form. The simplified (but realistic) mine countermeasures example

in Chapter 5 develops a closed form, nonlinear expression for E, which is intuitive and

quite useful. However, MOPs are themselves typically sensitive to scenarios, concepts of

operation (CONOPs), and environments. So in order to obtain representative, robust,

full fidelity, results it will generally be necessary to utilize a simulation to evaluate each fi,

and of course, G.

 The usual approach when considering upgrades and/or new systems is to treat

them individually, perhaps never even defining the full system of systems to which it

belongs. That is, define one overarching MOE (or attribute) for the component system

and evaluate alternatives in accordance with a cost/MOE ratio. In some cases, multi-

attribute evaluations are conducted, (with a weighted factor representing impacts on the

larger system) but this is not widely done in DoD systems Cost Effectiveness and

Analysis (COEA) studies. This individualized approach is equivalent to assuming that all

component systems’ MOEs are independent of each other. Under that assumption,

maximizing overall effectiveness, E, is a matter of maximizing each individual system’s

effectiveness, perhaps subject to an overall constraint on cost. However, even this

approach of constraining overall system of systems’ cost is not widely done, as the

tendency is to handle each system and its constraints individually, which can lead to poor

 23

overall decisions from the system of systems perspective—especially with limited

resources.

 It should also be noted that the set of MOEs appropriate for this system of systems

analysis, { }Ei , are not necessarily the same MOEs that are appropriate for evaluating

each system apart from the full system of systems. A single system evaluation attempts

to reflect requirements on the system’s performance levels by attempting to combine all

critical design MOPs and measures of value to the larger system of systems into one

decision metric. When considering the full system of systems as proposed here, the

individual systems MOE set, { }Ei , should be formulated specifically to represent each

system’s contribution to the overarching quantitative effectiveness measure, E. Looking

ahead to the optimization algorithm, it will not be necessary to express each Ei

separately, but it is good to do so for later insight as to what the particular (or marginal)

contribution of each system is to the overarching MOE.

 In addition to the constraints on measures of performance shown above, several

other constraint types can occur and should be considered:

• “Force structure” constraints. There is generally a practical operational or

programmatic limitation as to how many systems of each type can comprise

the system of systems, known as “force structure” constraints:

m m mUL ≤ ≤ , or m m m ii
L

i i
L≤ ≤ ∀, .

• System effectiveness constraints. In a similar fashion to the MOP constraints,

there is generally a minimum threshold for each system’s measure of

effectiveness (MOE). This can be generated through a technical performance

 24

analysis or (more likely) because the existing component system performs at

the threshold level and it is desired to meet or exceed that level. Therefore,

the threshold MOE for each system, Si , is: ()E E ii i
L

n i
* * *f , , , , .= ≤ ∀m p p1 l

When trying to minimize cost subject to performance constraints, there should

be a minimum overall system of systems MOE constraint as well: E EL ≤ .

• Cost constraints. When applicable, there can be cost constraints on individual

systems as well as the full system of systems: C CU≤ and c c≤ U . Implicitly,

c is also bounded below due to the presence of minimum performance

thresholds as discussed above. Hence, we have: c c c* ≤ ≤ U . For the

purposes of this study, we will take the system of systems viewpoint, and

consider only the cost constraint at the macro level, C CU≤ .

• Secondary MOE as quality constraint. As will be illustrated by the MCM

example in Chapter 5, it may be necessary to specify a secondary overall MOE

for the system of systems which will act as a quality constraint. This can be

necessary in the case where the overall MOE is time to complete the system of

systems functionality. To ensure that the function is completed to a minimum

performance threshold it is necessary to add the secondary MOE as a quality

constraint: q , q T()m p , , p1 nl ≥ .

 Definition of system of systems upgrade options is accomplished through control

of the constraint set. For example, if only certain component systems are candidates for

upgrades (sometimes referred to as “advanced technology insertion”), then their

parameters can be constrained to current values—in this manner, the analysis retains full

 25

consideration of their influence on the overall system of systems while still investigating

upgrade options and their effects on the stable system components as well. The option of

replacing some number of existing component systems with advanced systems of the

same type while retaining some of the existing systems can be expressed by fixing mi and

defining a new system, Si+1, of essentially the same type but with its MOPs and cost

allowed to be variable.

 There are two general cases of interest in when considering upgrading (or

designing) an existing system of systems, summarized below:

Case 1: Maximize { }S S Sn= 1 , ,� system of systems performance subject to force level,

technology, cost, and performance threshold constraints:

Max () ()E E En n= =g , , , G , , ,m m p p1 1l l where ()Ei i n= f , , ,m p p1 l , subject to:

m m mUL ≤ ≤

p p pi
L

i i
U≤ ≤ and E E ii i

* ,≤ ∀ where ()Ei i
L

n
* * *f , , , .= m p p1 �

C CU≤ and c c≤ U

[()q qTm p p, , ,1 � n ≥ , potential secondary MOE performance threshold function

constraint]

 26

Case 2: Minimize { }S S Sn= 1 , ,� system of systems cost subject to performance, force

level, technology, and individual systems cost constraints:

Min C T= mc , subject to:

E EL ≤ where () ()E E En n= =g , , , G , , ,m m p p1 1l l and ()Ei i n= f , , ,m p p1 l ,

m m mUL ≤ ≤

p p pi
L

i i
U≤ ≤ and E E ii i

* ,≤ ∀ where ()Ei i
L

n
* * *f , , , .= m p p1 l

[()q qTm p p, , ,1 l n ≥ , potential secondary MOE performance threshold function

constraint]

When addressing the system of systems upgrade from the CAIV perspective, we

would optimize a sequence of Case 1 problems formed by discretely parameterizing the

system of systems cost constraint. This is accomplised by defining a sequence of upper

cost bounds, C Ck
U = ⋅costfactork

* , where C* is the cost to produce the threshold system

of systems defined by the parameter set, { }m p pL
n, , ,* *

1 l .

 27

CHAPTER 5

MINE COUNTERMEASURES SYTEM OF SYSTEMS PERFORMANCE MODEL

 This appendix describes a simplified, but realistic model of naval mine

countermeasures (MCM) operations and systems. This limited system of systems

consists of two systems: a minefield reconnaissance system and a separate, mine

neutralization system. The reconnaissance system first conducts a reconnaissance survey

of the entire suspected minefield area, attempting to detect, classify, and localize mine-

like objects. These contacts are then passed to the neutralization system, which must re-

acquire the contacts and neutralize each mine-like object, if necessary (that is, if the mine-

like object is indeed identified as an actual mine). System descriptions, functionality,

measures of effectiveness, measures of performance, and PBCM are provided in

sufficient detail to support system of system upgrade decisions and trade-off analyses.

Before formulating the system of system’s model as defined in Chapter 4, we first define

the following mine countermeasures analysis terminology:

α Desired MCM area clearance rate: at least 100α percent of the mines
 have been cleared.
A Reconnaissance system area coverage rate during detection pass (nm2/day)
dmines Average distance between mines (yards)
F0 Number of false targets contained in the MCM area, Sminefield
λ Minefield density (mines/nm2)
λft False target (non-mine minelike object) density (objects/nm2);
M0 Number of mines originally laid in the MCM area, Sminefield

P α Probability that the MCM area will be cleared to the desired minefield
clearance rate, α.

p Mine clearance probability: probability that a mine randomly placed in the
MCM area will be cleared.

Pc Probability of correctly classifying a detection as mine-like or nonmine-
like, at range Rc

 28

Pd Detection probability at range Rd
Pfa Detection false alarm rate, (false alarms/nm2)
PID Probability of correct ID; PID =1 assumed for military minefields
PL Localization (or re-acquisition) probability
Pn Neutralization probability; Pn =1 assumed for these operations
Rc Minelike object classification range (yards)
Rd Target detection range (yards)
Rr Range at which S2 has an 80% chance of re-acquiring S1’s detections
σ Standard deviation of minelike object localization error (yards)
Sminefield Area to be searched (nm2), referred to as the MCM area
Tc Time required to classify a mine (min)
Tclass Time required to classify all detections within Sminefield (hours)
Tcf Time required to classify a non-mine (min)
Tdetect Time required to complete detection pass through Sminefield (hours)
Tn Time spent neutralizing (prosecuting) a classified mine (min)
Tpf Time spent prosecuting a non-mine classified as a mine (min) or time

spent unsuccessfully attempting to re-acquire a correctly classified mine.
Vtransit Reconnaissance system speed during detection and transit (knots)
Vclass Reconnaissance system speed during classification operations (knots)

 The overarching MOE, E, for this MCM system of systems, S, is the time required

to achieve a specified MCM area clearance rate, α, with specified confidence level, β.

Knowing the form of E guides our performance model formulation for the component

systems, S1 and S2. For the purposes of this analysis, we assume there is only one system

of each type, therefore n=2 and { }m = 11, .

For the purposes of analysis, we will need to specify the mission scenario and

minefield that is to be cleared. The examples used in the analyses to follow will assume

an MCM area of 20 nm2, seeded with 100 mines, corresponding to Sminefield=20 and

M0=100. The mines are laid out in four rows of 25 each, with a 400 yard separation

between mines within each row, and 800 yards between the rows. Hence dmines=600

yards. Figure 2 illustrates a minefield layout with these characteristics.

 29

. .
 .
. .
 .

2nm

10nm

MCM Area

Figure 2: Minefield Layout and Area to be Searched/Cleared

S1: MCM Reconnaissance System

This system is used to survey a suspected minefield area, performing the typical

MCM minehunting functions of detection, classification, and localization. It is assumed

here that the area is completely covered first with a detection pass. Then, classification

(done at much reduced standoff range necessitated by the much higher frequency sensor)

of each detected object is attempted. Localization is done concurrently with detection and

classification, and therefore takes no additional time. In consideration of the overarching

system of systems measure of effectiveness, the MOE for S1 is then:

E

ft ft

1 =
= ⋅ =

Time (hours) to complete reconnaissance of area S
 given , and M where M S and F S .

minefield

0 0 minefield 0 minefieldλ λ λ λ, ,

The time to complete the detection pass over the area is simply:

 T 24 S 24 M
detect

minefield 0= ⋅ = ⋅
⋅A Aλ

.

Following the detection pass over the MCM area, the reconnaissance system will

its localized contacts and attempt to classify each contact as either mine-like or nonmine-

 30

like. (Later, the neutralization system will attempt to re-acquire and neutralize all

declared mine-like objects.) In order to calculate time to complete classification, we must

know how many detections are expected to be made, and of what type:

Dm = ⋅P Md 0 = Number of detected mines

Dfa = ⋅P Sfa minefield = Number of mine false alarms

Dft = ⋅P Fd 0 = Number of false targets detected

 To generate expressions for Tc and Tcf, we must assume a specific classification

concept of operations (CONOP). If we assume that S1 takes the shortest route between

contact locations and then executes a semi-circle of radius Rc about the contact location,

then an approximate expression for the time to classify is:

class

c

transit

mine
c V2000

R60
V2000

d60
T

⋅
⋅

+
⋅

⋅
=

π

 What about time spent attempting to classify a target which is in reality a false

alarm? Lets assume that the CONOP would be to execute a full circle about the contact

location in the event that the first classification pass was unsuccessful during the first

half-circle maneuver. The time required to travel to the contact and execute the full circle

is then:

transit

mine
c

class

c

transit

mine
fc

V2000
d60

T2

V2000
R260

V2000
d60

T

⋅
⋅

−=

⋅
⋅

+
⋅

⋅
=

π

As will be seen in the Performance Based Cost Model (PBCM) formulation later in this

chapter, this formulation for Tcf keeps it independent of cost drivers for the classification

sonar performance, which reduces the number of MOPs necessary in the optimization

 31

problem, as the terms d mine and Vtransit will be considered as fixed for the scenario. The

time (hours) required to classify all detections is then:

()[]

()







+









⋅
−









⋅
−−+=

++−+

0dminefieldfa
transit

mine
c0d

transit

mine
cc0dcc

cfcfcccclass

FPSP
V2000

d
T2+MP

V2000
d

T2)P1(MPTP
60
1

TT)P1(TP
60
1=T ftfamm DDDD

and we can now formulate the system measure of effectiveness:

()[]E1
1

60
1=

⋅
⋅

+ + − +
24 M P T P M P T P M + T P S P F0

c c d 0 c cf d 0 cf fa minefield d 0λ A
()










⋅
⋅

−=
transit

mine
ccf V2000

d60
T2T where .

Under the assumptions stated above, we can now list the minimum set of

measures of performance that are necessary to formulate an expression for E1 as well as

describe performance parameters necessary to formulate E2.

{ }p1 1 1 1 5= p p, ,, ,� , hence r1 =5.

p1 1, = A =
2 R V

2000
d⋅ ⋅

 [This expression represents a two-sided detection sonar. A

typical approximation is that for a particular
sonar/target/environment set, Rd is determined by fixing Pd and
Vtransit. For the PBCM and analysis, we assume Pd=0.90 and
Vtransit=7 knots.]

p1 2, P= c [For this analysis, the sidescan sonar’s Pc is determined at fixed

classification range, in this case, we set Rc=70 yards.]

p1 3, P= fa

p1 4, = Tc

 32

p1 5, =σ [The localization accuracy is a critical parameter for re-
acquisition, a major function of S2. As a simplification, we have
chosen to neglect its effect on S1’s re-acquisition during the
classification pass, because the re-acquisition would be done
with the identical sensor suite that performed the initial
detections.]

 Therefore, the final form of the MOE for S1 as a function of the MOP vector is:

() ()[]

()[]

() ()()[]











++−−+⋅+=

+−++
⋅

=

+−++
⋅
⋅=

ft

ft

ppppp
p

E

λλλ

λλλ

λ

d3,1d2,1transit4,1d4,12,1
1,1

minefield

minefielddminefieldfacfminefielddcfcminefielddcc
minefield

0dminefieldfacf0dcfc0dcc
0

11

PP1T2P
60
124S

SPSPT+SPT)P1(SPTP
60
1

A
S24

FPSPT+MPT)P1(MPTP
60
1

A
M24p

where T
d

Vtransit
mine

transit
=

⋅










2000
.

Note that this MOE does not reflect the quality to which the reconnaissance is

accomplished, only how long it takes. If we were considering the effectiveness of the

stand-alone reconnaissance system, then we would want to have E1 reflect the other

MOPs as well, in order to effect a measure of “minefield characterization”.

Reconnaissance survey quality will be reflected in E2, via expressions that utilize all the

elements of p1 that affect initialization of the neutralization function provided by S2.

Additionally, a minimum threshold quality constraint at the system of systems level will

also be imposed.

 33

S2: MCM Neutralization System

 The MCM neutralization system attempts to re-locate, identify, and neutralize all

minelike objects detected and classified as such by the reconnaissance system. For the

purposes of this analysis, the effects of identification and subsequent neutralization are

ignored, and we will focus on re-acquisition of all minelike objects passed to S2 from S1

as contacts. In consideration of the overarching system of systems measure of

effectiveness, the MOE for S2 is:

E2 = Time (hours) to complete neutralization and neutralization attempts on all

contacts/objects classified as mine-like by the reconnaissance system, S1.

 Clearly, E2 will depend upon how many objects of what type are detected and

subsequently classified as minelike objects by S1. Since the neutralization system will

attempt to neutralize all declared mine-like objects, it is important to know how many

such objects are expected. The following describes the expected results of the combined

detection and classification activities of S1:

C Dm m= ⋅ = ⋅ ⋅P P P Mc d c 0 Number of mines correctly classified as mine-like

() ()
() ()

C D Df fa ft= + ⋅ −

= ⋅ + ⋅ ⋅ −

1

1

P

P S P F P

c

fa minefield d 0 c

 Number of non-mines incorrectly classified as

mine-like

E2 can now be formulated using the following measures of performance:

 34

{ }p2 2 1 2 3= p p, ,, ,� , hence r2 =3.

p2 1, = R r , the contact localization error standoff which yields an 80% probability of re-
acquisition.

p2 2, = Tpf

p2 3, = Tn .

We model the probability of re-acquisition (a.k.a. localization) as: P e eL
. .

,

,= =
− −σ

4 481 4 481
1 5

2 1Rr

p
p ,

which yields PL=0.80 when R r = σ . This model assumes an exponential decay

depending upon localization accuracy, an S1 MOP, and re-acquisition capability of the

neutralization system, an MOP for S2. Dependence of PL on Rr is illustrated in Figure 3.

Also indicated is the feasibility region generated by the upper and lower bounds for Rr,

which correspond to technology and threshold system limitations presented in this

chapter’s PBCM section.

 35

0 100 200 300 400 500 600 700 800
0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Re-Acquisition Range(yards)

P
ro

b(
lo

ca
liz

at
io

n)

Figure 3 Probability of Localization as a Function of Re-Acquisition Range

Therefore,

E2 = {time to successfully re-acquire and neutralize minelike objects}

 + {time spent in unsuccessful attempts to re-acquire MLOs}

 + {time spent prosecuting non-minelike objects classified incorrectly)

Curves correspond to:
σ=42, 48, 60, and 90
yards, top to bottom.

Lower bound
Upper bound

 36

()
()[]

() ()()[]

()()













+−+














−+=

+−+−+=

+−+=

=

−−

2,2d3,12,12,22,1d
481.4481.4

3,22,1d
minefield

2,20dminefield3,12,12,202,1dL3,202,1dL

pfpfLnL

2122

P1Pe1eP
60

S

FPS1MPP1MPP
60
1

TTP1TP
60
1

,f

1,2

5,1

1,2

5,1

ppppppp

ppppppp

CCC

E

ft
p

p
p

p

fmm

λλλ

pp

S: MCM Clearance System of Systems

 For the full system of systems, the overarching MOE is then simply the total time

to complete clearance operations:

E E E= = +G(, ,)m p p1 2 1 2

However, an overall performance or quality constraint must be imposed on the clearance

operations, otherwise the optimization will find a very fast yet ineffective system of

systems. Specifically, this constraint specifies an MCM area clearance rate, α, with an

associated confidence level, β. This should actually be considered as a secondary quality

MOE that has a threshold requirement. Recall that p is to be the probability that a

particular mine will be cleared. It is clear that:

 p p
p

p= =
−

P P P Pd c L d 1 2
4 481

1 5

2 1
,

.e
,

,

and the expected number of mines successfully cleared is pM0.

Then the probability that the number of cleared mines, Mc, is at least αM0, is

called the clearance confidence level, Pα, and binomially distributed as follows:

 37

() ()()P M Mc 0α
α

α= ≥ = − −

=
∑P C p pi

M i M i

i M

M
0 0

0

0

1

For large M0 this can be approximated with the normal distribution in accordance with

DeMoivre’s theorem as follows:

P
M M
M

M M
M

0 0

0

0 0

0
α

α α
≅ ≥

−
−









 = −

−
−









P

() ()
X

p
p p

p
p p1

1
1

Φ ,

where Φ is the cumulative probability function for X N~ (,)0 1 . This is intuitively clear,

for in the case where p=α=0.95, Pα=0.5, indicating that we would then have a 50-50

chance of clearing 95% of the mines. Pα rapidly rises as a decreases. For example, with

α=0.90, p=0.95, and M0=100, then P.90=0.971. Figure 4 illustrates the behavior of Pα for

a selection of values for p.

 The threshold performance constraint at the system of systems level is then:

Pα β≥ , or 1
1

−
−

−









 ≥Φ

α βM M
M

0 0

0

p
p p()

.

Unfortunately, this added constraint at the system of systems level is nonlinear, affecting

our choice of optimization algorithms (see Chapter 6). As an illustration with realistic

values, choose α=0.90, M0=100, and β=0.95. In other words, with 100 mines present, we

want to be at least 95% confident that at least 90 mines will be cleared:

0 95 1
90 100

1
.

()
≤ −

−
−









Φ

p
p p100

.

Then, Φ
90 100

1
0 05

−
−









 ≥

p
p p100 ()

. , or
90 100

1
165

−
−









 ≤ −

p
p p100 ()

. . This implies that

 38

p ≥ 0 9394. , or p p
p

p= = ≥
−

P P P Pd c L d 1 3
4 481

1 5

2 1 0 9394,
.e .

,

, . Unfortunately, looking ahead to

the PBCM, the system MOPs under consideration will not support this level of

performance (recall that Pd will be fixed at 0.90). Relaxation of this constraint consistent

with α=0.80, M0=100, and β=0.90 will yield a constraint that p ≥ 0 846. . Therefore, with

with 100 mines present, we will be satisfied to be at least 90% confident that at least 80

mines will be cleared. The practical constraint we will use is therefore:

q(P P P Pd c L dp ,p1 2) e .,
.

,

,= = = ≥
−

p p
p

p
1 2

4 481
1 5

2 1 0846

 Figure 5 is a parameter dependency diagram (PDD) of the full system of systems.

The PDD illustrates the interdependence of the two systems’ parameters and how they

map to the overall system of systems. Also illustrated is the dependence of the secondary

quality MOE that constitutes a constraint on overall system of systems performance.

 39

0.75 0.8 0.85 0.9 0.95 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Clearance Rate Confidence Level

Clearance Rate, alpha

C
on

f.
Le

ve
l f

or
 .8

0,
 .8

5,
 .9

0,
 .9

5
S

in
gl

e
M

in
e

C
ln

ce
 P

ro
b,

 p

Figure 4: Clearance Confidence Level as a Function of Required Clearance Rate

p=0.8

p=0.85

p=0.9

p=0.95

Feasible Region

 40

A

λ
Tdetect

E1

E2

E

TclassTc

Tcf

M0

Pfa

Dfa

Dft

Pd

Sminefield

λft

Dm•

•

• •

•

•

•

•

Pc

•

•
Cm

Cf

Tn

Tpf

PL

Pα>β

Dfa = no. of mine false alarms
Dft = no. false targets detected
Dm = no. of mines detected
Cf = no. of non-mines incorrectly
 classified as mine-like
Cm = no. of mines correctly
 classified as mine-like

S1: Reconnaissance System

S2: Neutralization
 System

S: Clearance
System of Systems

Quality Constraint on S

Pc

σ

Rr

Figure 5: Mine Clearance System of Systems Parameter Dependency Diagram
α Desired MCM area clearance rate: at least 100α percent of the mines have been cleared.
A Reconnaissance system area coverage rate during detection pass (nm2/day)
dmines Average distance between mines (yards)
F0 Number of false targets contained in the MCM area, Sminefield
λ Minefield density (mines/nm2)
λft False target (non-mine minelike object) density (objects/nm2);
M0 Number of mines originally laid in the MCM area, Sminefield
P α Probability that the MCM area will be cleared to the desired minefield clearance rate, α.
p Mine clearance probability; i.e., probability that a mine in the MCM area will be cleared.
Pc Probability of correctly classifying a detection as mine-like or nonmine-like, at range Rc
Pd Detection probability at range Rd
Pfa Detection false alarm rate, (false alarms/nm2)
PID Probability of correct ID; PID =1 assumed for military minefields
PL Localization (or re-acquisition) probability
Pn Neutralization probability; Pn =1 assumed for these operations
Rc Minelike object classification range (yards)
Rd Target detection range (yards)
Rr Range at which S2 has an 80% chance of re-acquiring S1’s detections
σ Standard deviation of minelike object localization error (yards)
Sminefield Area to be searched (nm2), referred to as the MCM area
Tc Time required to classify a mine (min)
Tclass Time required to classify all detections within the search area, Sminefield (hours)
Tcf Time required to classify a non-mine (min)
Tdetect Time required to complete detection pass through search area, Sminefield (hours)
Tn Time spent neutralizing (prosecuting) a classified mine (min)
Tpf Time spent unsuccessfully attempting to re-acquire a detection (min)
Vtransit Reconnaissance system speed during detection and transit (knots)
Vclass Reconnaissance system speed during classification operations (knots)

 41

Performance Based Cost Model (PBCM) and Parameter Bounds

The reconnaissance system performance ranges and cost modeling are derived

from design considerations for the U.S. Navy’s Long-Term Mine Reconnaissance System

(LMRS), a submarine-based autonomous undersea vehicle (UUV)18. The neutralization

system performance ranges and cost models are based upon a combination of LMRS

factors, certain U.S. Navy operational MCM systems, and commercial off-the-shelf

(COTS) information regarding marine navigation systems. Due to classification and data

availability issues, considerable license has been taken in developing the PBCM, with the

primary intent to provide sufficient complexity and realism to show feasibility of the

methodology.

 MOPs developed earlier in this chapter are now grouped by the major sub-system

to which they act as major cost drivers. The PBCM provides an approximation of

subsystem cost as a function of those primary subsystem MOPs. Moreover, since this

type of MCM system would be produced in very small numbers, only developmental

costs are considered, neglecting the full system life cycle costs. Commercial off-the-shelf

(COTS) or non-developmental item (NDI) technologies are also assumed so that

developmental costs approximate R&D and production costs combined. The subsystem

and associated MOPs are as illustrated in Figure 6. Costs are then added together to get

total cost. The cost constraint indicated in Figure 15 is parameterized by “costfactor”

which is a factor on the threshold system costs indicating the maximum amount the

18 Benedict. J. R., (1996). Final Report: Long-Term Mine Reconnaissance System (LMRS) Cost and

Operational Effectiveness Analysis (COEA), Johns Hopkins University Applied Physics Laboratory
Report NWA-96-009, September 1996.

 42

decisionmaker is willing to consider spending. In this way, we will consider a series of

optimization problems that will provide insight from the CAIV perspective.

Mine Clearance System MOE/MOP Structure

A1. Detection Sonar
A=area coverage rate

A2. Classification Sonar
Pc=Prob(classification)

A. Sensors

D. Navigation
σ=Localization accuracy

C. Vehicle
Tc=Time to classify

B. Software
Pfa=False alarm rate

S1: Reconnaissance System
E1=Time to complete reconnaissance

G. Neutralize
Tn=Time to neutralize

F. Vehicle
Tpf=Time to prosecute

false target

E. Sensors
Rr=Target re-acq range

S2: Clearance System
E2=Time to complete neutralization

S: Mine Clearance System of Systems
E=E1+E2=Time to clear minefield

Figure 6 Mine Clearance System of Systems MOE/MOP Structure

 43

A. System S1: Sensors

 There are two sonars in the sensor subsystem: detection and classification sonars.

A1. Detection Sonar

 Critical parameters for search sonars are probability of detection, range, maximum

vehicle speed at which the sonars can remain effective due to flow noise. They are of

course sensitive to several environmental parameters as well as assumed target

characteristics. The approach here is to assume one environment, fix Pd at 0.90, speed at

7 knots, and utilize the modeled results in Benedict18 to derive the following PBCM for

the overall MOP, area coverage rate, A (nm2/day). The following table represents the

PBCM:

A (nm2/day) 10 57 82 94

Cost ($M) 3 4.483 7.655 11.445

The following routine fits a third order polynomial to the data, and will form the cost

model:

% PBCM for A1, Search Sonars
x=[10,57,82,94]
y=[3,4.483,7.655,11.445]
p=polyfit(x,y,3)
x2=10:.1:100;
y2=polyval(p,x2);
plot(x,y,'o',x2,y2)
xlabel('Area Coverage Rate (nm^2/day)')
ylabel('Cost ($M)')

» a1cost
x = 10 57 82 94
y = 3 4.483 7.655 11.445
p = 4.5034e-005 -0.0053861 0.21593 1.3342

 44

Therefore, p p pL U
1 1 1 1 1 1100, 10, , ,

*= 10, = = , and

()h (, , , , ,1 1 1 1 1 1 1 1 1 1p p p p= 4.5034e - 005) - 0.0053861 + 0.21593 + 1.33423 2 .

10 20 30 40 50 60 70 80 90 100
2

4

6

8

10

12

14

16

Area Coverage Rate (nm2/day)

C
os

t (
$M

)

Figure 7: PBCM for Area Coverage Rate

A2. Classification Sonar

 The cost driving critical parameter for sidescan classification search sonars is its

probability of classification at a given range, in this case chosen to be 70 yards. Again,

vehicle speed (flow noise), environmental parameters, and assumed target characteristics

are essential to making effective Pc predictions. The approach here is to assume one

environment, the required classification range (important because of vehicle vulnerability

to the mines), adequate vehicle control or motion compensation, and utilize the modeled

results from Benedict18. While some detection sonars may be considered as non-

developmental items (NDI), many sidescan classification sonars are now truly COTS,

 45

which have substantially lower cost. Vehicle integration costs are considered in that

“subsystem”. The following table represents the PBCM:

Pc at 70 yards 0.9 0.93 0.96 0.98

Cost ($M) 0.2 0.5 1.4 2.2

The following routine fits a second order polynomial to the data, and will form the cost
model:

% PBCM for A2, Classify Sonars
figure
x=[0.9,0.93,0.96,0.98]
y=[.2,.5,1.4,2.2]
p=polyfit(x,y,2)
x2=0.9:.01:1.0;
y2=polyval(p,x2);
plot(x,y,'o',x2,y2)
xlabel('Classification Probability')
ylabel('Cost ($M)')

» a2cost
x = 0.9000 0.9300 0.9600 0.9800
y = 0.2000 0.5000 1.4000 2.2000
p = 283.4646 -507.6378 227.4598

Therefore, p p pL U
1 2 1 2 1 2 0 9, , ,

* .= 0.9, = 0.98, = , and

()h , , , ,1 2 1 2 1 2 1 2p p p= 283.4646 - 507.63784 + 227.45982 .

 46

0.9 0.92 0.94 0.96 0.98 1
0

0.5

1

1.5

2

2.5

3

3.5

Classification Probability

C
os

t (
$M

)

Figure 8: PBCM for Classification Probability

B. System S1: Software

 Modern MCM sonar systems are incorporating Computer-Aided Detection and

Computer-Aided Classification (CAD/CAC) processors in order to keep false alarm rates

low while maintaining high probability of detection/classification. Consequently,

requirements on false alarm rates are the cost driver on the software subsystem. The

following table represents the PBCM:

Pfa (#false alarms/nm2) 2.0 1.0 0.5 0.25

Cost ($M) 8.0 10.319 13.592 16.429

The following routine fits a third order polynomial to the data, and will form the cost
model:

% PBCM for B, Software in support of FAR, or CAD/CAC.
x=[2,1,0.5,0.25]
y=[8,10.319,13.592,16.429]
p=polyfit(x,y,3)
x2=0.0:0.01:2;
y2=polyval(p,x2);

 47

plot(x,y,'o',x2,y2)
xlabel('False Alarm Rate (#/nm^2)')
ylabel('Cost ($M)')

» bcost
x = 2 1 0.5 0.25
y = 8 10.319 13.592 16.429
p = -2.0484 9.9873 -17.942 20.322

Therefore, p p pL U
1 3 1 3 1 32 2 0, , ,

* .= 0.25, = .0, = , and

()h ., , , , ,1 3 1 3 1 3 1 3 1 32 0484p p p p= − + 9.9873 - 17.942 + 20.3223 2 .

0 0.5 1 1.5 2
6

8

10

12

14

16

18

20

22

False Alarm Rate (#/nm2)

C
os

t (
$M

)

Figure 9: PBCM for False Alarm Rate

C. System S1: Vehicle (Propulsion, Energy, Quieting, Margin, Integration)

 As mentioned earlier in this Chapter, to generate expressions for Tc and Tcf, we

must assume a specific classification CONOP. If we assume that S1 takes the shortest

route between contact locations and then executes a semi-circle of radius Rc about the

contact location in an attempt to image the target, then an approximate expression for the

time to classify is:

 48

class

c

transit

mine
c V2000

R60
V2000

d60
T

⋅
⋅

+
⋅

⋅
=

π
 .

The time to classify is therefore a direct function of the maximum speed at which the

vehicle can conduct the classification maneuver while holding the platform steady and

quiet. We are assuming that this is a cost driver for a combination of subsystems, to

include propulsion, quieting, margin, and integration; all of which we have cost

estimates. With the nominal parameters as mentioned above, the following table

represents the discrete data points from which the PBCM is derived, as a function of

classification speed:

Vclass (knots) 1 3 5 7

Tc (minutes) 9.17 4.77 389 3.513

Cost ($M) 5.0 7.574 8.190 9.191

The following MATLAB code fits a second order polynomial to the data points for use
in the cost constraints.

% PBCM for C, Vehicle in support of time to classify.
x=[3.513,3.89,4.77,9.17]
y=[9.191,8.190,7.574,5.0]
p=polyfit(x,y,2)
x2=3.0:0.1:9.5;
y2=polyval(p,x2);
plot(x,y,'o',x2,y2)
xlabel('Time to Classify (min)')
ylabel('Cost ($M)')

» ccost
x = 3.513 3.89 4.77 9.17
y = 9.191 8.19 7.574 5
p = 0.11597 -2.1757 15.20.

Therefore, p p pL U

1 4 1 4 1 4
9 17

, , ,

* .= 3.0, = 9.17, = , and

()h , , , ,1 4 1 4 1 4 1 4p p p= 0.11597 - 2.1757 + 15.2042 .

 49

3 4 5 6 7 8 9 10
4

5

6

7

8

9

10

Time to Classify (min)

C
os

t (
$M

)

Figure 10: PBCM for Time to Classify

D. System S1: Navigation

 Maritime navigation systems are now truly COTS, and therefore low cost relative

to other subsystems (note that costs are in $K, not $M). It is also difficult to sort out

competing claims of accuracy, as performance is closely related to the CONOPS.

Typical non-GPS, underwater maritime systems utilize an inertial navigation system

augmented with a Doppler sonar velocity log (DSVL). The DSVL performance

dominates over the long term, and needs to be updated periodically with a higher

quality source, such as GPS. To obtain sufficiently high accuracy to enable re-

acquisition of targets, we select a 30 nm run between GPS updates. The following

table lists DSVL performance in terms of percent of distance traveled, derived one-

sigma geodetic accuracy, and system costs19:

19 Brokloff, N.A., maritime navigation systems specialist. Personal communication, June 1997.

 50

Percent of Distance
Traveled

0.15 0.1 0.08 0.07

σ (yards) 90 60 48 42

Cost ($K) 50 250 450 500

 The following routine fits a second-order polynomial to the PBCM data above:

% PBCM for D, Navigation subsystem in support of localization accuracy.
x=[90,60,48,42]
y=[0.050,0.250,0.450,0.550]
p=polyfit(x,y,2)
x2=40:1:90;
y2=polyval(p,x2);
plot(x,y,'o',x2,y2)
xlabel('One sigma accuracy (yards)')
ylabel('Cost ($M)')

» dcost
x = 90 60 48 42
y = 0.05 0.25 0.45 0.55
p = 0.00020618 -0.03776 1.7778

Therefore, p p pL U
1 5 1 5 1 590, 90, , ,

*= 42, = = , and

()h (., , , ,1 5 1 5 1 5 1 52 0618p p p= e - 004) - 0.03776 + 1.77782 .

 51

40 50 60 70 80 90
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

One sigma accuracy (yards)

C
os

t (
$M

)

Figure 11: PBCM for Navigation Accuracy

E. System S2: Sensors/Sonars

 The neutralization system returns to the site localized by the reconnaissance

system and attempts to re-acquire the target for neutralization activities. Depending on

the quality of the localization activity, we should be able to get away with a much less

expensive sonar than the long-range detection sonar used for reconnaissance to enhance

the coverage rate. As in the case of navigation systems, these medium-performance

sonars are available as NDI or COTS. One way to express the cost driving parameter is

the range at which a reasonably high probability of re-acquiring the target can be assured,

say 80%. Earlier in this chapter, a model for the interrelationship of localization

accuracy, re-acquisition range, and probability of re-acquiring (localization) was

developed under the assumption that the closer S2 can be directed to the target location,

 52

the higher the resultant probability of reacquisition. Utilizing data from Benedict, the

following PBCM data points are derived:

Rr (yards) 75 129 457 622

Cost ($M) 1.5 3.0 4.8 7.655

The following routine fits a third order polynomial to the data, and will form the cost
model:

% PBCM for E, Ahead looking sonar for re-acquisition
x=[129,457,622,75]
y=[3,4.8,7.655,1.5]
p=polyfit(x,y,3)
x2=75:5:675;
y2=polyval(p,x2);
plot(x,y,'o',x2,y2)
xlabel('Re-Acquisition Range (yards)')
ylabel('Cost ($M)')

» ecost
x = 129 457 622 75
y = 3 4.8 7.655 1.5
p = 1.5049e-007 -0.00015782 0.055167 -1.8133

Therefore, p p pL U
2 1 2 1 2 1700, 75, , ,

*= 75, = = , and

()h (., , , , ,2 1 2 1 2 1 2 1 2 115049p p p p= e - 007) - (1.5782e - 004) + 0.055167 -1.81333 2 .

 53

0 100 200 300 400 500 600 700
1

2

3

4

5

6

7

8

9

10

Re-Acquisition Range (yards)

C
os

t (
$M

)

Figure 12: PBCM for Re-Acquisition Range

F. System S2: Vehicle (Propulsion, Energy, Quieting, Margin, Integration)

As in the PBCM for classification time for system S1, Tpf (time to prosecute a false

target) is the cost driver for vehicle maneuverability required to cover the area around the

localized false target holding the vehicle steady while providing the re-acquisition sonar

multiple aspect angles on the target in order to confidently make a false target call. The

CONOP we choose for this is to make a full circle of radius 70 yards about the indicated

(from S1) location, if the usual direct approach re-acquisition attempt is unsuccessful.

This CONOP and associate PBCM has two important implications for how we view Tpf

and subsequently, Tn.

• It ignores S2 transit time to the target’s designated location. This will be the

same for all contacts provided by S1 and shorter transit times would be a

byproduct of improvements made to vehicle maneuverability driven by Tpf.

 54

• It also ignores the true dependence of Tpf and Tn on the S1 localization

accuracy, σ. We have chosen to look at σ’s direct effect on probability of

localization, PL only. Although this could be modeled in a more sophisticated

simulation, it would be an equivalent bias on all three major additive terms of

E2, and therefore can be neglected for this analysis. Hence our formulation of

Tpf and Tn are just the additional time it would take to make a non-contact call

or neutralize the target, over and above the time required for nominal re-

acquisition.

The following table lists vehicle costs as driven by false target prosecution

performance:

Speed during
maneuver

2 3 4 5 10

Τpf (min) 6.6 4.4 3.3 2.64 1.32

Cost ($M) 5.0 7.5 8.19 9.191 16.621

 The following routine fits a third-order polynomial to the PBCM data above:

% PBCM for F, Vehicle in support of time required to verify a false
target
x=[6.6,4.4,3.3,2.64,1.32]
y=[5.0,7.5,8.190,9.191,16.621]
p=polyfit(x,y,3)
x2=1.0:0.1:7;
y2=polyval(p,x2);
plot(x,y,'o',x2,y2)
xlabel('Time to Prosecute False Target(min)')
ylabel('Cost ($M)')

» fcost
x = 6.6 4.4 3.3 2.64 1.32
y = 5 7.5 8.19 9.191 16.621
p = -0.28504 3.8462 -17.264 33.344

 55

Therefore, p p pL U
2 2 2 2 2 2, , ,

*= 1.0, = 7.0, = 6.6 , and

()h , , , , ,2 2 2 2 2 2 2 2 2 2p p p p= - 0.28504 + 3.8462 - 17.264 + 33.3443 2 .

1 2 3 4 5 6 7
2

4

6

8

10

12

14

16

18

20

Time to Prosecute False Target(min)

C
os

t (
$M

)

Figure 13: PBCM for Time to Prosecute False Target

G. System S2: Neutralization

The neutralization threshold system performance and costs are patterned after the

U.S. Navy’s Mine Neutralization System (AN/SLQ-48) in which integrates a sonar,

optical, and bomblet subsystems to re-acquire, identify, and neutralize targets passed to it

from other systems. Although it takes time to launch, acquire, ID/neutralize, and recover

this remotely operated vehicle, the ID/neutralize phase takes approximately 10 minutes.

Unit cost for the AN/SLQ-48, which has been in production for some time, is down to

approximately $500K. Assuming that the cost driver for the AN/SLQ-48 (which used

NDI sonars/optics) was the neutralization component, and using a 10:1 rule of thumb for

 56

developmental vs. production costs, the threshold system development cost for a system

was estimated as shown in the following table:

Tn (min) 10 8 7 5 3

Cost ($M) 5.3 6.0 7.0 10.0 15.0

 The following routine fits a second-order polynomial to the PBCM data above:

% PBCM for G, Neutralization subsystem
x=[10,8,7,5,3]
y=[5.3,6,7,10,15]
p=polyfit(x,y,2)
x2=3.0:0.1:10;
y2=polyval(p,x2);
plot(x,y,'o',x2,y2)
xlabel('Time to Neutralize (min)')
ylabel('Cost ($M)')

» gcost
x = 10 8 7 5 3
y = 5.3 6 7 10 15
p = 0.21024 -4.1096 25.397

Therefore, p p pL U

2 3 2 3 2 310.0, 10.0, , ,
*= 3.0, = = , and

()h , , , ,2 3 2 3 2 3 2 3p p p= 0.21024 - 4.1096 + 25.3972 .

 57

3 4 5 6 7 8 9 10
5

6

7

8

9

10

11

12

13

14

15

Time to Neutralize (min)

C
os

t (
$M

)

Figure 14: PBCM for Time to Neutralize

 58

MCM System of Systems Model Summary

Maximize { }S S Sn= 1 , ,� system of systems performance (minimize time) subject to
technology, cost, and performance threshold constraints:

Minimize:

() () ()

() ()()

()()













+−+














−++












++−−+⋅+⋅=

+=

−−

2,2d3,12,12,22,1d
481.4481.4

3,22,1d
minefield

d3,1d2,1transit4,1d4,12,1
1,1

minefield

2121121

P1Pe1eP
60

S

PP1T2P6024
60

S

,,

1,2

5,1

1,2

5,1

ppppppp

ppppp
p

EEE

ft
p

p
p

p

ft

λλλ

λλλ

ppppp

 subject to:

() ()3 0 9 0 25 30 42 100 0 98 2 0 917 901, . , . , . , , . , . , . ,T T≤ ≤p , () ()75 10 30 700 7 0 10 02, . , . , . , .T T≤ ≤p

*costfactor),(21 CCC U ⋅=≤pp and 0.846q),q(T11 =≥pp

where:

25.397+ 4.1096 -0.21024 +

33.344+ 17.264 -3.8462 + -0.28504+

1.8133- 0.055167 +004)-(1.5782e - 007)-e5049.1(+

1.7778+ 0.03776 -004)-e0618.2(+

15.204+ 2.1757 -0.11597+

20.322+ 17.942 -9.9873 + 0484.2

227.4598+507.63784 -283.4646+

1.3342+ 0.21593 +0.0053861 - 005)-4.5034e(),(

3,2
2

3,2

2,2
2

2,2
3

2,2

1,2
2

1,2
3

1,2

5,1
2

5,1

4,1
2

4,1

3,1
2

3,1
3

3,1

2,1
2

2,1

1,1
2

1,1
3

1,121

pp

ppp

ppp

pp

pp

ppp

pp

pppC

−

=pp

C*=threshold system cost=28.066

q(P P P P1 1 d c L dp p,) e,
.

,

,= = =
−

p p
p

p
1 2

4 481
1 5

2 1

Figure 15 Summary of MCM System of Systems Optimization Problem

 59

CHAPTER 6

OPTIMIZATION APPROACH

In this chapter, we investigate some alternative optimization methods that will be

applicable to the MCM system of systems upgrade problem formulated in Chapter 5, and

reformulate the general system of systems performance model (Chapter 4) to take

advantage of the most promising approach.

Applicable Methods

Referring to the discussion in Chapter 4, the general system of systems upgrade

optimization problem takes the following form:

Max ()E E E Gn= =g , , , ()m m p , ,p1 n1 � �, where ()Ei i n= f , , ,m p p1 l ,

and subject to the following constraints:

 number of

inequalities:

0 m m mU≤ ≤ ≤L n

0 p p p≤ ≤ ≤i
L

i i
U r

C CU≤ where 1

 ()ci i i= h p , { }c = c cn1 , ,l , and C T= mc .

[q(, , , ,) q Tm p p p1 2 nl ≥ , a potential secondary MOE threshold function constraint] 1

All quantities are real-valued, with the additional constraint that elements of n-vector m

are integers. Each pi has dimension ri and r ri
i

n

=
=
∑

1
.

 60

 For the purpose of this study, we will consider the case where there is only one of

each type of system in the system of systems. In this case, ()m = 1 1, ,l , and that m is to

remain fixed. We can then ignore the difficulty of having to solve for the integer-valued

vector, m, which would result in an integer programming problem. Then what we have is

a nonlinear, multi-dimensional optimization problem with a generally nonlinear

constraint set.

We first consider the case in which the objective function, G, can be evaluated

without error. Then, we can look to the deterministic domain of nonlinear programming

and utilize conventional search techniques to solve the particular problem.

 For the special case where all the constraints are linear, one of the most common

and effective nonlinear programming algorithms is known as the Davidon-Davies

method20 or the Davidon-Fletcher-Powell method with linear constraints21. The Davidon-

Davies method is a gradient search method that can handle linear equality and inequality

constraints. The method projects the current solution estimate along the path of steepest

descent until it intersects one (or more) hyperplanes formed by the inequality constraints.

Then that constraint is said to be active, it is added to the equality constraint set, and the

next iterate is restricted to move along the corresponding new intersecting hyperplane

surface until a convergence criterion for a minimum is achieved. Checks are also done at

each iteration to consider relaxing an equality constraint that has been established

prematurely.

20 Himmelblau, D.M., (1972). Applied Nonlinear Programming, McGraw-Hill, New York, pp. 261-266.
21 Walsh, G.R., (1975). Methods of Optimization, John Wiley & Sons, London, pp.155-161.

 61

Some fully general nonlinear programming algorithms restructure the problem or

locally linearize the nonlinear constraint set so that this method can be used as the core

search algorithm. For example, if there are a small number of nonlinear constraints, it is

feasible to augment the objective function with penalty functions (described in more

detail later in this chapter) to incorporate the active nonlinear constraints into the

objective function so that unconstrained or simple projection methods will then be

applicable. This is not generally done because it comes at a cost of ill-conditioning the

problem, which must be traded against the gain in algorithm simplicity.

 MATLAB is a widely used, sophisticated mathematical problem-solving

commercial software product that utilizes the method of sequential quadratic

programming (SQP)22 to solve the fully general nonlinear programming problem in which

both objective and constraint functions can be nonlinear. The particular routine is called

“CONSTR” and is contained in the “Optimization Toolbox”. Basically, the method

formulates a sequence of quadratic programming (QP) subproblems based on a quadratic

approximation of the Lagrangian function and by linearizing the nonlinear constraints

about the current iterate. The simpler QP subproblem (quadratic function with linear

constraints) is solved by using an active set projection method23 very similar to the

Davidon-Davies Method in order to provide a search direction for a line search procedure

that provides the next iterate. The original nonlinear function and constraint sets are then

approximated about the new iterate and the sequence is repeated until convergence

criteria are satisfied.

22 Gill, P.E., Murray, W., Wright, M.H., (1981). Practical Optimization, Academic Press, London, Chap. 6.
23 Ibid, Chapter 5.

 62

Appendix A contains specific MATLAB code necessary to solve the MCM

system of systems problem formulation and a simple illustrative problem, while results

are shown in Chapter 7. The user can call CONSTR with or without supplying an

explicit gradient function. Since our ultimate objective is to utilize a simulation for

function evaluations, we are interested in solving the problem without an explicit gradient

function. CONSTR will then approximate the gradient at each iteration at the expense of

more function evaluations. The most efficient classical gradient approximation is that of

forward differencing, an approximation that requires as many function evaluations as the

dimensionality, r, of the independent variable vector. To enhance search algorithm

convergence properties, it is generally advisable to switch over to a central difference

formula as the step size reduces near the solution24, but at the expense of requiring 2r

function evaluations per step.

 As mentioned above, obtaining a closed form, deterministic expression for the

system of systems’ MOE objective function is not always feasible. A growing number of

application areas rely on stochastic modeling and simulation to predict system of systems

performance under certain conditions of interest. Therefore, future practical

implementations of this approach for the system of systems upgrade problem will include

utilization of simulation to evaluate the objective function—an extension that will put a

premium on minimizing the search algorithm’s function evaluations. Simulation will

generally be of the Monte Carlo type, hence there will be random error associated with

24 Fletcher, R., (1981). Practical Methods of Optimization, John Wiley & Sons, Chichester, Scotland,

p.108.

 63

the function evaluation. The simulation then produces a corrupted realization of the

objective function of the form:

y G() ()p , , p p , , p1 n 1 n� �= +ω ,

where ω represents simulation noise. This stochastic nature of the function evaluations

puts us into the realm of stochastic optimization—to which classical optimization

methods are not directly applicable. Moreover, not only will the gradient of y be

unavailable explicitly, classical approximations of gradients become extremely costly to

compute since each function evaluation represents a simulation run. Until recently,

finite-difference-based gradient search stochastic approximation procedures that are

adaptations of deterministic algorithms have been most widely used for this type of

optimization. A major drawback of these methods is that the number of function

evaluations required at each step is linear in the dimension of the search parameter

vector.25 Since we envision eventually using large scale system of systems simulations

with tens of parameters, a much more efficient method is desirable. The recently

developed Simultaneous Perturbation Stochastic Approximation (SPSA) Method26 is the

most efficient estimator in this domain with respect to function evaluations per iteration,

and its first and second order versions have been adapted here for use in solving the

MCM system of systems problem described in Chapter 5. Since it will be the central

algorithm we use for stochastic optimization here, it is necessary to examine it in some

detail.

25 Glynn, P.W., (1989). “Optimization of Stochastic Systems via Simulation”, Proceedings of the 1989

Winter Simulation Conference, ed. E.A. MacNair, K.J. Musselman, P. Heidelberger, IEEE, Piscataway,
NJ, 90-105.

 64

Constrained Simultaneous Perturbation Stochastic Approximation (SPSA) Method

As described in Fu and Hill27, the first order SPSA method is a type of gradient

search method that requires only two function evaluations per iteration. The current

solution estimate is perturbed in all elements simultaneously in a sort of central difference

fashion rather than one component at a time which is generally done in order to estimate

the partial derivatives that comprise the gradient vector. Now, SPSA per se is an

unconstrained optimization algorithm, and very little work has yet to be done to extend it

to more commonly occurring constrained problems such as the system of systems

upgrade problem structure formulated here. But it has been shown28 that substituting the

SPSA-generated gradient estimate for the gradient estimate in a projection-based

constrained steepest descent algorithm results in convergence to a Kuhn-Tucker point—

meaning that SPSA can be used to enhance efficiency of such methods as the basic

Davidon-Davies method described above. Most of these methods “project” from the

current iterate along an estimate of the gradient until they intersect one or more constraint

surfaces, which are then “followed” (always reducing the objective function and updating

the active constraint set) until convergence criteria are satisfied.

26 Spall, J.C. (1992), "Multivariate Stochastic Approximation Using a Simultaneous Perturbation Gradient

Approximation," IEEE Transactions on Automatic Control, vol. 37, pp. 332-341.

27 Hill, S.D. and Fu, M.C., (1997). “Optimization of Discrete Event Systems via Simultaneous Perturbation

Stochastic Approximation”, Transactions of the Institute of Industrial Engineers, Special Issue on
Operations, Engineering, and Simulation, Vol. 29, Issue #3, pp.233-243.

28 Sadegh, P. (1997). “Constrained Optimization via Stochastic Approximation with a Simultaneous
Perturbation Gradient Approximation”, Automatica, vol. 33, 1997, pp. 889-892.

 65

Although Sadegh28 established the theoretical foundation for constrained SPSA,

he did not present a workable algorithm nor does he address convergence properties

relative to other first order approaches. One option for implementing a general

constrained SPSA algorithm is to modify a tried and true optimization code such as

MATLAB ’s implementation of the SQP method to embed the SPSA gradient and iterate

update equations. This was judged to be impractical for the scope of this dissertation due

to code complexity. There are a myriad of complex sub-algorithms necessary to ensure

robustness and wide applicability of commercial code. There are also significant issues

regarding determination of the active constraint set in the context of a stochastic

optimization domain. Indeed, practical implementations of constrained SPSA have been

limited to constraint sets of the simple bound type. SPSA has been used to optimize

some rather simple constrained problems utilizing discrete event simulations very

successfully27 and more significantly, a 168-dimensional air-traffic control flight delay

problem29. In order to discuss practical considerations any further, it is necessary to

explicitly consider the SPSA algorithm.

The following unconstrained SPSA algorithm description is adapted from its

author’s implementation guide.30 The adaptation utilizes the notation developed here for

the system of systems upgrade problem and facilitates sharing of code that invokes the

MATLAB CONSTR function mentioned above for efficiency comparison purposes on

the deterministic formulation developed in Chapter 5. Note that the method is also

29 Kleinman, N.L., Hill, S.D., and Ilenda, V.A., (1997). “SPSA/SIMMOD Optimization of Air Traffic

Delay Cost”, Transportation Science, to appear.
30 Spall, J.C., (1996). “Implementation of the Simultaneous Perturbation Algorithm for Stochastic

Optimization”, unpublished.

 66

applicable to the deterministic case in which ω=0. As with MATLAB , the SPSA

convention is to minimize the objective function, so that we seek to minimize

− G()p , , p1 n� . Hence we would define ω+−=)()(n1n1 p,,pp,,p �� Gy .

Let { }x p , , p1 n= � , the r-dimensional MOP vector for the full system of systems.

SPSA iteratively produces a sequence of estimates, > , > , > , ,x x x0 1 2 l where >x k will converge

to the optimum value as k gets large. Implementation steps for the algorithm are as

follows:

1. Initialization

a) Set counter index k=0.

b) Set initial estimate { }� , ,x p p0 = 1
L

n
L

� , the threshold system of system’s MOPs.

c) Choose the SPSA algorithm gain coefficients, a c A, , , ,α γ , in accordance with

guidance and experience25-28.

2. Generate k-th iteration’s simultaneous perturbation vector.

a) Generate the r-dimensional random vector, ∆ k , where each of the r components of

∆ k is generated from a Bernoulli ±1 distribution with probability 0.5 for each ±1

outcome.

3. Objective function evaluations during k-th iteration.

Obtain two measurements of the objective function, ()y x , as follows:

a) Let: ()c c kk = + −1 γ , ()a a A kk = + + −1 α

 x xk k k kc+ = +� ∆ , x xk k k kc− = −� ∆

 67

b) Evaluate the objective function twice, based upon the above simultaneous

perturbation about the current MOP iterate, <x k :

 ()y yk k
+ += x and ()y yk k

− −= x

4. Gradient approximation during the k-th iteration

Compute the simultaneous perturbation approximation to the r-dimensional gradient:

k k

k k

k k

k k

k kr

g () =

y - y
2 c

y - y
2 c

 ,� �x

+ −

+ −



























1∆

∆

� where ∆ ki is the i-th component of the ∆ k vector. This

gradient approximation contrasts with the component-by-component perturbation in

standard forward difference gradient approximations which result in r function

evaluations at each iteration.

5. Update the MOP iterate, �x k .

Utilizing the gain sequence and the gradient approximation, compute:

()� � � �x x xk k k ka g+
+ = −1 and ()y yk k+ +=1 1�x .

6. Continue or terminate the search.

Return to Step 2, replacing k with k+1 or terminate if one of the following termination

criteria are satisfied:

a) � �x xk k tolx+
+ − ≤1 , where xtol is the MOP convergence criterion

b) y y yk k tol+ − ≤1 , where ytol is the MOE convergence criterion

c) k+1=kmax, the maximum allowable number of iterations.

 68

 The above algorithm summary only describes unconstrained SPSA. As

mentioned above, Sadegh28 has extended the original SPSA theoretical convergence

results to constrained optimization problems. It was proven that a projection-type

adaptation of SPSA will converge to a Kuhn-Tucker point asymptotically when

optimizing over nonlinear inequality constraints that form a non-empty, bounded set and

the constraint functions are continuously differentiable. A further condition he adds is

that function evaluations at points where the constraints are violated are not feasible. By

projection algorithm, he means the following. Let P()x be the projection function to the

nearest point to x on the constraint set, utilizing the usual Euclidean norm. Then the

projection algorithm has the general form

()()> > > >x x xk k k kP a g+
+ = −1 .

 Intuitively, we “project” from the current iterate �x k to the nearest border of the

constraint set. Practically speaking, this means that >x k +
+

1 must satisfy exactly one or

more of the constraint equations, which are then said to be “active”. Once the active set

of constraints is determined, the projection algorithm then must consider those constraints

as equalities for the purpose of computing >x k +
+

1 . The active set is modified as iterations

proceed, and the effect is that the iterates “follow the border” as the objective function

continues to improve. Unfortunately, this projection along the SPSA gradient

approximation to the nearest point on the constraint set is not easy to compute for the

general case where the constraint set is formed by nonlinear inequalities. Mature,

classical optimization codes such as MATLAB ’s CONSTR function contain extensive,

 69

robust code to achieve the projection. Published implementations of constrained SPSA to

date have avoided such complexities and have been applied only to problems with simple

bound constraints of the form x x xL U≤ ≤ .

 Note that our system of systems problem formulation is dominated by these

simple bound constraints on MOPs, with the exceptions being the cost constraint and the

secondary MOE constraint. In the next section, we will show how the model can be

reformulated using penalty functions to eliminate these complex constraints. To finish

off our discussion of constrained SPSA, the following three adaptations to the algorithm

described above are made:

1. As done in Fu and Hill25, when computing x xk k k kc+ = +� ∆ , x xk k k kc− = −� ∆ , and

()� � � �x x xk k k ka g+
+ = −1 in Steps 3 and 5 above, project them to the nearest feasible point

on the constraint set prior to evaluating the objective function. This is particularly

critical for the system of systems upgrade application because many of the MOPs are

probabilities or other physical quantities that have no practical meaning outside of the

constraint set. In the case of simple bound constraints, this is trivial to implement.

2. As suggested by Spall31, incorporate a “blocking function” to accelerate and ensure

monotonic convergence of the SPSA algorithm. Inspection of the gradient

approximation (Step 4) reveals that it should not be expected to be a particularly good

approximation to the true objective function gradient in the sense that the more

expensive forward or central difference formulae are constructed. Although

convergence is guaranteed, the poor quality of the SPSA gradient means that the

31 Spall, J.C., (1997). Personal communication.

 70

sequence of iterates, { }�x k , does not necessarily produce a monotonically increasing

objective function sequence. The blocking function consists of rejecting an iterate that

degrades the objective function by more than a specified small amount and the next

iteration is begun with the current iterate as its starting point; i.e., � �x xk k+ =1 .

3. When the SPSA iterates get near the solution, they will tend to “jitter” about the

optimum. When using a large, fixed number of iterations to obtain a solution, the

average of the last several iterates will provide a better estimate of the optimum than

simply the last iterate.32

 A MATLAB implementation of this constrained SPSA algorithm is included as

Appendix B, with results from a simple, illustrative problem—provided only to establish

confidence in the author’s implementation.

 As will be shown in Chapter 7, this first order SPSA algorithm exhibited poor

convergence on the MCM system of systems problem. This is attributed to inherent

difficulties that a first order process encounters when the problem has large scaling

differences in the components being estimated—and we have about two orders of

magnitude variation in this problem. Recently, a second order version of SPSA has been

developed, which emulates the convergence acceleration and scaling invariant properties

of deterministic Newton-Raphson algorithms33. This algorithm (called “2SPSA”)

requires five function evaluations per iteration, but produced much better results than the

32 Heydon, B., (1997). Personal communication.
33 Spall, J.C., (1997). “Accelerated Second-Order Stochastic Optimization Using Only Function

Measurements”, Proceedings of the 31st Conference on Information Sciences and Systems, 19-21 March
1997, Baltimore, MD.

 71

first order version (hereafter referred to as “1SPSA”). Results will be discussed in

Chapter 7 and 8, with code and detailed results presented in Appendices D-F.

Model Reformulation via Penalty Function Method

As mentioned above, we are motivated to simplify the constraint set of our system

of systems upgrade optimization problem to the point where the only constraints

remaining are those of the simple bound type. Two classes of methods were considered:

Lagrangian multiplier and penalty function methods, which turn out to be very similar in

practice. The penalty function approach was selected as most appropriate for this

application due to its conceptual simplicity and ease of implementation. Although

attractive at first glance, Lagrangian multiplier methods34 have drawbacks that inhibit a

robust, practical implementation. For example, the resulting objective function can be

unpredictably unbounded below and the more robust augmented Lagrangian35 function

methods require an outside iterative loop to solve for the Lagrangian multipliers, thereby

greatly increasing the complexity and number of function evaluations. A straightforward

Lagrangian multiplier method was successfully implemented on the same 3 dimensional

constrained test problem described in Appendix D (formulated for SPSA checkout), but

would not converge when applied to the full MCM system of systems problem, indicating

a modified objective function that is unbounded below—a condition that will arise

unpredictably in large dimensional problems.

34 Cooper, L. and Steinberg, D., (1970), Introduction to Methods of Optimization, W.B. Saunders

Company, Philadelphia, PA, pp. 290-295.
35 Gill, P.E., Murray, W., Wright, M.H., (1981). Practical Optimization, Academic Press, London, Chap. 6

 72

To reformulate the MCM problem using a penalty function, note that both the cost

and quality constraints should be active. That is, the optimal solution will turn out to cost

the maximum allowable amount, and the performance/quality MOE will be minimally

satisfied. (This was borne out in the results using CONSTR, and is a good “sanity check”

on the model formulation.) Continuing with the notation established in this section, our

optimization problem has the following streamlined form, now assuming equality

constraints:

()

UL

U

q
cC

G

xxx
x
x

x

≤≤

=
=

Tq)(
)(

:subject to ,Max

 Following the MATLAB /SPSA minimization convention and re-ordering:

()

UL

U

q
cC

G

xxx
x
x

x

≤≤

=−
=−

0q)(
0)(

:subject to ,-Min

T

There is a wide variety of practical penalty function methods available36, most of

which utilize variants of the quadratic and absolute value penalty functions:

() ()2
T2

2
1 q)()()G()(F −+−+−= xxxx qAcCA U

Q and

T21 q)()()G()(F −+−+−= xxxx qAcCA U
A .

36 Himmelblau, Chapter 7.

 73

Note that the effect of the penalty function augmentation is to create a function

which will have a local minimum that is “near” the constrained optimum of G(x) for

sufficiently large gains, A1 and A2. The penalty terms provide a positive penalty for

increased constraint violation, which of course will never be numerically satisfied

exactly. In practice, the gains, A1 and A2, on the penalty terms must be large enough so

that the effective penalty due to the equality constraints is significant relative to the value

of the original objective function, G(x), at its optimum point. If the gains are too small,

then objective function convergence will occur at a point that does not satisfy the

constraints very closely. Conversely, if the gains are too large, the algorithm-derived

gradient estimates will be extremely large and variable for small changes in the constraint

violation penalties, making for an inevitably ill-conditioned problem. This is mitigated

by the absolute value penalty function relative to the quadratic penalty function, making it

workable for the SPSA algorithm variants which have an inherently poor gradient

estimate anyway.

Since the optimum values of the original problem are not generally known, the

usual approach is to solve a sequence of problems, with gradually increasing gains until

the desired degree of constraint satisfaction is achieved. Another approach is to construct

a gain function that increases as a function of the number of iterations, approaching an

asymptotic limit. Figure 16 plots an asymptotic penalty function gain function that (starts

at 1 and grows to 11 after 500 iterations) that showed some degree of utility for solving

the MCM problem with SPSA:

T21 q)()()()()G()(F −+−+−= xxxx qkcCk U
A αα

 74

where:









≥

<++






 −






 −
=

=
=

max

max
maxi

max

for

for 1
22

1sin
2)(

achieved isgain fullat which iteration
numberiteration

kkA

kkA
k
kA

k

k
k

i

ii ππ
α

0 100 200 300 400 500 600 700 800 900 1000
1

2

3

4

5

6

7

8

9

10

11
Penalty Function Gain

Iteration

P
en

al
ty

 F
un

ct
io

n
G

ai
n

Figure 16 Asymptotic Penalty Gain Function

For the MCM problem we do know the optimum before we start, and can

therefore estimate appropriate gains a priori, avoiding the need to solve for the gains in an

expensive outer optimization loop. The overall MOE minimum is on the order of 20

hours. Therefore, A1 and A2 should be chosen so that their term’s contribution to the

penalty is on the order of about 10% of the optimal MOE value when their constraints are

“close enough”. E.g., if we want the cost constraint to be satisfied to approximately 0.1

and the quality constraint to 0.001, then A1=20 and A2=2,000 produce approximately 2

 75

hours of penalty each, a sufficient amount to drive an optimization algorithm to satisfy

the original constraints when utilizing the absolute value penalty function. Several

additional orders of magnitude are necessary to produce a similar effect from the

quadratic penalty function.

There are distinct advantages and disadvantages to the two penalty terms above,

as indicated in the following table:

 Advantages Disadvantages

Quadratic
Penalty
Function

Differentiable

Initial estimate need not be
close to optimum for
convergence

Arbitrarily large gains required for
equivalence to original problem

Adversely affects algorithms with
poor gradient estimators.

Absolute Value
Penalty
Function

Gains need not be arbitrarily
large to ensure equivalence to
original problem—avoids
inevitable ill-conditioning

Not differentiable

Weaker penalty leaves local minima
so that initial estimate must be close
to optimum for convergence

Many strategies of gains, penalty functions, and algorithm parameters were

attempted and results catalogued in the course of this study. Results reported in Chapter

7 will reflect the finding that quadratic penalty function worked best with CONSTR and

the absolute value penalty function worked best with SPSA, in spite of the theoretical

SPSA assumption that the loss function is differentiable. The extremely large gains

necessary to ensure the transformed quadratic penalty function formulation is equivalent

 76

to the original problem poses severe stability problems for SPSA, which generates a poor

gradient estimator in order to conserve function evaluations.

Limitations and Scope of Research

 Unfortunately, there are several areas which can prevent efficient solution of

specific problems, and therefore limit generalization of results. Some of those potential

issues and mitigation approaches are as follows:

• Recall that we had side-stepped the force structure issue, represented by the integer-

valued vector m. In a domain where the nominal numbers for each system exceeds

some moderate number, say 10, then it is probably reasonable to solve the continuous

case and take the nearest integer values—keeping in mind that the goal is really to

achieve some substantive improvement over the existing system of systems, and the

decision-maker will realize that there are sources of error in the process that would

dominate this level of approximation. On the other hand, if it is expected that there

would be only a small number of each system, say 1-5, then we could put an

exhaustive search loop around the constrained optimization algorithm. It is expected

that this latter situation is more widely applicable.

• Non-differentiability of the objective function when using simulation can violate

convergence proof assumptions of certain algorithms, such as SPSA. Since the

simulations are representations of physical systems, they are generally well-behaved

as long as functionality is preserved and the optimization is over technical

performance measures vice scenario or CONOPS parameters. Use of the absolute

 77

value penalty function creates a non-differentiable objective function, though this did

not prevent SPSA convergence in practice. Force level optimization when

considering small numbers of systems may also generate discontinuities. However,

an exhaustive search method would not require the objective function to be well-

behaved. The Taguchi method for obtaining robust designs is a sort of exhaustive

search over discrete parameters and seems applicable to the integer-valued force level

problem, especially in the face of an ill-behaved objective function.37,38

• Local vs. Global optimum. If ()E E E Gn= =g , , , ()m m p , ,p1 n1 � �, is a concave

function over a convex constraint set and the “optimum” point satisfies the Kuhn-

Tucker conditions, then it is a global minimum solution. Unfortunately, these are

difficult conditions to verify, especially if we are ultimately dealing with function

evaluations provided by simulation or a complicated multivariate expression. Initial

formulation of a closed-form analytic model should aid in generating initial

conditions that are sufficiently “close” to the optimum. Moreover, if we keep in mind

what we are trying to accomplish—the upgrading of a system of systems—then we

should not be terribly concerned that our solution might not be at a global maximum,

but rather be “satisficed” to find an upgrade suite that represents some significant

improvement over the present situation as indicated by the objective function

improvement over the threshold or nominal system of systems MOE. Convergence to

a local vice global maximum did indeed occur for the MCM system of systems, and is

37 Lee, K-H, Eom, I-S, Park, G-J, Lee, W-I, (1996). “Robust Design for Unconstrained Optimization

Problems Using the Taguchi Method”, AIAA Journal, Vol.34, No.5, 1059-1063.
38 Phadke, M.S., (1989). Quality Engineering Using Robust Design, Prentice-Hall, Englewood Cliffs, NJ

 78

discussed in Chapter 7. In Chapter 8, a strategy for generating good initial MOP

estimates is postulated and demonstrated for the simulation case.

• Choosing test problems with interesting initial conditions and constraint sets. It is

possible that an ill-conceived problem formulation could yield search results that

consistently gravitate towards just one or two parameters. To demonstrate the

method, an attempt has been made to create the MCM system of systems model that

basically already “in balance”. As will be seen in some of the results in Chapters 7

and 8, this has the drawback of creating a rather “shallow” objective function, making

it a difficult problem for optimization algorithms.

The severity of the issues mentioned above will vary from problem to problem,

and of course become more challenging as we migrate towards larger, more realistic

problems. Therefore, the plan of research was to work from the well-understood

deterministic domain towards the stochastic optimization domain motivated by the desire

to utilize M&S for system of systems MOE evaluations. The sequence of optimizations

that will be discussed in Chapters 7 and 8 for the MCM problem are:

1. Constrained SQP Optimization

2. Single system vs. system of systems optimization

3. Constrained SQP optimization via penalty function methods

4. First order constrained SPSA optimization via penalty function method

5. Second order constrained SPSA optimization via penalty function method

6. Second order constrained SPSA optimization via penalty function and simulation

 79

 80

CHAPTER 7

PHASE I RESULTS: CLOSED FORM OBJECTIVE FUNCTION

This Chapter presents the results of optimizing the closed form representation of

the MCM system of systems model developed in Chapter 5 with the sequence of methods

as described in Chapter 6. For ease of reference, the MCM system of system MOP

definitions are repeated here:

x p A
x p

x p
x p
x p
x p

()
() P

() P
() T
()
() R

,

, c

, fa

, c

,

, r

1
2

3
4
5
6

1 1

1 2

1 3

1 4

1 5

2 1

= = =
= = =

= = =
= = =
= = =
= = =

System S1 area coverage rate during detection pass (nm / day)

Probability of correctly classifying a detection as mine - like

 or nonmine like, at range R

Detection false alarm rate (false alarms / nm)

Time required to classify a mine (min)

Standard deviation of minelike object localization error (yards)

Contact localization error standoff which yields an 80% prob

2

c
2

 σ
ability

 of re - acquisition

Time spent prosecuting a non - mine classified as a mine or unsuccessfully

 attempting to re - acquire a correctly classified mine (min)

Time spent neutralizing (prosecuting) a classified mine (min)

x p

x p

() T

() T

, pf

, n

7

8

2 2

2 3

= = =

= = =

 The system of systems constrained MOE optimization has been solved for an

increasing sequence of multipliers (“costfactor”) on the cost of the threshold system,

denoted by *C , which happens to be $28.066M. This provides the decisionmaker with

information to apply the CAIV approach to system upgrade or initial design. Plots are

 81

provided so that one can visualize the top level MOE improvement and corresponding

MOP requirements as the system of systems cost upper bound is allowed to increase.

Constrained SQP Optimization

 The baseline results are obtained through utilization of MATLAB ’s constrained

sequential quadratic programming (SQP) algorithm, described in Chapter 6. Complete

MATLAB code and results for the MCM system of systems optimization is provided in

Appendix A. Figure 17 below summarizes those results. The first two plots present the

top-level MOE (E=time to complete minefield clearance) as a function of increasing cost

factor and dollar cost upper bounds. The next two plots present the corresponding

optimal MOPs as a function of increasing cost factor. The MOPs are normalized to their

upper and lower bounds, with zero corresponding to their threshold system values and

one corresponding to their technology limitations. Several significant insights can be

obtained from examination of these plots:

• The system of systems MOE improves steadily to an asymptotic lower bound as the

cost limit increases. Due to the imposed technology constraints, after a certain point

no amount of money will enhance system performance.

• At the other extreme, if at least *25.1 C⋅ isn’t spent, the quality constraint cannot be

met and even a very slow system cannot be achieved.

• A subjective “knee of the curve” can be observed to occur somewhere around 1.8

times the threshold system cost (about $50M), after which he rate of MOE

improvement significantly decreases.

 82

• The component systems’ MOP requirements can be determined from these plots

(numerical results are in Appendix A), also as a function of cost factor. One can see

which MOPs become stressed (i.e., move away from their threshold system values)

and approach their technology constraint limits as the cost constraint is relaxed. Of

course, this behavior is dependent upon the PBCM function developed for each MOP

in Chapter 5, as well as their significance relative to the objective function and quality

constraint.

 83

1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8
15

20

25

30

35

40
System of Systems MOE as Function of Cost

Cost Factor on Threshold System Costs

Ti
m

e
to

 C
om

pl
et

e
M

is
si

on
 (

ho
ur

s)

35 40 45 50 55 60 65 70 75
15

20

25

30

35

40
System of Systems MOE as Function of Cost

Cost ($M)

Ti
m

e
to

 C
om

pl
et

e
M

is
si

on
 (

ho
ur

s)

1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
System of Systems MOPs as Function of Cost

Cost Factor on Threshold System Costs

M
O

P
s

1-
4

(p
er

ce
nt

 o
f t

ec
hn

ol
og

y
th

re
sh

ol
d)

x1
x2
x3
x4

1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
System of Systems MOPs as Function of Cost

Cost Factor on Threshold System Costs

M
O

P
s

5-
8

(p
er

ce
nt

 o
f t

ec
hn

ol
og

y
th

re
sh

ol
d)

x5
x6
x7
x8

Figure 17: Constrained SQP Optimization Results for S

 Note the hump in the MOE plot at costfactor=2.15, which also corresponds to a

step change in the optimal value for x(7). This step change is due the existence of an

objective function local minimum created by the unusually flat character of the PBCM

 84

for pf2,2 T)7(== px as illustrated in Figure 12. When the cost constraint is relaxed

sufficiently to generate movement in x(7), the search algorithm moves from x(7)=7.0 to

about 4, thereby using up all the additional allowable cost and then some. This additional

cost allocated to x(7) forces cutbacks in other parameters, which turn out to be x(1) and

x(3) as can also be seen in Figure 17. This translates into reduced overall performance

that must correspond to a local, rather than global minimum—since the solution found at

costfactor=2.1 is clearly superior and still meets the constraints.

 The results can be used to design a specific cost-constrained upgrade to the

threshold system of systems. For example, if the allowable cost constraint is twice that of

the threshold system, then selecting []0.42,0.3,55.0,961.0,3.851 =p and

[]p2 4232 7 0 3 0= . , . , . yields E = 17 768. , with clearance rate q=0.846 at a cost of

$56.132M. This is a substantial enhancement to the threshold system represented by

[]p1 10 0 0 9 2 0 9 17 90 0= . , . , . , . , . and []p2 750 6 6 10 0= . , . , . that results in an overarching MOE

of hours 33.93=E with clearance rate of only q=0.620 at a cost of $28.066M. Since

CONSTR would not converge for costfactors less than 1.25, the analysis indicates that a

system that satisfies the stringent requirement for 84.6% clearance will cost at least 25%

more than a system of systems composed of the threshold component systems, but would

take 38.38 hours to complete the clearance mission with a single pass from each system.

 85

Single System Vs. System Of Systems Optimization

 The claim is often made that optimization of each component system does not

guarantee overall system of systems optimization39. However, an analysis is rarely

available or offered to quantify the suboptimality of single system optimization. Here, we

have optimized S1 and S2 separately, and compare the results with those just presented. It

is not a straightforward process, due to the wide range of assumptions that can be made

regarding the complementary system. To organize the analysis, two distinct single system

approaches and sets of assumptions are hypothesized, analyzed, and tabular results

offered in Figures 18 and 19. The two classes of single system developer assumptions

regarding the other components to the system of systems are as follows:

1. Each system developer assumes the other is conducting a rigorous

requirements optimization analysis and each has insight into the other’s

process and results.

2. Each system developer has little or no insight into the other’s requirements

analysis and will therefore assume that they will be interfacing with a system

that is either very good or is marginally effective with regards to those MOPs

that are known to interact between systems. This is referred to as “better” or

“worse” than the baseline optimization results.

39 Eisner, H., Marciniak, J., and McMillan, R., “Computer-Aided System of Systems (S2) Engineering”,

Proceedings of the 1991 IEEE International Conference on Systems, Man, and Cybernetics, 13-16 October
1991, University of Virginia, Charlottesville, VA.

 86

 It should be noted that both approaches should still offer more insight than would

come from simple, single system (a.k.a. “stovepipe”) analyses, which do not explicitly

recognize that each system is part of a system of systems with quantifiable MOEs, quality

constraints, technology constraints, and PBCMs for critical MOPs.

 Referring to Figure 18, the first set of results is the baseline SQP optimization that

is simply repeated from the previous section. The second set of results is obtained from

optimizing S1 and S2 separately, but utilizing “perfect knowledge” about the baseline

system of system optimization results. This is accomplished by holding the other

system’s baseline optimization results fixed when optimizing each system one at a time,

subject to the stated cost and quality constraints. S1 depends on the S2 MOP

r1,2 R=)6(px = and S2 depends on the S1 MOPs c2,1 P)2(== px , fa3,1 P)3(== px , and

σ== 5,1)5(px . (MATLAB code and complete results are listed and plotted in

Appendix B.) The resulting system MOEs are then combined to form the system of

systems MOE, 21 EEE += . The difference with the system of systems baseline

optimization is shown as a percentage of the baseline. This provides insight as to the

inherent suboptimality of performing a sequential optimization, even when the “right

answer” to the full system of systems problem is known. The suboptimality of single

system optimization is quite significant for cost factors below 1.5, but not otherwise. It

is interesting to note that the local minima “hump” that is so noticeable in the baseline

results is not apparent in the separately optimized results. The quality constraint that

846.0)(≥xq was active for each costfactor value, and is therefore omitted from the table.

 87

Next, the results of optimizing each system with good, but imperfect knowledge

concerning the other’s capability are shown in Figure 18 as a more realistic

implementation of having knowledge of the other system’s optimization process and

results. S1 is optimized assuming x()6 500= , which is at the “knee-of-the-curve” for S2’s

re-acquisition range PBCM (Figure 12). A similar inspection and assessment of the S1

MOP PBCMs for x x x(), (), ()2 3 5 (see Figures 8,9,11) was done and

x x x() . , () . , ()2 0 955 3 10 5 42= = = were selected. The resulting recombined MOEs

exhibit similar behavior in that the suboptimality is marked for small values of the cost

constraint factor, which diminishes as the cost constraint is relaxed. Note that the

recombined system of systems clearance rate is slightly better than the constrained value

of 0.846, indicating a tradeoff of timeliness for a very modest gain in quality.

 System of Systems Perfect Knowledge Single System Imperfect Knowledge Single System

 Optimization Optimization Optimization

costfactor E Cost q E1 E2 E % Delta E1 E2 E % Delta q

1.3 34.32 36.49 0.846 27.88 9.71 37.59 9.5% 27.29 13.16 40.44 17.8% 0.849

1.4 28.38 39.29 0.846 22.50 8.61 31.11 9.6% 22.06 10.65 32.71 15.3% 0.849

1.5 25.35 42.10 0.846 18.32 7.64 25.96 2.4% 18.03 9.31 27.34 7.8% 0.849

1.6 23.07 44.91 0.846 16.42 6.82 23.24 0.7% 16.27 8.26 24.53 6.3% 0.849

1.7 21.27 47.71 0.846 15.17 6.10 21.26 0.0% 15.08 7.38 22.46 5.6% 0.849

1.8 19.74 50.52 0.846 14.38 5.43 19.81 0.3% 14.33 6.60 20.92 6.0% 0.849

1.9 18.55 53.33 0.846 13.81 4.79 18.60 0.3% 13.77 5.89 19.66 6.0% 0.849

2.0 17.77 56.13 0.846 13.36 4.56 17.91 0.8% 13.33 5.24 18.56 4.5% 0.850

2.1 17.18 58.94 0.846 12.98 4.53 17.51 1.9% 12.95 4.63 17.58 2.3% 0.850

2.2 17.35 61.75 0.846 12.65 4.54 17.19 -0.9% 12.63 4.58 17.21 -0.8% 0.851

2.3 16.88 64.55 0.846 12.37 4.44 16.80 -0.5% 12.35 4.56 16.91 0.2% 0.851

2.4 16.40 67.36 0.846 12.11 4.37 16.48 0.5% 12.09 4.91 17.00 3.7% 0.851

2.5 16.12 70.17 0.846 11.89 4.38 16.26 0.9% 11.88 4.41 16.28 1.0% 0.851

Figure 18: Single System Optimization Results

 88

 Results from implementing the second approach are shown in Figure 19, again

alongside the baseline results. We first optimize both systems separately, with the

assumption that the other system’s MOPs will be quite good, or “better” than the optimal

constrained system of systems baseline results. Specifically, for the MOPs that are

effective at the system interfaces, x x x x() , () . , () . , ()6 550 2 0 975 3 050 5 42= = = = were

selected. The resulting set of MOEs are a little bit better than the “perfect knowledge

set”, but the combined clearance rate, q, was up to 5% worse—a very significant number

in the mine countermeasures domain.

 What has happened is that by assuming the other system is being developed for

high performance, one “under-engineers” his own system at the interface, and will

naturally spend the remaining allowable funds to enhance his own single system MOE, Ei.

Note that in this model, the interfacing MOPs have a first-order effect on the quality

constraint, q. Hence the MOE times are very good, but the clearance rate is degraded as

each system developer assumes that another system will take up the slack to produce an

acceptable clearance rate. This is probably the most typical situation, because each

system by itself will look good (in this case, fast) but the more complex combined system

of systems quality MOE is either not addressed or is viewed as the responsibility of some

other, overarching authority to assess the system of systems effectiveness.

Conversely, if one assumes that the other system’s development is not

performance-driven, the result is to “over-engineer” the system at the interface and since

resources are constrained, this forces degradation in the single system MOE. This effect

can be seen in the second set of single system optimization results in Figure 19 which

 89

were obtained with x x x x() , () . , () . , ()6 300 2 0 975 3 050 5 52= = = = . The clearance rate is

significantly improved at the expense of a significant degradation in the system of

systems performance MOE. Here, each system developer has assumed that his system

must carry the load to maintain an adequate clearance rate and therefore relaxes

parameters that most directly affect timeliness.

 System of Systems Single System Optimization: Single System Optimization:

 Optimization Assume Other System is Better Assume Other System is Worse

costfactor E Cost q E1 E2 E % Delta q E1 E2 E % Delta q

1.3 34.32 36.49 0.846 26.99 9.50 36.49 6.3% 0.823 29.23 13.29 42.52 23.9% 0.860

1.4 28.38 39.29 0.846 21.84 8.44 30.28 6.7% 0.823 23.45 11.55 35.00 23.3% 0.860

1.5 25.35 42.10 0.846 17.91 7.54 25.45 0.4% 0.824 19.09 9.92 29.01 14.4% 0.860

1.6 23.07 44.91 0.846 16.19 6.75 22.95 -0.6% 0.823 16.76 8.76 25.52 10.6% 0.860

1.7 21.27 47.71 0.846 15.04 6.04 21.08 -0.9% 0.822 15.35 7.81 23.16 8.9% 0.860

1.8 19.74 50.52 0.846 14.30 5.39 19.69 -0.3% 0.836 14.50 6.98 21.48 8.8% 0.860

1.9 18.55 53.33 0.846 13.75 4.77 18.52 -0.2% 0.820 13.90 6.24 20.14 8.6% 0.860

2.0 17.77 56.13 0.846 13.31 4.57 17.88 0.6% 0.845 13.43 5.56 18.99 6.9% 0.861

2.1 17.18 58.94 0.846 12.94 4.56 17.50 1.9% 0.847 13.04 4.94 17.97 4.6% 0.861

2.2 17.35 61.75 0.846 12.62 4.55 17.17 -1.0% 0.845 12.70 4.60 17.30 -0.2% 0.862

2.3 16.88 64.55 0.846 12.34 4.46 16.80 -0.5% 0.816 12.41 4.59 16.99 0.7% 0.864

2.4 16.40 67.36 0.846 12.09 4.41 16.50 0.6% 0.815 12.15 4.57 16.71 1.9% 0.864

2.5 16.12 70.17 0.846 11.87 4.38 16.26 0.8% 0.813 11.91 4.53 16.44 2.0% 0.864

Figure 19: Single System Optimization Assuming Better/Worse Other System Performance

 As mentioned above, these analyses are each done assuming the same set of

constraints and combining the separately obtained results to obtain the system of systems

performance. This is in itself a very optimistic assumption in that typical stovepipe

developments would not be that well-coordinated in their assumptions. For example, the

reconnaissance system manager might be working towards spending no more than twice

his threshold system cost whereas the clearance system manager might be limited to 1.5.

 90

Worse, one system manager may not even be cost constrained, but seeking to maximize

performance to the limits of technology. We have quantified significant suboptimalities

in single system optimization even under self-consistent system of systems constraints on

cost, technology, and the quality MOE. These models and analysis could be used to

predict the effects of these other disparate approaches on system of system effectiveness.

 In summary, this single system vs. system of systems optimization comparison

illustrates what might be called common sense to the acquisition executive. If we are not

resource constrained, then the correct course of action is simply to optimize each

component system for performance without regard to cost—and it doesn’t matter if this is

implemented separately or as a system of systems. This has been the situation in Defense

for many decades. But as the cost constraint is tightened it becomes increasingly

important to consider the full impact of design decisions on the whole to get the most

performance per unit dollar. Our results in this regard vividly illustrate the maxim,

“We are short of money, therefore we must think.”

Constrained SQP Optimization Via Penalty Function Method

The penalty function method described in Chapter 6 was applied to our MCM

problem in order to incorporate the nonlinear constraints into the objective function.

Appendix C contains MATLAB code and results from implementing the method

utilizing the CONSTR optimization algorithm. The plots that constitute Figure 20

demonstrate well-behaved but suboptimal results relative to the baseline. These results

 91

were obtained utilizing the quadratic penalty function, which was found to be less

sensitive to initial conditions than the absolute value penalty function whose results are

also displayed. The quadratic penalty function formulation converged when initialized

with the threshold system MOPs, whereas the absolute value penalty function would not

converge unless it was initialized much closer to the optimal values—in this case, random

perturbations of +/-20% from the baseline solution MOPs were sufficiently close to

ensure convergence, though not always to a local minimum equivalent to the original

problem. Also, CONSTR took anywhere from 2-20 times the number of iterations

required for the baseline to converge within the selected nominal termination criteria.

The degree of suboptimality can be seen explicitly in the Figure 21 table and the plot in

Figure 25. Note that as the cost constraint is relaxed, the agreement converges.

Keep in mind that the penalty function approach on the closed form MCM

problem formulation is used simply to establish and understand its nominal behavior

prior to attempting stochastic optimization using simulation. Therefore, these results

provide a best case limit for subsequent SPSA implementations. The dramatic increase in

the number of required iterations is an indication that the transformed objective function

is much “shallower”, primarily due to an effective relaxation of the constraint

requirements—which is quite realistic from a management point of view. Therefore, the

resulting minimum is nearly achieved in a rather large region rather than a single crisp

point, implying that there should be some implications for flexibility in generating system

requirements for the “optimal” CAIV sequence.

 92

1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8
10

20

30

40

50

60

70
System of Systems MOE as Function of Cost

Cost Factor on Threshold System Costs

Ti
m

e
to

 C
om

pl
et

e
M

is
si

on
 (

ho
ur

s)

35 40 45 50 55 60 65 70 75
10

20

30

40

50

60

70
System of Systems MOE as Function of Cost

Cost ($M)

Ti
m

e
to

 C
om

pl
et

e
M

is
si

on
 (

ho
ur

s)

1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
System of Systems MOPs as Function of Cost

Cost Factor on Threshold System Costs

M
O

P
s

1-
4

(p
er

ce
nt

 o
f t

ec
hn

ol
og

y
th

re
sh

ol
d)

x1
x2
x3
x4

1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
System of Systems MOPs as Function of Cost

Cost Factor on Threshold System Costs

M
O

P
s

5-
8

(p
er

ce
nt

 o
f t

ec
hn

ol
og

y
th

re
sh

ol
d)

x5
x6
x7
x8

Figure 20: Constrained SQP Optimization (Penalty Function) Results for S

 93

 Baseline Results Quadratic P.F. Absolute Value P.F.

Costfactor Cost E Fun.
Evals.

E Fun.
Evals.

E Fun. Evals.

1.25 35.082 38.60 311 38.59 1329 38.46 1345
1.30 36.486 34.32 452 66.52 668 34.18 1479
1.35 37.889 30.75 374 44.94 792 30.59 1449
1.40 39.292 28.38 398 38.95 1658 28.56 2688
1.45 40.696 26.83 430 34.56 1778 26.82 1550
1.50 42.099 25.35 407 39.93 1846 29.26 1559
1.55 43.502 24.13 381 28.39 2356 28.89 1101
1.60 44.906 23.07 394 26.82 2395 23.23 1273
1.65 46.309 22.13 474 25.33 2247 24.02 2214
1.70 47.712 21.27 372 24.10 1966 22.11 1049
1.75 49.115 20.48 397 23.02 2525 20.97 1119
1.80 50.519 19.74 418 22.07 2129 22.02 2386
1.85 51.922 19.07 287 21.20 3429 19.52 1735
1.90 53.325 18.55 344 20.40 3633 20.40 1683
1.95 54.729 18.13 368 19.66 4130 18.61 961
2.00 56.132 17.77 322 18.98 3704 17.78 1431
2.05 57.535 17.46 232 18.45 5184 18.52 2527
2.10 58.939 17.18 338 18.02 4160 18.19 1483
2.15 60.342 17.66 505 17.66 5054 17.41 1277
2.20 61.745 17.35 525 17.35 4042 17.70 1133
2.25 63.148 17.07 482 17.07 6250 16.68 923
2.30 64.552 16.82 503 16.82 5658 17.91 1137
2.35 65.955 16.60 488 16.60 5391 16.25 899
2.40 67.358 16.40 635 16.40 4955 16.38 705
2.45 68.762 16.24 565 16.24 3347 16.43 794
2.50 70.165 16.12 430 16.12 3268 16.11 452

Figure 21: Penalty Function vs. Baseline Numerical Comparison

 94

 First Order Constrained SPSA Optimization Via Penalty Function Method

 Designed for stochastic optimization, the 1SPSA algorithm is itself a stochastic

process due to the nature of generating the gradient approximation, as described in

Chapter 6. To better understand this behavior, a simple three-dimensional constrained

optimization problem was posed and solved with 1SPSA. The problem description and

results summary are shown in Appendix D. The points of interest are that the algorithm

always found the solution exactly, while on the average taking about the same number of

iterations (9.8 vs. 9) as did CONSTR, which was also implemented as a control.

A variety of penalty functions and algorithm parameters were investigated and

applied with 1SPSA on the closed form MCM problem formulation, with limited success.

The wide range in parameter values at or near the optimal values cannot be handled well

by a first order algorithm. The best results were obtained with the absolute value penalty

function, starting each solution by randomly perturbing the baseline solution by 20%—an

initial uncertainty level that a domain-knowledgeable system developer can probably

guess at for their system. Figure 22 displays the usual plots for a 2500 iteration (5000

function evaluations) implementation, and Appendix D has the detailed output, including

the SPSA algorithm control parameters that were utilized. While the top level MOE plot

is not too noisy, there are some shortcomings (1) the resulting MOP plots are quite

scattered, and (2) the clearance rate constraint is not well-satisfied, with q ranging from

0.810 to 0.866, and (3) the cost constraint is not well-satisfied, with the “solution” cost

exceeding the upper bound by up to $5M. Regarding the first criticism, recall that we

 95

would like to use the MOP solutions to specify requirements for the component systems.

Since this behavior is so apparently erratic, the algorithm is unsatisfactory for this

purpose, on this problem. Actually, the problem with satisfying the clearance rate and

cost constraints is more severe, in that the iterates do not “solve” the constrained problem.

1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8
10

20

30

40

50

60

70

80
System of Systems MOE as Function of Cost

Cost Factor on Threshold System Costs

Ti
m

e
to

 C
om

pl
et

e
M

is
si

on
 (

ho
ur

s)

35 40 45 50 55 60 65 70 75
10

20

30

40

50

60

70

80
System of Systems MOE as Function of Cost

Cost ($M)

Ti
m

e
to

 C
om

pl
et

e
M

is
si

on
 (

ho
ur

s)

1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
System of Systems MOPs as Function of Cost

Cost Factor on Threshold System Costs

M
O

P
s

1-
4

(p
er

ce
nt

 o
f t

ec
hn

ol
og

y
th

re
sh

ol
d)

x1
x2
x3
x4

1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
System of Systems MOPs as Function of Cost

Cost Factor on Threshold System Costs

M
O

P
s

5-
8

(p
er

ce
nt

 o
f t

ec
hn

ol
og

y
th

re
sh

ol
d)

x5
x6
x7
x8

Figure 22: 1SPSA Results--5000 function evaluations

 96

Second Order Constrained SPSA Optimization Via Penalty Function Method

 To address the shortfalls of 1SPSA on this difficult problem, second order SPSA

was implemented as mentioned in Chapter 6. As can be seen by inspection of the

complete code and results listed in Appendix E, it can generate solutions that satisfy the

full set of constraints, and approaches the MOE optimum values produced by CONSTR

on the penalty function reformulation. Excellent satisfaction of both cost and quality

constraints were obtained, unlike 1SPSA. Unfortunately, it still suffers from apparently

erratic MOP estimates, which would be difficult to translate into system requirements. A

wide variety of penalty function weightings, algorithm control parameters, blocking,

Hessian averaging, and solution averaging techniques were applied in an attempt to

obtain more stable MOP estimates with limited success. Figure 23 illustrates the results

obtained with the same number of function evaluations (5000, with 1000 iterations) on

the absolute value penalty function, with initial conditions randomly perturbed 20% from

the baseline solution.

 97

1.2 1.4 1.6 1.8 2 2.2 2.4 2.6
15

20

25

30

35

40

45

50

55
System of Systems MOE as Function of Cost

Cost Factor on Threshold System Costs

Ti
m

e
to

 C
om

pl
et

e
M

is
si

on
 (

ho
ur

s)

30 35 40 45 50 55 60 65 70 75
15

20

25

30

35

40

45

50

55
System of Systems MOE as Function of Cost

Cost ($M)

Ti
m

e
to

 C
om

pl
et

e
M

is
si

on
 (

ho
ur

s)

1.2 1.4 1.6 1.8 2 2.2 2.4 2.6
0

0.2

0.4

0.6

0.8

1

1.2

1.4
System of Systems MOPs as Function of Cost

Cost Factor on Threshold System Costs

M
O

P
s

1-
4

(p
er

ce
nt

 o
f t

ec
hn

ol
og

y
th

re
sh

ol
d)

x1
x2
x3
x4

1.2 1.4 1.6 1.8 2 2.2 2.4 2.6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
System of Systems MOPs as Function of Cost

Cost Factor on Threshold System Costs

M
O

P
s

5-
8

(p
er

ce
nt

 o
f t

ec
hn

ol
og

y
th

re
sh

ol
d)

x5
x6
x7
x8

Figure 23: 2SPSA Results--5000 function evaluations

 To better understand this erratic behavior, and to determine the best the algorithm

(which is itself stochastic in nature) can produce on this problem, it was re-solved by

initializing the algorithm with the baseline solution obtained from MATLAB ’s

CONSTR. The following results were obtained, also with 5000 function evaluations

(Figure 24):

 98

1.2 1.4 1.6 1.8 2 2.2 2.4 2.6
10

20

30

40

50

60

70
System of Systems MOE as Function of Cost

Cost Factor on Threshold System Costs

Ti
m

e
to

 C
om

pl
et

e
M

is
si

on
 (

ho
ur

s)

30 35 40 45 50 55 60 65 70 75
10

20

30

40

50

60

70
System of Systems MOE as Function of Cost

Cost ($M)

Ti
m

e
to

 C
om

pl
et

e
M

is
si

on
 (

ho
ur

s)

1.2 1.4 1.6 1.8 2 2.2 2.4 2.6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
System of Systems MOPs as Function of Cost

Cost Factor on Threshold System Costs

M
O

P
s

1-
4

(p
er

ce
nt

 o
f t

ec
hn

ol
og

y
th

re
sh

ol
d)

x1
x2
x3
x4

1.2 1.4 1.6 1.8 2 2.2 2.4 2.6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
System of Systems MOPs as Function of Cost

Cost Factor on Threshold System Costs

M
O

P
s

5-
8

(p
er

ce
nt

 o
f t

ec
hn

ol
og

y
th

re
sh

ol
d)

x5
x6
x7
x8

Figure 24: 2SPSA Initialized at Baseline Optimum

 These results are excellent, and indicate that 2SPSA is stable and can produce

good MOP results if it is initialized “close enough” to the optimum. It also confirms the

previous finding that the transformed objective function is quite shallow. Of course, this

is difficult to achieve when one is approaching a new problem for the first time. It should

 99

be noted that similar well-behaved results were obtained when the initial values were only

10% from the optimum, but getting that close to the optimum is probably impossible for a

system architect to achieve, a priori. Also, recalling our experience with the penalty

function control cases, the absolute value penalty function may be converging to nearby

local minima that aren’t optimal solutions to the original problem. This effect may

actually account for some of the “noise” in Figure 24 rather than having been generated

from the inherent algorithm uncertainty.

 Figure 25 plots the MOEs obtained from each of the four algorithms that have

been applied. There is good agreement with all four algorithms, even the two SPSA

algorithms, which is encouraging as preparation for the stochastic simulation situation.

Optimization Algorithm MOE Comparison

15.00
20.00
25.00
30.00
35.00
40.00
45.00
50.00

1.
25

1.
35

1.
45

1.
55

1.
65

1.
75

1.
85

1.
95

2.
05

2.
15

2.
25

2.
35

2.
45

Costfactor

Sy
st

em
 o

f S
ys

te
m

s
M

O
E

E(baseline)
E(Quad. PF)
E(Abs. Val. PF)
E(1SPSA)
E(2SPSA)

Figure 25: Comparison of System of Systems MOE Results

 100

 Although the results look good at the MOE level, we have to look carefully at the

degree to which the constraints have been satisfied with 1SPSA and 2SPSA. Figure 26

offers a table of results that compares not only the final MOE values, but the cost and

quality values resulting from each optimization. The cost upper bound is in the second

column, and each algorithm is trying to produce q(x)=0.846—which was exactly satisfied

with both the baseline and quadratic penalty function methods solved with CONSTR.

 Cost Baseline Results Quadratic P.F. 1SPSA: 5000 Fn. Evals 2SPSA: 5000 Fn. Evals.

Costfactor Upper Bnd. E Fun. Evals. E Fun. Evals. E q(x) Cost E q(x) Cost

1.25 35.082 38.60 311 38.59 1329 71.155 0.705 34.986 40.25 0.844 35.109

1.30 36.486 34.32 452 66.52 668 37.667 0.846 40.349 39.05 0.846 36.483

1.35 37.889 30.75 374 44.94 792 34.544 0.810 37.804 32.06 0.826 38.17

1.40 39.292 28.38 398 38.95 1658 33.915 0.846 41.980 37.63 0.846 39.292

1.45 40.696 26.83 430 34.56 1778 32.065 0.851 40.746 30.48 0.846 40.697

1.50 42.099 25.35 407 39.93 1846 23.24 0.846 46.095 27.90 0.846 42.105

1.55 43.502 24.13 381 28.39 2356 30.662 0.862 43.686 32.27 0.851 43.414

1.60 44.906 23.07 394 26.82 2395 26.708 0.848 45.738 36.75 0.846 44.906

1.65 46.309 22.13 474 25.33 2247 25.501 0.852 47.260 25.67 0.846 46.311

1.70 47.712 21.27 372 24.10 1966 23.766 0.830 47.672 25.62 0.846 47.712

1.75 49.115 20.48 397 23.02 2525 22.057 0.846 51.587 25.51 0.846 49.116

1.80 50.519 19.74 418 22.07 2129 20.791 0.846 54.596 22.77 0.846 50.518

1.85 51.922 19.07 287 21.20 3429 18.993 0.847 57.732 28.97 0.846 51.925

1.90 53.325 18.55 344 20.40 3633 20.388 0.851 53.791 22.18 0.846 53.322

1.95 54.729 18.13 368 19.66 4130 20.457 0.841 54.733 20.78 0.846 54.728

2.00 56.132 17.77 322 18.98 3704 20.579 0.847 57.189 20.97 0.846 56.134

2.05 57.535 17.46 232 18.45 5184 19.423 0.847 57.575 18.78 0.846 57.534

2.10 58.939 17.18 338 18.02 4160 19.642 0.853 59.005 22.23 0.846 58.939

2.15 60.342 17.66 505 17.66 5054 19.033 0.863 60.448 18.91 0.846 60.346

2.20 61.745 17.35 525 17.35 4042 19.042 0.866 61.897 20.12 0.846 61.746

2.25 63.148 17.07 482 17.07 6250 18.342 0.854 61.312 18.42 0.846 63.15

2.30 64.552 16.82 503 16.82 5658 18.121 0.855 61.619 23.95 0.846 64.552

2.35 65.955 16.60 488 16.60 5391 18.063 0.849 64.211 17.07 0.846 65.954

2.40 67.358 16.40 635 16.40 4955 16.936 0.852 67.868 17.40 0.846 67.358

2.45 68.762 16.24 565 16.24 3347 17.283 0.861 69.190 17.39 0.846 68.761

2.50 70.165 16.12 430 16.12 3268 16.377 0.850 70.334 16.52 0.846 70.166

Figure 26: Comparison of Optimization Algorithm MOE, Cost, and q(x) Results

 101

 To better compare 1SPSA vs. 2SPSA satisfaction of the constraints, Figures 27

and 28 are plots that compare both algorithms’ final clearance rate and cost, respectively.

While 2SPSA provides excellent results in this regard, 1SPSA does not, and therefore,

almost none of its results are truly useful.

Optimization Algorithm Comparison: q(x)=0.846

0.820

0.830

0.840

0.850

0.860

0.870

0.880

1.
25

1.
40

1.
55

1.
70

1.
85

2.
00

2.
15

2.
30

2.
45

Costfactor

q(
x) q(SPSA)

q(2SPSA)

Figure 27: Comparison of 1SPSA vs. 2SPSA Clearance Rate Results

 102

Optimization Algorithm Comparison: cost bound

35

40

45

50

55

60

65

70

75

1.
25

1.
40

1.
55

1.
70

1.
85

2.
00

2.
15

2.
30

2.
45

Costfactor

D
ol

la
rs

, $
M

Cost Bound
Cost(1 SPSA)
Cost (2 SPSA)

Figure 28: Comparison of 1SPSA vs. 2SPSA System of Systems Cost Results

A final note regarding the nature of stochastic optimization is in order. When

performing a stochastic optimization, each point on the CAIV plot is a random realization

resulting from both the stochastic nature of the underlying function as well as that of the

algorithm itself. Therefore, to obtain useable MOP estimates, many runs at each

costfactor should be done and the most self-consistent composite set of runs should be

selected as representative of solving the full range of the CAIV problem. This was done

to obtain results in Chapter 8 that utilize the simulation with 2SPSA.

 103

CHAPTER 8

PHASE II RESULTS: SIMULATION OBJECTIVE FUNCTION

Simulation Description

 The MCM system of systems model was implemented as a simulation, patterned

directly after the parameter dependency diagram developed in Chapter 5. It contains 12

functional blocks, as shown below (Figure 29), with parameters defined explicitly in

Chapter 5.

A

λ
Tdetect

E1

E2

E

TclassTc

Tcf

M0

Pfa

Dfa

Dft

Pd

Sminefield

λft

Dm•

•

• •

•

•

•

•

Pc

•

•
Cm

Cf

Tn

Tpf

PL

q

S1: Reconnaissance System

S2: Neutralization
 System

S: Clearance
System of Systems

Quality Constraint on S

Pc

σ

Rr

f
qlb
cub

Dfa = no. of mine false alarms
Dft = no. false targets detected
Dm = no. of mines detected
Cf = no. of non-mines incorrectly
 classified as mine-like
Cm = no. of mines correctly
 classified as mine-like

1

5

4

3

2

10

8

7

9

6

11

12

PBCMs

Figure 29 MCM Simulation Block Diagram

 104

The simulation was implemented as a MATLAB function which produces one

Monte Carlo realization of E and q with each function call. The simulation randomly

generates the specified events in accordance with the MOPs. For example, looking at

Block 4, if there are 100 mines in the minefield (i.e., M0=100) and Pd=0.90, then the

number of detected mines (Dm) is generated simply as 100 Bernoulli success/failure trials

with probability of success equal to 0.90. The randomly generated Dm is then passed to

Block 7, which in turn similarly generates the number of correctly classified mines, and

so on. Eventually, the MOEs for that realization are produced and the resulting penalty

function evaluation is returned by the simulation function MCMSIM after calculating the

resultant system cost.

Second Order Constrained SPSA Optimization Via Penalty Function And Simulation

The resulting penalty function values are noisy and the amount of noise directly

affects 2SPSA parameter selection. To characterize the noise, an auxilliary program was

written that takes x as input, calls MCMSIM many times and generates statistics. For

example, at the optimum for costfactor=2.0 and using the absolute value penalty function

with gains A1=3 and A2=100, the standard deviation for FA ()x and E are 2.3 and 0.38,

respectively. Unfortunately, these modest gains for the cost and quality penalties did not

produce acceptably close convergence. The values used for the previous analyses (A1=50,

A2=1000) were used instead, with better convergence properties—but at the cost of

greatly increased noise on the penalty function FA ()x : a mean and sigma values of 46

and 21 at costfactor equal to 2.0. This level of noise is extremely difficult to deal with,

 105

and is an artificiality of the penalty function method. A quick analysis of the quadratic

penalty function indicates that the resulting noise on FQ()x is unacceptably high when

gains guaranteed to produce constraint agreement are used.

In stochastic optimization, the issue arises as to what the final answer is to the

problem at hand. Specifically, what are the values for the MOEs E and q that are

associated with the solution vector x (MOPs)? Since MCMSIM produces a random

realization of the objective function, it must be called many times and results averaged to

generate expected values for E and q. The 2SPSA code was therefore augmented to

average 100 function calls to generate the average MOEs that are displayed.

To characterize the effects this substantial noise would have on 2SPSA, the

2SPSA code was initialized with the analytic model’s optimal results for each value of

the costfactor and optimized using the simulation as the objective function. The results

are displayed in Appendix F and indicate that the algorithm is stable and would converge

(or at least not wander far from) the optimal solution were it initialized sufficiently

“close” to the optimum. Another insight is that the problem from this type of control run

is that the final MOE values are relatively insensitive to values of x(2) and x(3) but very

sensitive to x(4). As in the CONSTR baseline results, the value of x(4) took a step

change at costfactor=2.5, where the problem changes character from a flat objective

function to one that is much sharper. Also interesting is the level of noise in satisfaction

of the clearance rate constraint that can be observed in the summary table in Appendix F.

The noise is consistent with the characterization mentioned above, giving an indicator of

the problem difficulty and noise in the simulation.

 106

As in Chapter 7, initial values for x were chosen as random 20% perturbations

from the optimal values as determined by the baseline (noise-free, analytic model)

CONSTR results. Many runs were conducted at 1000 iterations, with some run out to

2000 and 4000 iterations without significantly enhancing the results. Figure 30 displays

composite results of six sets of 1000-iteration runs that best satisfy the cost and clearance

rate constraints. They were obtained with 2SPSA algorithm parameters α=0.602, A=50,

c=0.02, a=10, blocking the use of any iterate that increased the current value of the

objective function by more than 3, and averaging the last three unblocked iterates to

obtain the final estimate. Although the MOE results are well-behaved, the MOP

estimates are still noisy, exhibiting the same character as those obtained with the

algorithm initialized at the optimum.

Figure 31 displays a comparison of the 2SPSA simulation MOE results against the

various methods applied to the analytic model. Also included are 1 sigma bars on the

average MOE obtained with the 2SPSA simulation results, as discussed above. In the

MOE domain, the 1000-iteration SPSA simulation results compare favorably with the

deterministic results.

 The cost constraint agreement is excellent, diverging generally less than $10K.

Figure 32 below shows the degree of convergence to the clearance rate constraint of 0.846

and the +/- one sigma bounds obtained numerically. This too shows excellent agreement

as did the 2SPSA results obtained on the analytic model.

 Practicality questions remain, however, as (1) we have used knowledge of the

analytic model results to select the initial iterate and (2) the MOP estimates are too

 107

irregular to confidently assign system design parameters in a CAIV approach to the

system of systems upgrade problem, as a small change in the cost constraint would

produce unreasonably irregular changes in the corresponding MOPs.

1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8
15

20

25

30

35

40

45
System of Systems MOE as Function of Cost

Cost Factor on Threshold System Costs

Ti
m

e
to

 C
om

pl
et

e
M

is
si

on
 (

ho
ur

s)

35 40 45 50 55 60 65 70 75
15

20

25

30

35

40

45
System of Systems MOE as Function of Cost

Cost ($M)

Ti
m

e
to

 C
om

pl
et

e
M

is
si

on
 (

ho
ur

s)

1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
System of Systems MOPs as Function of Cost

Cost Factor on Threshold System Costs

M
O

P
s

1-
4

(p
er

ce
nt

 o
f t

ec
hn

ol
og

y
th

re
sh

ol
d)

x1
x2
x3
x4

1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
System of Systems MOPs as Function of Cost

Cost Factor on Threshold System Costs

M
O

P
s

5-
8

(p
er

ce
nt

 o
f t

ec
hn

ol
og

y
th

re
sh

ol
d)

x5
x6
x7
x8

Figure 30: 2SPSA Simulation Results--5000 Function Evaluations

 108

2SPSA Simulation vs. Analytic Results

10

15

20

25

30

35

40

45

50

1.
25

1.
30

1.
35

1.
40

1.
45

1.
50

1.
55

1.
60

1.
65

1.
70

1.
75

1.
80

1.
85

1.
90

1.
95

2.
00

2.
05

2.
10

2.
15

2.
20

2.
25

2.
30

2.
35

2.
40

2.
45

2.
50

Costfactor

O
ve

ra
ll

M
O

E,
 E

2SPSA Simulation Penalty Function
CONSTR Analytic Model
CONSTR Analytic Penalty Function
2SPSA Analytic Penalty Function

Figure 31: 2SPSA Simulation vs. Analytic Model Results

2SPSA Simulation Results for Clearance Rate

0.7

0.75

0.8

0.85

0.9

0.95

1

1.
25

1.
30

1.
35

1.
40

1.
45

1.
50

1.
55

1.
60

1.
65

1.
70

1.
75

1.
80

1.
85

1.
90

1.
95

2.
00

2.
05

2.
10

2.
15

2.
20

2.
25

2.
30

2.
35

2.
40

2.
45

2.
50

Costfactor

C
le

ar
an

ce
 R

at
e,

 q
(x

)

Constraint value, qlb=0.846
Average q(x) +/- sigma

Figure 32: 2SPSA Simulation Results for Clearance Rate

 109

Practical Selection of Initial MOP Estimates and Final Results

 The question arises as to how, in the absence of prior analytic results, one would

select an initial set of MOP values for the simulation optimization. Recall that for the

algorithm comparisons above, we randomly perturbed the true optimum by 20% to

initialize each 1SPSA and 2SPSA run. One “prior-free” way to do this is to first estimate

the minimum value of the costfactor multiplier that would represent essentially no cost

constraint—and therefore the optimization solution vector would move to the technology

upper bound. In the absence of understanding the sensitivity of the objective function to

each MOP, we could then assume that the optimal MOP values would tend to be

proportional to the costfactor across its interval constraints. Therefore, when

costfactor=1, we assume the optimum would be the threshold value, x* and then linearly

ramp up (or down) to its technology constraint as the costfactor constraint is relaxed to its

asymptotic value. In our MCM problem notation with the asymptotic costfactor equal to

2.5,

()

()

x x x x x x

x x x x x x

0

0

() ()
.

() () () ()

() ()
.

() () () ()

*

*

j j j j j j j

j j j j j j j

L U L L

U U L U

= + 





 − =

= − 





 − =

costfactor -1
 for such that

costfactor -1
 for such that

15

15

This approach was used with 1000 iterations with marginally satisfactory results.

Although it produced more stable MOP estimates, the MOEs were consistently worse

than the random initialization scheme that was chosen to (1) provide a common challenge

to all the algorithms, (2) represent some of the arbitrariness of most initial management

 110

decisions regarding MOPs, and (3) be certain of being “close enough” to the optimum to

expect algorithm convergence.

To enhance results and their practical utility, two additional measures were taken.

First, the number of iterations was increased to 2000 and a composite profile selected

from the results of six separate runs at each costfactor value using the criteria of creating

as smooth an overall MOE curve as possible—i.e., no prior information was used from

the analytic baseline results. Figure 33 displays the MOE and MOPs normalized to their

interval constraints in the same manner as previously presented results. The MOE

estimates are very well-behaved as the costfactor constraint increases, and the MOP

estimates are erratic yet still patterned.

Secondly, to enhance the practical utility of the MOP results, they were

interpolated utilizing second to sixth order polynomials, as appropriate. The 2SPSA-

generated MOP estimates and the polynomial interpolated curves are shown in their

natural units. The solid red line in Figure 33 is the result of averaging the MOE

realizations from 100 executions of the simulation function MCMSIM for each

interpolated MOP vector as a function of the costfactor constraint. These final results are

excellent and demonstrate practical utility for use in specifying component system MOPs.

 111

1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8
15

20

25

30

35

40

45
System of Systems MOE as Function of Cost

Cost Factor on Threshold System Costs

Ti
m

e
to

 C
om

pl
et

e
M

is
si

on
 (

ho
ur

s)

35 40 45 50 55 60 65 70 75
15

20

25

30

35

40

45
System of Systems MOE as Function of Cost

Cost ($M)

Ti
m

e
to

 C
om

pl
et

e
M

is
si

on
 (

ho
ur

s)

1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
System of Systems MOPs as Function of Cost

Cost Factor on Threshold System Costs

M
O

P
s

1-
4

(p
er

ce
nt

 o
f t

ec
hn

ol
og

y
th

re
sh

ol
d)

x1
x2
x3
x4

1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
System of Systems MOPs as Function of Cost

Cost Factor on Threshold System Costs

M
O

P
s

5-
8

(p
er

ce
nt

 o
f t

ec
hn

ol
og

y
th

re
sh

ol
d)

x5
x6
x7
x8

Figure 33: 2SPSA Simulation Results (MOE and Normalized MOPs)--2000 Iterations with Ramp
Interpolation Initialization

 112

1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8
20

30

40

50

60

70

80

90

100
System of Systems MOPs as Function of Cost

Cost Factor on Threshold System Costs

M
O

P
s

1
an

d
5

x1
x5

1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8
0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
System of Systems MOPs as Function of Cost

Cost Factor on Threshold System Costs

M
O

P
s

2
an

d
3

x2
x3

1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8
1

2

3

4

5

6

7

8

9

10
System of Systems MOPs as Function of Cost

Cost Factor on Threshold System Costs

M
O

P
s

4,
 7

,
an

d
8

x4
x7
x8

1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8
100

200

300

400

500

600

700
System of Systems MOPs as Function of Cost

Cost Factor on Threshold System Costs

M
O

P
 6

x6

Figure 34: 2SPSA Simulation Results (MOP Values)--2000 Iterations with Ramp Interpolation
Initialization

 113

 Figure 35 compares these results to the baseline analytic results in the overall

MOE domain. The interpolated simulation results are very smooth, approximating the

baseline results curve. Of course, we always have to make sure that the quality and cost

constraints are reasonably well satisfied, which is indeed the case, as shown in Figures 36

and 37. Actually, the interpolated MOP values result in underspending the cost constraint

by as much as $4M (about 6%), though the raw 2SPSA results are much closer.

2SPSA Simulation vs. Analytic Results

15.00

20.00

25.00

30.00

35.00

40.00

45.00

50.00

55.00

1.25 1.30 1.35 1.40 1.45 1.50 1.55 1.60 1.65 1.70 1.75 1.80 1.85 1.90 1.95 2.00 2.05 2.10 2.15 2.20 2.25 2.30 2.35 2.40 2.45 2.50

Costfactor

O
ve

ra
ll

M
O

E,
 E

CONSTR Analytic Model

2SPSA Simulation (1000 Iterations, +/-20% ICs)

2SPSA Simulation (1000 Iterations, Ramp ICs)

2SPSA Simulation (2000 iterations, Ramp Ics)

2SPSA Simulation (2000 Iterations, Ramp Ics, Interpolated MOPs)

Figure 35: 2SPSA Simulation vs. Analytic Model Results

 114

2SPSA Simulation Results for Clearance Rate

0.75

0.77

0.79

0.81

0.83

0.85

0.87

0.89

0.91

0.93

0.95

1.
25

1.
30

1.
35

1.
40

1.
45

1.
50

1.
55

1.
60

1.
65

1.
70

1.
75

1.
80

1.
85

1.
90

1.
95

2.
00

2.
05

2.
10

2.
15

2.
20

2.
25

2.
30

2.
35

2.
40

2.
45

2.
50

Costfactor

C
le

ar
an

ce
 R

at
e,

 q
(x

)

Constraint value, qlb=0.846+/- sigma

2SPSA (1000 Iterations, +-20% Ics) Average q(x)

2SPSA (1000 Iiterations, Ramp Ics) Average q(x)

2SPSA (2000 Iterations, Ramp Ics) Average q(x)

2SPSA (2000 Iterations, Interpolated MOPs) Average q(x)

Figure 36: 2SPSA Simulation Clearance Rate Results

2SPSA Simulation Cost Results

30

35

40

45

50

55

60

65

70

1.25 1.30 1.35 1.40 1.45 1.50 1.55 1.60 1.65 1.70 1.75 1.80 1.85 1.90 1.95 2.00 2.05 2.10 2.15 2.20 2.25 2.30 2.35 2.40 2.45 2.50

Costfactor

Sy
st

em
 o

f S
ys

te
m

s
C

os
t

Cost Constraint Bound

2SPSA Simulation (1000 Iters)

2SPSA Simulation (2000 Iters., Interp. MOPs)

2SPSA Simulation (2000 Iterations)

Figure 37: 2SPSA Simulation Cost Results

 115

Also of interest is the distribution of costs between the optimized systems, S1 and

S2. Figure 38 displays the resultant cost factor for each system as a function of the overall

system of systems costfactor constraint. The distribution of costs varies as the costfactor

constraint is relaxed and the impact of certain parameters are automatically traded off.

Single System Costfactor Results

1.00

1.20

1.40

1.60

1.80

2.00

2.20

2.40

2.60

2.80

3.00

1.25 1.30 1.35 1.40 1.45 1.50 1.55 1.60 1.65 1.70 1.75 1.80 1.85 1.90 1.95 2.00 2.05 2.10 2.15 2.20 2.25 2.30 2.35 2.40 2.45 2.50

System of Systems Costfactor Constraint

Si
ng

le
 S

ys
te

m
 C

os
tfa

ct
or

 R
es

ul
ts

S1 (Baseline) Opt. Costfactor
S2 (Baseline) Opt. Costfactor
Nominal Costfactor
S1 (Interp. Sim.) Opt. CF
S2 (Interp. Sim.) Opt. CF

Figure 38: 2SPSA Simulation Costfactor Results by Individual System

 Finally, referring back to the baseline analytic results from Chapter 7, we found

that at a representative costfactor constraint value of 2.0, CONSTR produced

[]0.42,0.3,55.0,961.0,3.851 =p and []p2 4232 7 0 3 0= . , . , . yielding 8.17=E , with clearance

rate q=0.846 at a cost of $56.1M. Our final results with utilizing nonlinear, constrained,

stochastic optimization with the simulation as the means to evaluate the objective

 116

function, produced []8.55,2.3,1.1,965.0,3.741 =p and []3.3,4.4,6.4952 =p

yielding 7.18=E , with clearance rate q=0.841 at a cost of $54.0M. The overall MOE is

about 5% worse for $2M less cost and a very slight decrease in clearance rate of 0.005.

These runs have highlighted two fundamental difficulties created by the penalty

function approach to constrained stochastic optimization: (1) sufficiently large penalty

gains to guarantee constraint agreement also makes the transformed objective function

very “flat” and (2) the penalty function multiplies the effect of the simulation noise to the

point where it makes convergence very difficult. These factors should motivate further

research in more direct methods for constrained stochastic optimization to enhance the

likelihood of successful utilization of advanced M&S to support system of systems

acquisition decisions.

 117

CHAPTER 9

VERIFICATION AND VALIDATION ISSUES

This Chapter concerns how Verification, Validation and Accreditation (VV&A)

for the system of systems upgrade process would be approached when extending the

methodology beyond a proof of principle demonstration. Implementation of these VV&A

approaches on a practical problem of significant scope and fidelity is beyond the scope of

the dissertation effort. The discussion is included here for purposes of scoping the

practical aspects of gaining widespread acceptance for a newly proposed process.

A commonly accepted set of definitions for VV&A of models and simulation

(M&S) are as follows40:

Verification: The process of determining that a model implementation accurately

represents the developer’s conceptual description and specifications.

Validation: The process of determining the degree to which a model is an

accurate representation of the real world from the perspective of the intended

uses of the model.

40 Williams, M.L. and Sikora, J., “SIMVAL Minisymposium—A Report”, Bulletin of Military Operations

Research, Vol. 24, No. 2, June 1991.

 118

Accreditation: An official determination that a model is acceptable for a specific

purpose.

There are two parts to verification: logical verification that ensures that the basic

equations and algorithms are correct, while code verification checks whether these

representations or abstractions of the real world are correctly implemented in the

computer.

Note that both V&V are considered to be processes. Since models and simulations

are abstractions of the real world, complete validation is considered to be achievable for

only the most simple of models. Hence it is almost never considered appropriate to refer

to a complex M&S as “validated”. This is where accreditation comes in, representing a

decision by an authoritative body that a given level of validation is sufficient to support a

given decision process or application.

There is a large body of literature on the V&V of software systems, and a lesser

extent on the VV&A of M&S41. This dissertation has examined a constrained

optimization process that utilizes both an analytic model and a simulation to investigate

upgrading a representative systems of systems. The issues in verifying and validating a

process such as this is not unlike those associated with an expert system. An expert

system implements an acknowledged process, although this process is not an expert

system per se, due to the lack of an acknowledged knowledge base. Practical

implementation of this process in its mature form would generally utilize previously

developed models and simulations, each of which presumably brings its own VV&A

 119

approach arising from the single system development which it supports. VV&A of the

selected models and simulations is not part of the verifying and validating the process per

se, but would be expected to have already been accomplished on the core models and

simulations that would map component system MOPs to system of systems MOEs. The

discussion below is therefore adapted from literature on V&V of expert systems, which

seem more applicable to V&V of a new process.

What is Important and Why

When applied to a software system, validation means building the right system,

and verification means building the system right. For a process, validation means

implementation of the right process for the problem, whereas verification means

implementing the intended, self-consistent and repeatable process. Therefore, although

verification is a necessary condition, we are ultimately concerned with validation, since a

highly efficient implementation of an invalid (or inappropriate) process would be useless.

In the context of the proposed process, we will not be solving the system of systems

upgrade problem directly, but an abstraction of it—and we are therefore justifying the

level of abstraction through the validation process. Specific concerns that are applicable

to the validation of the proposed process42:

41 Pace, D.K., “Issues in Validating Simulations with Heterogeneous Levels of Fidelity”, Second High

Fidelity Modeling and Simulation Workshop in the DIS Environment, Johns Hopkins University, 23
March 1995.

42 O’Keefe, R.M, Balci, O., and Smith, E.P., “Validating Expert System Performance”, IEEE Expert,
Winter 1987, pp. 81-87.

 120

• What to validate. Candidate items to validate include (1) intermediate results, (2)

the final result, and/or (3) the reasoning of the process. O’Keefe et al, recommend the

reasoning process as the overall validation standard. His logic is that although a poor

reasoning process can produce a correct result on a trial problem, it is unlikely to be

successfully scaled up to a problem with full complexity. Also, it may be impossible

to classify the final result as decidedly right or wrong. Domain experts can be

assembled to classify the intermediate results, final result, and process reasoning into

categories such as: ideal, acceptable, sub-optimal, and unacceptable.

• What to validate against. The process can be validated against known results or

against domain expert opinion as mentioned above. Known results can be generated

on carefully structured test cases, in particular system of systems models with closed

form expressions for the component system MOEs and the overall MOE. Domain

expert opinion could be obtained by examination of “successful” Cost and

Operational Effectiveness Assessment (COEA) studies, but there is no guarantee that

they are correct—indeed, the operating hypothesis is that the proposed system of

systems upgrade process would be superior to the typical COEA approach that

concentrates on just one system.

• What to validate with. For expert systems, validation efforts generally concentrate

on comparisons against documented test cases. But here, the sample of possible

COEA test cases will be very small, and as mentioned above, would not produce a

range of suggested enhancements across the full system of systems, but their solutions

would necessarily be confined to one system. The process constraints could be set up

 121

to force enhancements to only one component system, or the system of systems could

be composed of the degenerate case of one system, but this would not be a

comprehensive validation check case. O’Keefe et al, recommend testing against a

small number of complex cases and asking a panel of experts to assess how well the

process handles them.

• When to validate. No agreement exists on this in the context of expert system

validation. Initial validation of the process reasoning seems adequate, with

subsequent re-validation as the process applications are extended.

• Controlling the cost of validation. This is generally measured in terms of time and

the cost to obtain applicable data, which can be substantial for a large system of

systems.

• Controlling bias. Several categories of bias must be guarded against, even when

using experts in the validation process, such as:

1. bias for or against a quantitative optimization approach

2. developer bias in selection of test cases/scenarios that would favor his/her

particular system’s potential contribution to the whole

3. bias for or against a centralized authority imposing system of systems

perspectives or requirements on system developers

 122

Selection Strategies For Ultimate Design Of The Process VV&A Approach(es)

Validation of the reasoning process would necessarily be qualitative. Potential

qualitative approaches include:

• Face validation. Experts in the problem domain (i.e., mine countermeasures, COEA

studies, stochastic optimization, etc.) subjectively compare the process performance

against their expert experience, assessing the process results at face value with regard

to prescribed acceptable performance range.

• Predictive validation. This approach utilizes historic test cases with known results

and assessments of the errors previously obtained. Here, it will be necessary to find a

test case where multiple systems have been upgraded in an attempt to enhance a

system of systems. Again, the assessment will be against some acceptable

performance range standard.

• Field tests. This is a long term approach that would be used only after initial

validation, in an attempt to widen the validated domain.

• Sensitivity analysis. This is performed by systematically changing model parameters

and constraint sets and observing impact on the solutions. This is a particularly useful

approach in this application, as the available test cases may only be special cases of

the process in that generally only one component system of a particular system of

systems is considered for upgrading or replacement.

This area of validation of M&S and expert systems is one in which there is no

consensus on approach. My initial judgment is that a combination of face validation,

predictive validation and sensitivity analysis will be appropriate.

 123

Perspectives on the Limitations of V&V Approaches

There are going to be limits and concerns related to any approach to verification

and validation. One of the most important is related to completeness and complexity43.

This is of particular concern here, as we are expanding the scope of systems engineering

into the system of systems domain. At the system of systems level, the relationship of

component systems’ MOPs to the overarching MOE becomes increasingly non-intuitive

for all but the most significant parameters, as the complexity of the system of systems

grows. Therefore, the value of expert opinion wanes as the completeness of the

representation or abstraction increases.

Secondly, there is the problem of acquiring sufficient data, or test cases to perform

the qualitative validation described above. Since the whole approach represents a whole

new way at looking at the system of systems upgrade process, it may be that the

accumulated experience of available test cases will serve simply as knowledge acquisition

for expert face validation.

Finally, and perhaps most significantly, we don’t even know how well the current

acquisition decision process “works” in a cost-constrained environment. We do know

that in the absence of cost constraints, it doesn’t matter whether one optimizes at the

system of system of systems level. We also know that those two factors are relatively

43 Rosness, R., “Limits to Analysis and Verification”, Verification and Validation of Complex Systems:

Human Factors Issues , Springer-Verlag, 1992, Wise, J.A., Hopkin, V.D., and Stager, P., Eds.

 124

new concerns in DoD acquisition policy and implementation: (1) concern with cost

rather than performance as the independent variable in trade studies, and (2) the system of

systems perspective. These new factors make it unlikely that an applicable process

baseline could ever be established.

 125

CHAPTER 10

SUMMARY AND CONCLUSIONS

 A systematic approach to considering how best to upgrade specific, complex

systems of systems has been postulated and demonstrated. The process treats cost as the

independent variable and seeks to find the “best” point design for upgrading a particular

system of systems, subject to stated cost and technology constraints, relative to an

overarching measure of effectiveness. The design requirements so generated represent an

improved system of systems that may involve upgrading all component systems

simultaneously, not just one at a time. Extension of the typical COEA/AOA approach to

the system of systems environment would hypothesize a manageable suite of point

designs and assess them against a common metric generally functionalized by cost. In

contrast, this approach automatically generates a continuum of “optimal” designs not

only functionalized by total system of systems cost, but also taking into account realistic

technology constraints as well.

 The process has been demonstrated on a naval mine countermeasures system of

systems representation of sufficient complexity and detail to demonstrate the feasibility of

the approach. This proof of principle demonstration features a constrained, nonlinear

optimization algorithm whose objective function is a closed-form representation of the

primary system of systems MOE, with constraints represented by functionalized

Performance Based Cost Models, technology-driven bounds on system MOPs, and a

secondary system of systems MOE. Various optimization approaches have been

demonstrated and differences quantified, including the suboptimality of considering just

 126

one system at a time. Due to the nature of complex system of systems interactions,

implementation of this optimization technique on problems of national interest will

require M&S to represent the mapping of system measures of performance to single

system MOEs and on to the overarching system of systems MOE. A stochastic

simulation of the MCM system of systems was therefore implemented and optimized

utilizing a constrained variant of the Stochastic Perturbation Simultaneous

Approximation method.

In short, a disciplined, quantitative approach to developing system of systems

upgrade options for very complex engineering situations has been developed and

demonstrated. Application of this approach which can result in more effective and

comprehensive systems acquisition and technology investment strategies, with the

secondary benefit that the process can be used as a framework to determine how to utilize

campaign-level M&S to support acquisition decisions.

Conclusions

The approach and methodology supports the quantitative elements of the System

of Systems (S2) Engineering Process, especially those related to system performance

optimization and development of transition or upgrade alternatives. Inclusion of PBCMs

and associated overall cost constraints enables the decisionmaker to proceed based upon

cost as the independent variable considerations. General methodology was developed and

feasibility has been demonstrated through a proof of principle analysis of a naval mine

countermeasures system of systems with realistic performance based cost models and

technology constraints, and utilizing both classical and stochastic optimization

algorithms.

 127

In quantifying the sub-optimality of single-system optimization relative to

simultaneously optimizing the entire system of systems, several significant insights were

obtained and verified by examining some reasonable assumptions that might be held by

component systems’ management concerning the concurrent system engineering

processes of other systems. For example, if a system engineer assumes that the other

component systems are being developed for high performance, he will “under-engineer”

his own system with respect to interfacing parameters and will tend to allocate his

resources to enhancement of his single system MOE. Conversely, if a system engineer

assumes that the other systems are not performance-driven, the result is to “over-

engineer” his system at the interface and since resources are constrained, this forces

degradation in his single system MOE. In both cases, the overall system of systems is

sub-optimal, because all system engineers are making the same erroneous assumptions.

These effects are accentuated with restrictive cost constraints and become insignificant as

overall cost constraints are relaxed to the point where the most advanced technology is

affordable for all system components.

Due to the complex interaction between systems (including multiple units of

similar systems), closed form analytic expressions for system of systems performance are

giving way to simulation-based representations. Therefore, we developed an efficient

methodology that can utilize stochastic simulation to evaluate the system of system’s

measure of effectiveness. Transformation of the constrained nonlinear stochastic

optimization problem formulation to include only interval constraints enabled the

application of a straightforward constrained optimization projection adaptation of the

second-order SPSA algorithm. Although feasible, the inherent ill-conditioning of the

 128

selected penalty function approach and the number of simulation-based functions

evaluations still required for convergence limits practical, large scale applications and

therefore motivates future research to enhance efficiency.

Future Research

Several interesting avenues for further research have become apparent in working

through the general system of systems optimization approach and the proof of principle

demonstration. The following areas need to be addressed to varying degrees in order to

implement the methodology on systems of systems of national interest, scope and

complexity:

1. Nonlinear constrained stochastic optimization. Efficient methods for nonlinear

constrained stochastic optimization will be necessary to utilize simulations of

reasonable fidelity to evaluate system of systems MOEs as part of optimization

objective functions. The penalty function approach utilized here is a simple, brute

force method that “works”, but brings with it certain ill-conditioning that should be

avoided. An approach that incorporates the efficient function evaluation properties of

2SPSA into a classical nonlinear programming algorithm such as SQP should be

effective.

2. Incorporation of performance based cost modeling into system engineering. The

development of a PBCM should be an integral part of the system engineering process,

as they are necessary for any reasonable CAIV approach, including this one.

Although research into methods and standards for software development cost

estimating is active, similar efforts should be initiated for appropriate categories of

 129

full systems, and incorporated into system engineering standards efforts.

Furthermore, the modeling and simulation community will increasingly seek to

integrate PBCMs into campaign-level simulations to reflect the cost of acquiring and

using certain systems of systems. Therefore, a PBCM should be a requirement for all

acquisition programs.

3. Extension to force level analysis. Although the general formulation included notation

for force level analysis, only one system of each type was treated by the optimization

approach utilized in this dissertation. Due to the small numbers of systems that

generally make up a system of systems, an integer programming approach tailored to

this problem structure is necessary to extend the analysis to determine how many

systems of each type are appropriate to optimize the system of systems MOE.

4. Faster than real-time simulations. The trend in modeling and simulation is towards

full-fidelity, “physics-based” models with graphical interfaces that provide realistic

visualization to enable training and face validation by subject matter experts. The

associated level of fidelity comes at the expense of execution speed that is at odds

with the needs of quantitative analyses that generally utilize Monte Carlo

implementations to enhance stochastic simulation sample size—and clearly at odds

with the approach utilized here that may need several thousand simulation-generated

function evaluations to optimize a system of system at just one cost constraint value.

Research into methods of quantifying the effects of lowering the model fidelity on our

system of systems optimization method is necessary to complement the research into

efficient constrained nonlinear stochastic optimization algorithms.

 130

APPENDIX A

CONSTRAINED SQP OPTIMIZATION MATLAB CODE, EXAMPLE, AND

RESULTS

% MCM System of Systems
% CONSTR w/o Explicit Gradient
%
% Filename: \matlab\dissertation\MCM32.m
% Output file initialization

fid=fopen('c:\matlab\dissertation\mcm32 output.doc','w');
fprintf(fid,'output from execution of MCM32.m\n\n');

%==
%
% MCM Initialization
%
%==
%
% x(1)=p11= S1 area coverage rate (nm^2/day)
% x(2)=p12= S1 classification probability
% x(3)=p13= S1 FAR (#/nm^2)
% x(4)=p14= S1 time to classify (min)
% x(5)=p15= S1 navigation accuracy (yards)
% x(6)=p21= S2 Re-acquisition range (yards)
% x(7)=p22= S2 time to prosecute a false target (min)
% x(8)=p23= S3 time to neutralize (min)
pd=0.90; %S1 detection system probability of detection

x0=[10,0.9,2.0,9.17,90,75,6.6,10.0]; %Might need to start at feasible point. This won't
meet q(x) constraint.
fprintf(fid,'x0=\n');fprintf(fid,'%10.3f',x0);fprintf(fid,'\n');
vlb=[10.0,0.9,0.25,3.0,42,75,1.0,3.0]; % lower bound constraint on x
vub=[100,0.98,2.0,9.17,90,700,7.0,10.0]; % upper bound constraint on x
fprintf(fid,'vlb=\n');fprintf(fid,'%10.3f',vlb);fprintf(fid,'\n');
fprintf(fid,'vub=\n');fprintf(fid,'%10.3f',vub);fprintf(fid,'\n\n');
% Compute px1, polynomial fit cost function parameters for x(1)
x1=[10,57,82,94];
y1=[3,4.483,7.655,11.445];
px1=polyfit(x1,y1,3);
% Compute px2, polynomial fit cost function parameters for x(2)
x1=[0.9,0.93,0.96,0.98];
%y1=[3,4.483,7.655,11.445];%original PBCM for Pc
y1=[.2,.5,1.4,2.2]; %revised PBCM that reflects COTS/NDI development
px2=polyfit(x1,y1,2);
%x2=0.9:.01:1.0;
% Compute px3, polynomial fit cost function parameters for x(3)
x1=[2,1,0.5,0.25];
y1=[8,10.319,13.592,16.429];
px3=polyfit(x1,y1,3);
% Compute px4, polynomial fit cost function parameters for x(4)
x1=[3.513,3.89,4.77,9.17];
y1=[9.191,8.190,7.574,5.0];
px4=polyfit(x1,y1,2);
% Compute px5, polynomial fit cost function parameters for x(5)
x1=[90,60,48,42];
y1=[0.050,0.250,0.450,0.550];
px5=polyfit(x1,y1,2);
% Compute px6, polynomial fit cost function parameters for x(6)
x1=[129,457,622,75];
y1=[3,4.8,7.655,1.5];
px6=polyfit(x1,y1,3);
% Compute px7, polynomial fit cost function parameters for x(7)
x1=[6.6,4.4,3.3,2.64,1.32];
y1=[5.0,7.5,8.190,9.191,16.621];
px7=polyfit(x1,y1,3);
% Compute px8, polynomial fit cost function parameters for x(8)
x1=[10,8,7,5,3];
y1=[5.3,6,7,10,15];

 131

px8=polyfit(x1,y1,2);
%compute threshold system cost
cost0=polyval(px1,x0(1))+polyval(px2,x0(2))+polyval(px3,x0(3))+polyval(px4,x0(4))+polyval(
px5,x0(5))+polyval(px6,x0(6))+polyval(px7,x0(7))+polyval(px8,x0(8))
costfactor=1.5; %nominal value
%Insert costfactor loop
i=0
for costfactor=1.25:0.05:2.5 %Note problem is infeasible with costfactor<1.25

i=i+1
costfactor
fprintf(fid,'\n');

cub=costfactor*cost0 %system of systems cost constraint
qlb=0.846 %quality constraint lower bound--remember that constraints are less-
thans, not gt's.
fprintf(fid,'Run with Costfactor = ');fprintf(fid,'%10.3f',costfactor);fprintf(fid,'
cub=');fprintf(fid,'%10.3f',cub);fprintf(fid,' qlb=');fprintf(fid,'%10.3f\n',qlb);
sminefield=20; %minefield area, (nm^2)
m0=100; %number of mines in minefield, initially
lambda=m0/sminefield; %mine density, (#/nm^2)
dmine=600; %average distance between mines, (yards)
vtransit=7; %S1 vehicle transit speed (knots)
ttransit=dmine/(2000*vtransit); %transit time during classification (hours)
lambdaft=1.0; %false target density (#/nm^2)
% Define parameters for the objective function
p1=pd;
p2=lambda;
p3=lambdaft;
p4=ttransit;
p5=sminefield;
p6=cub;
p7=qlb;
[f,g]=mcmfun(x0,p1,p2,p3,p4,p5,p6,p7)
fprintf(fid,'Initial Values\n');
x=x0;

cost =
polyval(px1,x(1))+polyval(px2,x(2))+polyval(px3,x(3))+polyval(px4,x(4))+polyval(px5,x(5))+
polyval(px6,x(6))+polyval(px7,x(7))+polyval(px8,x(8))

q=p1*x(2)*exp(-x(5)/(4.481*x(6)));
f1 = (p5/60)*(24*60/x(1) + p2*x(2)*x(4)*p1 + (2*x(4)-p4)*((1-x(2))*p1*p2 + x(3) +

p1*p3));
f2 = (p5/60)*(p1*x(2)*x(8)*p2*exp(-x(5)/(4.481*x(6)))+(1-exp(-

x(5)/(4.481*x(6))))*p1*x(2)*x(7)*p2 + (1-x(2))*(x(3)+p1*p3)*x(7));
E=f1+f2;
q=p1*x0(2)*exp(-x0(5)/(4.481*x0(6)));

fprintf(fid,'f=');fprintf(fid,'%10.3f',f);fprintf(fid,' E=');fprintf(fid,'%10.3f',E);
fprintf(fid,' cost=');fprintf(fid,'%10.3f',cost);fprintf(fid,'
q=');fprintf(fid,'%10.3f\n',q);
% Print out threshold system values for f and constraints, g.

%==
%
% CONSTR Initialization and Call
%
%==
% Modify x0 so that it satisfies initial quality constraint, g(2)

%x0(2)=0.96
%x0(5)=45
%x0(6)=600
[f,g]=mcmfun(x0,p1,p2,p3,p4,p5,p6,p7)
% Print out initial system values for f and constraints, g.
grad=[]; % need to set to null matrix in order to pass p1....p7 to mcmfun
options(1)=1; % print output table
%options(2)=1e-5; % relax x termination criteria
%options(3)=1e-3; % relax f termination criteria
%options(4)=1e-5; % relax constraint violation limits
options(9) = 0; % if =1, check analytic gradient
[x,options]=constr('mcmfun',x0,options,vlb,vub,'mcmgrad',p1,p2,p3,p4,p5,p6,p7)
[f,g]=mcmfun(x,p1,p2,p3,p4,p5,p6,p7)
fprintf(fid,'Final Values\n');
cost =
polyval(px1,x(1))+polyval(px2,x(2))+polyval(px3,x(3))+polyval(px4,x(4))+polyval(px5,x(5))+
polyval(px6,x(6))+polyval(px7,x(7))+polyval(px8,x(8))
q=p1*x(2)*exp(-x(5)/(4.481*x(6)))
f1 = (p5/60)*(24*60/x(1) + p2*x(2)*x(4)*p1 + (2*x(4)-p4)*((1-x(2))*p1*p2 + x(3) + p1*p3));
f2 = (p5/60)*(p1*x(2)*x(8)*p2*exp(-x(5)/(4.481*x(6)))+(1-exp(-
x(5)/(4.481*x(6))))*p1*x(2)*x(7)*p2 + (1-x(2))*(x(3)+p1*p3)*x(7));

 132

E=f1+f2
fprintf(fid,'Total time, E=');fprintf(fid,'%10.3f',E);
fprintf(fid,' cost=');fprintf(fid,'%10.3f',cost);fprintf(fid,'
q=');fprintf(fid,'%10.3f\n',q);
fprintf(fid,'x=');fprintf(fid,'%10.3f',x);fprintf(fid,'\n');
fprintf(fid,'Function evaluations= ');fprintf(fid,'%8.0f\n',options(10));
cf(i)=costfactor; fval(i)=f;
costval(i)=cub;fevals(i)=options(10);costi(i)=cost;qfinal(i)=q;
z1(i)=x(1);z2(i)=x(2);z3(i)=x(3);z4(i)=x(4);z5(i)=x(5);z6(i)=x(6);z7(i)=x(7);z8(i)=x(8);
z1(i)=abs((z1(i)-x0(1))/(vlb(1)-vub(1)));
z2(i)=abs((z2(i)-x0(2))/(vlb(2)-vub(2)));
z3(i)=abs((z3(i)-x0(3))/(vlb(3)-vub(3)));
z4(i)=abs((z4(i)-x0(4))/(vlb(4)-vub(4)));
z5(i)=abs((z5(i)-x0(5))/(vlb(5)-vub(5)));
z6(i)=abs((z6(i)-x0(6))/(vlb(6)-vub(6)));
z7(i)=abs((z7(i)-x0(7))/(vlb(7)-vub(7)));
z8(i)=abs((z8(i)-x0(8))/(vlb(8)-vub(8)));
end
% Plot option 1: Plot System of systems MOE as CAIV
figure
plot(cf,fval,'-*b')
title('System of Systems MOE as Function of Cost')
xlabel('Cost Factor on Threshold System Costs')
ylabel('Time to Complete Mission (hours)')
figure
plot(costval,fval,'-*b')
title('System of Systems MOE as Function of Cost')
xlabel('Cost ($M)')
ylabel('Time to Complete Mission (hours)')
%
%
% Plot option 2: Plot MOPs as CAIV
figure
plot(cf,z1,'-b*',cf,z2,'-r+',cf,z3,'-go',cf,z4,'-kx')
legend('x1','x2','x3','x4')
title('System of Systems MOPs as Function of Cost')
xlabel('Cost Factor on Threshold System Costs')
ylabel('MOPs 1-4 (percent of technology threshold)')
figure
plot(cf,z5,'-b*',cf,z6,'-r+',cf,z7,'-go',cf,z8,'-kx')
legend('x5','x6','x7','x8')
title('System of Systems MOPs as Function of Cost')
xlabel('Cost Factor on Threshold System Costs')
ylabel('MOPs 5-8 (percent of technology threshold)')
% print table of results to file
fprintf(fid,'\n');
fprintf(fid,'cost factor');fprintf(fid,' cub');fprintf(fid,' E');fprintf(fid,'
cost');fprintf(fid,' qfinal');fprintf(fid,' fun. evals\n');
for j=1:i

fprintf(fid,'%10.2f',cf(j));fprintf(fid,'%10.3f',costval(j));fprintf(fid,'%10.3f',fval(j))
;fprintf(fid,'%10.3f',costi(j));fprintf(fid,'%10.3f',qfinal(j));fprintf(fid,'%10.0f\n',fev
als(j));
end
status=fclose(fid)

function [f,g] = mcmfun(x,p1,p2,p3,p4,p5,p6,p7)
%updated Px2, 7/3/97
px1=[4.503408803940725e-005, -5.386095666335044e-003, 2.159330101073730e-001,

1.334245377520354e+000];
px2=[2.834645669291690e+002, -5.076377952756583e+002, 2.274598425197177e+002];
px3=[-2.048380952380911e+000, 9.987333333333214e+000, -1.794233333333325e+001,

2.032238095238094e+001];
px4=[1.159691730856429e-001, -2.175732453433467e+000, 1.520381256718985e+001];
px5=[2.061825086032983e-004, -3.775958229500408e-002, 1.777803488786043e+000];
px6=[1.504875482450802e-007, -1.578229837871938e-004, 5.516694369186904e-002, -

1.813253427503106e+000];
px7=[-2.850358103957624e-001, 3.846213159671302e+000, -1.726423877731832e+001,

3.334408692656030e+001];
px8=[2.102445277065673e-001, -4.109593768487483e+000, 2.539723920331297e+001];
f1 = (p5/60)*(24*60/x(1) + p2*x(2)*x(4)*p1 + (2*x(4)-p4)*((1-x(2))*p1*p2 + x(3) + p1*p3));
f2 = (p5/60)*(p1*x(2)*x(8)*p2*exp(-x(5)/(4.481*x(6)))+(1-exp(-
x(5)/(4.481*x(6))))*p1*x(2)*x(7)*p2 + (1-x(2))*(x(3)+p1*p3)*x(7));

 133

f=f1+f2;
% evaluate cost constraint
g(1) =
polyval(px1,x(1))+polyval(px2,x(2))+polyval(px3,x(3))+polyval(px4,x(4))+polyval(px5,x(5))+
polyval(px6,x(6))+polyval(px7,x(7))+polyval(px8,x(8))-p6;
% evaluate negative of quality constraint
g(2) = -p1*x(2)*exp(-x(5)/(4.481*x(6)))+p7;
%p1=pd
%p2=lambda
%p3=lambdaft
%p4=ttransit
%p5=sminefield
%p6=cub
%p7=qlb

function [df,dg] = mcmgrad(x,p1,p2,p3,p4,p5,p6,p7)
df = [];
dg = [];

09/10/97 4:58 PM Baseline 9-10-97.doc
output from execution of MCM32.m.

x0=
 10.000 0.900 2.000 9.170 90.000 75.000 6.600 10.000
vlb=
 10.000 0.900 0.250 3.000 42.000 75.000 1.000 3.000
vub=
 100.000 0.980 2.000 9.170 90.000 700.000 7.000 10.000

Run with Costfactor = 1.250 cub= 35.082 qlb= 0.846
Initial Values
f= 93.871 E= 93.871 cost= 28.066 q= 0.620
Final Values
Total time, E= 38.597 cost= 35.082 q= 0.846
x= 57.379 0.963 2.000 4.983 45.108 417.391 7.000 8.793
Function evaluations= 311

Run with Costfactor = 1.300 cub= 36.486 qlb= 0.846
Initial Values
f= 93.871 E= 93.871 cost= 28.066 q= 0.620
Final Values
Total time, E= 34.316 cost= 36.486 q= 0.846
x= 58.915 0.963 2.000 3.915 44.820 417.374 7.000 8.555
Function evaluations= 452

Run with Costfactor = 1.350 cub= 37.889 qlb= 0.846
Initial Values
f= 93.871 E= 93.871 cost= 28.066 q= 0.620
Final Values
Total time, E= 30.747 cost= 37.889 q= 0.846
x= 60.058 0.963 2.000 3.017 44.418 417.371 7.000 8.355
Function evaluations= 374

Run with Costfactor = 1.400 cub= 39.292 qlb= 0.846
Initial Values
f= 93.871 E= 93.871 cost= 28.066 q= 0.620
Final Values
Total time, E= 28.375 cost= 39.292 q= 0.846
x= 65.201 0.963 2.000 3.000 44.632 417.375 7.000 7.162
Function evaluations= 398

Run with Costfactor = 1.450 cub= 40.696 qlb= 0.846
Initial Values
f= 93.871 E= 93.871 cost= 28.066 q= 0.620
Final Values

 134

Total time, E= 26.831 cost= 40.696 q= 0.846
x= 67.996 0.963 2.000 3.000 44.802 417.387 7.000 6.282
Function evaluations= 430

Run with Costfactor = 1.500 cub= 42.099 qlb= 0.846
Initial Values
f= 93.871 E= 93.871 cost= 28.066 q= 0.620
Final Values
Total time, E= 25.349 cost= 42.099 q= 0.846
x= 68.194 0.962 1.342 3.000 43.341 417.304 7.000 6.213
Function evaluations= 407

Run with Costfactor = 1.550 cub= 43.502 qlb= 0.846
Initial Values
f= 93.871 E= 93.871 cost= 28.066 q= 0.620
Final Values
Total time, E= 24.131 cost= 43.502 q= 0.846
x= 69.825 0.962 1.249 3.000 42.959 417.274 7.000 5.603
Function evaluations= 381

Run with Costfactor = 1.600 cub= 44.906 qlb= 0.846
Initial Values
f= 93.871 E= 93.871 cost= 28.066 q= 0.620
Final Values
Total time, E= 23.073 cost= 44.906 q= 0.846
x= 71.172 0.962 1.181 3.000 42.596 417.237 7.000 5.045
Function evaluations= 394

Run with Costfactor = 1.650 cub= 46.309 qlb= 0.846
Initial Values
f= 93.871 E= 93.871 cost= 28.066 q= 0.620
Final Values
Total time, E= 22.129 cost= 46.309 q= 0.846
x= 72.316 0.961 1.126 3.000 42.245 417.195 7.000 4.532
Function evaluations= 474

Run with Costfactor = 1.700 cub= 47.712 qlb= 0.846
Initial Values
f= 93.871 E= 93.871 cost= 28.066 q= 0.620
Final Values
Total time, E= 21.270 cost= 47.712 q= 0.846
x= 73.310 0.961 1.080 3.000 42.000 417.254 7.000 4.055
Function evaluations= 372

Run with Costfactor = 1.750 cub= 49.115 qlb= 0.846
Initial Values
f= 93.871 E= 93.871 cost= 28.066 q= 0.620
Final Values
Total time, E= 20.478 cost= 49.115 q= 0.846
x= 74.189 0.961 1.040 3.000 42.000 417.519 7.000 3.607
Function evaluations= 397

Run with Costfactor = 1.800 cub= 50.519 qlb= 0.846
Initial Values
f= 93.871 E= 93.871 cost= 28.066 q= 0.620
Final Values
Total time, E= 19.740 cost= 50.519 q= 0.846
x= 74.979 0.961 1.004 3.000 42.000 417.757 7.000 3.184
Function evaluations= 418

Run with Costfactor = 1.850 cub= 51.922 qlb= 0.846
Initial Values
f= 93.871 E= 93.871 cost= 28.066 q= 0.620
Final Values
Total time, E= 19.071 cost= 51.922 q= 0.846
x= 77.328 0.961 0.901 3.000 42.000 418.623 7.000 3.000
Function evaluations= 287

 135

Run with Costfactor = 1.900 cub= 53.325 qlb= 0.846
Initial Values
f= 93.871 E= 93.871 cost= 28.066 q= 0.620
Final Values
Total time, E= 18.549 cost= 53.325 q= 0.846
x= 80.440 0.961 0.765 3.000 42.000 420.090 7.000 3.000
Function evaluations= 344

Run with Costfactor = 1.950 cub= 54.729 qlb= 0.846
Initial Values
f= 93.871 E= 93.871 cost= 28.066 q= 0.620
Final Values
Total time, E= 18.125 cost= 54.729 q= 0.846
x= 83.033 0.961 0.651 3.000 42.000 421.627 7.000 3.000
Function evaluations= 368

Run with Costfactor = 2.000 cub= 56.132 qlb= 0.846
Initial Values
f= 93.871 E= 93.871 cost= 28.066 q= 0.620
Final Values
Total time, E= 17.768 cost= 56.132 q= 0.846
x= 85.261 0.961 0.552 3.000 42.000 423.201 7.000 3.000
Function evaluations= 322

Run with Costfactor = 2.050 cub= 57.535 qlb= 0.846
Initial Values
f= 93.871 E= 93.871 cost= 28.066 q= 0.620
Final Values
Total time, E= 17.458 cost= 57.535 q= 0.846
x= 87.217 0.961 0.463 3.000 42.000 424.790 7.000 3.000
Function evaluations= 323

Run with Costfactor = 2.100 cub= 58.939 qlb= 0.846
Initial Values
f= 93.871 E= 93.871 cost= 28.066 q= 0.620
Final Values
Total time, E= 17.183 cost= 58.939 q= 0.846
x= 88.965 0.961 0.383 3.000 42.000 426.399 7.000 3.000
Function evaluations= 338

Run with Costfactor = 2.150 cub= 60.342 qlb= 0.846
Initial Values
f= 93.871 E= 93.871 cost= 28.066 q= 0.620
Final Values
Total time, E= 17.658 cost= 60.342 q= 0.846
x= 85.153 0.963 0.570 3.000 45.839 417.389 3.948 3.000
Function evaluations= 505

Run with Costfactor = 2.200 cub= 61.745 qlb= 0.846
Initial Values
f= 93.871 E= 93.871 cost= 28.066 q= 0.620
Final Values
Total time, E= 17.346 cost= 61.745 q= 0.846
x= 87.149 0.963 0.481 3.000 45.694 417.395 3.921 3.000
Function evaluations= 525

Run with Costfactor = 2.250 cub= 63.148 qlb= 0.846
Initial Values
f= 93.871 E= 93.871 cost= 28.066 q= 0.620
Final Values
Total time, E= 17.070 cost= 63.148 q= 0.846
x= 88.941 0.963 0.400 3.000 45.508 417.412 3.894 3.000
Function evaluations= 482

Run with Costfactor = 2.300 cub= 64.552 qlb= 0.846
Initial Values

 136

f= 93.871 E= 93.871 cost= 28.066 q= 0.620
Final Values
Total time, E= 16.822 cost= 64.552 q= 0.846
x= 90.539 0.963 0.326 3.000 45.239 417.380 3.876 3.000
Function evaluations= 503

Run with Costfactor = 2.350 cub= 65.955 qlb= 0.846
Initial Values
f= 93.871 E= 93.871 cost= 28.066 q= 0.620
Final Values
Total time, E= 16.596 cost= 65.955 q= 0.846
x= 92.010 0.963 0.257 3.000 44.947 417.360 3.857 3.000
Function evaluations= 488

Run with Costfactor = 2.400 cub= 67.358 qlb= 0.846
Initial Values
f= 93.871 E= 93.871 cost= 28.066 q= 0.620
Final Values
Total time, E= 16.399 cost= 67.358 q= 0.846
x= 95.302 0.963 0.250 3.000 45.572 417.461 3.797 3.000
Function evaluations= 635

Run with Costfactor = 2.450 cub= 68.762 qlb= 0.846
Initial Values
f= 93.871 E= 93.871 cost= 28.066 q= 0.620
Final Values
Total time, E= 16.236 cost= 68.762 q= 0.846
x= 98.430 0.964 0.250 3.000 46.343 417.398 3.737 3.000
Function evaluations= 565

Run with Costfactor = 2.500 cub= 70.165 qlb= 0.846
Initial Values
f= 93.871 E= 93.871 cost= 28.066 q= 0.620
Final Values
Total time, E= 16.122 cost= 70.165 q= 0.846
x= 100.000 0.973 0.250 3.000 64.008 412.202 3.162 3.000
Function evaluations= 430

cost factor cub E cost qfinal fun. evals
 1.25 35.082 38.597 35.082 0.846 311
 1.30 36.486 34.316 36.486 0.846 452
 1.35 37.889 30.747 37.889 0.846 374
 1.40 39.292 28.375 39.292 0.846 398
 1.45 40.696 26.831 40.696 0.846 430
 1.50 42.099 25.349 42.099 0.846 407
 1.55 43.502 24.131 43.502 0.846 381
 1.60 44.906 23.073 44.906 0.846 394
 1.65 46.309 22.129 46.309 0.846 474
 1.70 47.712 21.270 47.712 0.846 372
 1.75 49.115 20.478 49.115 0.846 397
 1.80 50.519 19.740 50.519 0.846 418
 1.85 51.922 19.071 51.922 0.846 287
 1.90 53.325 18.549 53.325 0.846 344
 1.95 54.729 18.125 54.729 0.846 368
 2.00 56.132 17.768 56.132 0.846 322
 2.05 57.535 17.458 57.535 0.846 323
 2.10 58.939 17.183 58.939 0.846 338
 2.15 60.342 17.658 60.342 0.846 505
 2.20 61.745 17.346 61.745 0.846 525
 2.25 63.148 17.070 63.148 0.846 482
 2.30 64.552 16.822 64.552 0.846 503
 2.35 65.955 16.596 65.955 0.846 488
 2.40 67.358 16.399 67.358 0.846 635
 2.45 68.762 16.236 68.762 0.846 565
 2.50 70.165 16.122 70.165 0.846 430

 137

1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8
15

20

25

30

35

40
System of Systems MOE as Function of Cost

Cost Factor on Threshold System Costs

Ti
m

e
to

 C
om

pl
et

e
M

is
si

on
 (

ho
ur

s)

35 40 45 50 55 60 65 70 75
15

20

25

30

35

40
System of Systems MOE as Function of Cost

Cost ($M)

Ti
m

e
to

 C
om

pl
et

e
M

is
si

on
 (

ho
ur

s)

1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
System of Systems MOPs as Function of Cost

Cost Factor on Threshold System Costs

M
O

P
s

1-
4

(p
er

ce
nt

 o
f t

ec
hn

ol
og

y
th

re
sh

ol
d)

x1
x2
x3
x4

1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
System of Systems MOPs as Function of Cost

Cost Factor on Threshold System Costs

M
O

P
s

5-
8

(p
er

ce
nt

 o
f t

ec
hn

ol
og

y
th

re
sh

ol
d)

x5
x6
x7
x8

 138

APPENDIX B

SINGLE SYSTEM CONSTRAINED SQP OPTIMIZATION CODE AND RESULTS

MCM System S1—Single System Optimization Code:

 % MCM System One of Two--Single System Optimization
% CONSTR w/o Explicit Gradient
%
% Filename: \matlab\dissertation\MCM32s1.m
% Output file initialization

fid=fopen('c:\matlab\dissertation\mcm32s1 output.doc','w');
fprintf(fid,'output from execution of MCM32s1.m\n\n');

%==
%
% MCM Initialization--System S1 only
%
%==
%
% x(1)=p11= S1 area coverage rate (nm^2/day)
% x(2)=p12= S1 classification probability
% x(3)=p13= S1 FAR (#/nm^2)
% x(4)=p14= S1 time to classify (min)
% x(5)=p15= S1 navigation accuracy (yards)

s2x6(1)=417.352;s2x6(2)=417.320;s2x6(3)=417.268;s2x6(4)=417.201;s2x6(5)=418.311;
s2x6(6)=419.238;s2x6(7)=419.491;s2x6(8)=420.166;s2x6(9)=420.781;s2x6(10)=421.338;
s2x6(11)=421.861;s2x6(12)=422.339;s2x6(13)=422.792;s2x6(14)=424.387;s2x6(15)=426.622;
s2x6(16)=428.734;s2x6(17)=430.719;s2x6(18)=432.599;s2x6(19)=434.390;s2x6(20)=418.950;
s2x6(21)=419.408;s2x6(22)=419.837;s2x6(23)=420.239;s2x6(24)=420.626;s2x6(25)=421.301;
s2x6(26)=421.916;s2x6(27)=416.997;
pd=0.90; %S1 detection system probability of detection
x0=[10,0.9,2.0,9.17,90]; %Might need to start at feasible point. This won't meet q(x)
constraint.
fprintf(fid,'x0=\n');fprintf(fid,'%10.3f',x0);fprintf(fid,'\n');
vlb=[10.0,0.9,0.25,3.0,42]; % lower bound constraint on x
vub=[100,0.98,2.0,9.17,90]; % upper bound constraint on x
fprintf(fid,'vlb=\n');fprintf(fid,'%10.3f',vlb);fprintf(fid,'\n');
fprintf(fid,'vub=\n');fprintf(fid,'%10.3f',vub);fprintf(fid,'\n\n');
% Compute px1, polynomial fit cost function parameters for x(1)
x1=[10,57,82,94];
y1=[3,4.483,7.655,11.445];
px1=polyfit(x1,y1,3);
% Compute px2, polynomial fit cost function parameters for x(2)
x1=[0.9,0.93,0.96,0.98];
y1=[.2,.5,1.4,2.2]; %revised PBCM that reflects COTS/NDI development
px2=polyfit(x1,y1,2);
%x2=0.9:.01:1.0;
% Compute px3, polynomial fit cost function parameters for x(3)
x1=[2,1,0.5,0.25];
y1=[8,10.319,13.592,16.429];
px3=polyfit(x1,y1,3);
% Compute px4, polynomial fit cost function parameters for x(4)
x1=[3.513,3.89,4.77,9.17];
y1=[9.191,8.190,7.574,5.0];
px4=polyfit(x1,y1,2);
% Compute px5, polynomial fit cost function parameters for x(5)
x1=[90,60,48,42];
y1=[0.050,0.250,0.450,0.550];
px5=polyfit(x1,y1,2);
%compute threshold system cost
cost0=polyval(px1,x0(1))+polyval(px2,x0(2))+polyval(px3,x0(3))+polyval(px4,x0(4))+polyval(
px5,x0(5));
costfactor=1.5; %nominal value
%Insert costfactor loop
i=0
for costfactor=1.2:0.05:2.5 %Note problem is infeasible with costfactor<1.25

i=i+1
x6=s2x6(i)
x6=300%Hardwired to "reasonable", knee-of-the-curve guess
costfactor

 139

cub=costfactor*cost0 %system of systems cost constraint
qlb=0.846 %quality constraint lower bound
fprintf(fid,'\n');
fprintf(fid,'Run with Costfactor = ');
fprintf(fid,'%10.3f',costfactor);fprintf(fid,' cub=');
fprintf(fid,'%10.3f',cub);fprintf(fid,' qlb=');fprintf(fid,'%10.3f\n',qlb);

sminefield=20; %minefield area, (nm^2)
m0=100; %number of mines in minefield, initially
lambda=m0/sminefield; %mine density, (#/nm^2)
dmine=600; %average distance between mines, (yards)
vtransit=7; %S1 vehicle transit speed (knots)
ttransit=dmine/(2000*vtransit); %transit time during classification (hours)
lambdaft=1.0; %false target density (#/nm^2)
% Define parameters for the objective function
p1=pd;
p2=lambda;
p3=lambdaft;
p4=ttransit;
p5=sminefield;
p6=cub;
p7=qlb;
[f,g]=mcmfuns1(x0,p1,p2,p3,p4,p5,p6,p7,x6)
fprintf(fid,'Initial Values\n');
x=x0;
cost=polyval(px1,x(1))+polyval(px2,x(2))+polyval(px3,x(3))+polyval(px4,x(4))+polyval(px5,x
(5))
q=p1*x(2)*exp(-x(5)/(4.481*x6));
f1 = (p5/60)*(24*60/x(1) + p2*x(2)*x(4)*p1 + (2*x(4)-p4)*((1-x(2))*p1*p2 + x(3) + p1*p3));
E=f1;
q=p1*x0(2)*exp(-x0(5)/(4.481*x6));
fprintf(fid,'f=');fprintf(fid,'%10.3f',f);fprintf(fid,' E=');fprintf(fid,'%10.3f',E);
fprintf(fid,' cost=');fprintf(fid,'%10.3f',cost);fprintf(fid,'
q=');fprintf(fid,'%10.3f\n',q);
% Print out threshold system values for f and constraints, g.

%==
%
% CONSTR Initialization and Call
%
%==
% Modify x0 so that it satisfies initial quality constraint, g(2)
%x0(2)=0.96
%x0(5)=45
%x0(6)=600

[f,g]=mcmfuns1(x0,p1,p2,p3,p4,p5,p6,p7,x6)
% Print out initial system values for f and constraints, g.
grad=[]; % need to set to null matrix in order to pass p1....p7 to mcmfun
options(1)=1; % print output table
%options(2)=1e-5; % relax x termination criteria
%options(3)=1e-3; % relax f termination criteria
%options(4)=1e-5; % relax constraint violation limits
options(9) = 0; % if =1, check analytic gradient
[x,options]=constr('mcmfuns1',x0,options,vlb,vub,'mcmgrads1',p1,p2,p3,p4,p5,p6,p7,x6)
[f,g]=mcmfuns1(x,p1,p2,p3,p4,p5,p6,p7,x6)
fprintf(fid,'Final Values\n');
cost =
polyval(px1,x(1))+polyval(px2,x(2))+polyval(px3,x(3))+polyval(px4,x(4))+polyval(px5,x(5))
q=p1*x(2)*exp(-x(5)/(4.481*x6))
f1 = (p5/60)*(24*60/x(1) + p2*x(2)*x(4)*p1 + (2*x(4)-p4)*((1-x(2))*p1*p2 + x(3) + p1*p3));
E=f1
fprintf(fid,'S1 Recon Time, E=');fprintf(fid,'%10.3f',E);
fprintf(fid,' cost=');fprintf(fid,'%10.3f',cost);fprintf(fid,'
q=');fprintf(fid,'%10.3f\n',q);
fprintf(fid,'x=');fprintf(fid,'%10.3f',x);fprintf(fid,'\n');
fprintf(fid,'Function evaluations= ');fprintf(fid,'%8.0f\n',options(10));
cf(i)=costfactor; fval(i)=f;
costval(i)=cub;fevals(i)=options(10);costi(i)=cost;qfinal(i)=q;
z1(i)=x(1);z2(i)=x(2);z3(i)=x(3);z4(i)=x(4);z5(i)=x(5);
z1(i)=abs((z1(i)-x0(1))/(vlb(1)-vub(1)));
z2(i)=abs((z2(i)-x0(2))/(vlb(2)-vub(2)));
z3(i)=abs((z3(i)-x0(3))/(vlb(3)-vub(3)));
z4(i)=abs((z4(i)-x0(4))/(vlb(4)-vub(4)));
z5(i)=abs((z5(i)-x0(5))/(vlb(5)-vub(5)));
end
% Plot option 1: Plot System of systems MOE as CAIV
figure

 140

plot(cf,fval,'-*b')
title('System S1 MOE as Function of Cost')
xlabel('Cost Factor on Threshold System Costs')
ylabel('Time to Complete Mission (hours)')
figure
plot(costval,fval,'-*b')
title('System S1 MOE as Function of Cost')
xlabel('Cost ($M)')
ylabel('Time to Complete Mission (hours)')
%
%
% Plot option 2: Plot MOPs as CAIV
figure
plot(cf,z1,'-b*',cf,z2,'-r+',cf,z3,'-go',cf,z4,'-kx',cf,z5,'-m.')
legend('x1','x2','x3','x4','x5')
title('System S1 MOPs as Function of Cost')
xlabel('Cost Factor on Threshold System Costs')
ylabel('MOPs 1-5 (percent of technology threshold)')
% print table of results to file
fprintf(fid,'\n');
fprintf(fid,'cost factor');fprintf(fid,' cub');fprintf(fid,' E');fprintf(fid,'
cost');fprintf(fid,' qfinal');fprintf(fid,' fun. evals\n');
for j=1:i
fprintf(fid,'%10.2f',cf(j));fprintf(fid,'%10.3f',costval(j));
fprintf(fid,'%10.3f',fval(j));fprintf(fid,'%10.3f',costi(j));
fprintf(fid,'%10.3f',qfinal(j));fprintf(fid,'%10.0f\n',fevals(j));
end
status=fclose(fid)

function [f,g] = mcmfun(x,p1,p2,p3,p4,p5,p6,p7,x6)
% Function to just optimize system S1 alone, with S2's parameter x6 passed by argument
%updated Px2, 7/3/97
px1=[4.503408803940725e-005, -5.386095666335044e-003, 2.159330101073730e-001,

1.334245377520354e+000];
px2=[2.834645669291690e+002, -5.076377952756583e+002, 2.274598425197177e+002];
px3=[-2.048380952380911e+000, 9.987333333333214e+000, -1.794233333333325e+001,

2.032238095238094e+001];
px4=[1.159691730856429e-001, -2.175732453433467e+000, 1.520381256718985e+001];
px5=[2.061825086032983e-004, -3.775958229500408e-002, 1.777803488786043e+000];
f1 = (p5/60)*(24*60/x(1) + p2*x(2)*x(4)*p1 + (2*x(4)-p4)*((1-x(2))*p1*p2 + x(3) + p1*p3));
f=f1;
% evaluate cost constraint
g(1) =
polyval(px1,x(1))+polyval(px2,x(2))+polyval(px3,x(3))+polyval(px4,x(4))+polyval(px5,x(5))-
p6;
% evaluate negative of quality constraint
g(2) = -p1*x(2)*exp(-x(5)/(4.481*x6))+p7;
%p1=pd
%p2=lambda
%p3=lambdaft
%p4=ttransit
%p5=sminefield
%p6=cub
%p7=qlb

S1 Optimization Results with Imperfect Knowledge of S2:

output from execution of MCM32s1.m
S1 Imperfect.doc 09/14/97 8:19 PM

x0=
 10.000 0.900 2.000 9.170 90.000
vlb=
 10.000 0.900 0.250 3.000 42.000
vub=
 100.000 0.980 2.000 9.170 90.000

Run with Costfactor = 1.250 cub= 20.307 qlb= 0.846
Initial Values
f= 80.811 E= 80.811 cost= 16.246 q= 0.778

 141

Final Values
S1 Recon Time, E= 30.766 cost= 20.307 q= 0.846
x= 55.007 0.963 2.000 6.329 53.739
Function evaluations= 115

Run with Costfactor = 1.300 cub= 21.119 qlb= 0.846
Initial Values
f= 80.811 E= 80.811 cost= 16.246 q= 0.778
Final Values
S1 Recon Time, E= 27.286 cost= 21.119 q= 0.846
x= 56.693 0.963 2.000 5.406 53.912
Function evaluations= 175

Run with Costfactor = 1.350 cub= 21.932 qlb= 0.846
Initial Values
f= 80.811 E= 80.811 cost= 16.246 q= 0.778
Final Values
S1 Recon Time, E= 24.478 cost= 21.932 q= 0.846
x= 57.880 0.963 2.000 4.651 53.954
Function evaluations= 172

Run with Costfactor = 1.400 cub= 22.744 qlb= 0.846
Initial Values
f= 80.811 E= 80.811 cost= 16.246 q= 0.778
Final Values
S1 Recon Time, E= 22.061 cost= 22.744 q= 0.846
x= 58.808 0.963 2.000 3.996 53.912
Function evaluations= 148

Run with Costfactor = 1.450 cub= 23.556 qlb= 0.846
Initial Values
f= 80.811 E= 80.811 cost= 16.246 q= 0.778
Final Values
S1 Recon Time, E= 19.909 cost= 23.556 q= 0.846
x= 59.575 0.963 2.000 3.409 53.816
Function evaluations= 136

Run with Costfactor = 1.500 cub= 24.369 qlb= 0.846
Initial Values
f= 80.811 E= 80.811 cost= 16.246 q= 0.778
Final Values
S1 Recon Time, E= 18.028 cost= 24.369 q= 0.846
x= 63.112 0.963 2.000 3.000 54.410
Function evaluations= 133

Run with Costfactor = 1.550 cub= 25.181 qlb= 0.846
Initial Values
f= 80.811 E= 80.811 cost= 16.246 q= 0.778
Final Values
S1 Recon Time, E= 17.152 cost= 25.181 q= 0.846
x= 66.920 0.964 1.778 3.000 55.570
Function evaluations= 188

Run with Costfactor = 1.600 cub= 25.993 qlb= 0.846
Initial Values
f= 80.811 E= 80.811 cost= 16.246 q= 0.778
Final Values
S1 Recon Time, E= 16.266 cost= 25.993 q= 0.846
x= 67.955 0.964 1.387 3.000 55.945
Function evaluations= 174

Run with Costfactor = 1.650 cub= 26.805 qlb= 0.846
Initial Values
f= 80.811 E= 80.811 cost= 16.246 q= 0.778
Final Values
S1 Recon Time, E= 15.592 cost= 26.805 q= 0.846
x= 71.112 0.964 1.207 3.000 57.276

 142

Function evaluations= 155

Run with Costfactor = 1.700 cub= 27.618 qlb= 0.846
Initial Values
f= 80.811 E= 80.811 cost= 16.246 q= 0.778
Final Values
S1 Recon Time, E= 15.081 cost= 27.618 q= 0.846
x= 73.868 0.965 1.078 3.000 58.688
Function evaluations= 187

Run with Costfactor = 1.750 cub= 28.430 qlb= 0.846
Initial Values
f= 80.811 E= 80.811 cost= 16.246 q= 0.778
Final Values
S1 Recon Time, E= 14.670 cost= 28.430 q= 0.846
x= 76.226 0.966 0.973 3.000 60.101
Function evaluations= 191

Run with Costfactor = 1.800 cub= 29.242 qlb= 0.846
Initial Values
f= 80.811 E= 80.811 cost= 16.246 q= 0.778
Final Values
S1 Recon Time, E= 14.326 cost= 29.242 q= 0.846
x= 78.274 0.966 0.885 3.000 61.499
Function evaluations= 183

Run with Costfactor = 1.850 cub= 30.055 qlb= 0.846
Initial Values
f= 80.811 E= 80.811 cost= 16.246 q= 0.778
Final Values
S1 Recon Time, E= 14.030 cost= 30.055 q= 0.846
x= 80.083 0.967 0.807 3.000 62.876
Function evaluations= 179

Run with Costfactor = 1.900 cub= 30.867 qlb= 0.846
Initial Values
f= 80.811 E= 80.811 cost= 16.246 q= 0.778
Final Values
S1 Recon Time, E= 13.769 cost= 30.867 q= 0.846
x= 81.703 0.967 0.736 3.000 64.224
Function evaluations= 214

Run with Costfactor = 1.950 cub= 31.679 qlb= 0.846
Initial Values
f= 80.811 E= 80.811 cost= 16.246 q= 0.778
Final Values
S1 Recon Time, E= 13.536 cost= 31.679 q= 0.846
x= 83.174 0.968 0.673 3.000 65.563
Function evaluations= 207

Run with Costfactor = 2.000 cub= 32.491 qlb= 0.846
Initial Values
f= 80.811 E= 80.811 cost= 16.246 q= 0.778
Final Values
S1 Recon Time, E= 13.325 cost= 32.491 q= 0.846
x= 84.519 0.968 0.614 3.000 66.873
Function evaluations= 172

Run with Costfactor = 2.050 cub= 33.304 qlb= 0.846
Initial Values
f= 80.811 E= 80.811 cost= 16.246 q= 0.778
Final Values
S1 Recon Time, E= 13.132 cost= 33.304 q= 0.846
x= 85.760 0.969 0.559 3.000 68.159
Function evaluations= 190

Run with Costfactor = 2.100 cub= 34.116 qlb= 0.846

 143

Initial Values
f= 80.811 E= 80.811 cost= 16.246 q= 0.778
Final Values
S1 Recon Time, E= 12.953 cost= 34.116 q= 0.846
x= 86.914 0.970 0.508 3.000 69.435
Function evaluations= 189

Run with Costfactor = 2.150 cub= 34.928 qlb= 0.846
Initial Values
f= 80.811 E= 80.811 cost= 16.246 q= 0.778
Final Values
S1 Recon Time, E= 12.787 cost= 34.928 q= 0.846
x= 87.991 0.970 0.460 3.000 70.690
Function evaluations= 199

Run with Costfactor = 2.200 cub= 35.741 qlb= 0.846
Initial Values
f= 80.811 E= 80.811 cost= 16.246 q= 0.778
Final Values
S1 Recon Time, E= 12.632 cost= 35.741 q= 0.846
x= 89.003 0.971 0.414 3.000 71.926
Function evaluations= 204

Run with Costfactor = 2.250 cub= 36.553 qlb= 0.846
Initial Values
f= 80.811 E= 80.811 cost= 16.246 q= 0.778
Final Values
S1 Recon Time, E= 12.486 cost= 36.553 q= 0.846
x= 89.957 0.971 0.370 3.000 73.145
Function evaluations= 212

Run with Costfactor = 2.300 cub= 37.365 qlb= 0.846
Initial Values
f= 80.811 E= 80.811 cost= 16.246 q= 0.778
Final Values
S1 Recon Time, E= 12.348 cost= 37.365 q= 0.846
x= 90.859 0.972 0.329 3.000 74.355
Function evaluations= 154

Run with Costfactor = 2.350 cub= 38.177 qlb= 0.846
Initial Values
f= 80.811 E= 80.811 cost= 16.246 q= 0.778
Final Values
S1 Recon Time, E= 12.218 cost= 38.177 q= 0.846
x= 91.716 0.972 0.289 3.000 75.546
Function evaluations= 190

Run with Costfactor = 2.400 cub= 38.990 qlb= 0.846
Initial Values
f= 80.811 E= 80.811 cost= 16.246 q= 0.778
Final Values
S1 Recon Time, E= 12.094 cost= 38.990 q= 0.846
x= 92.532 0.973 0.251 3.000 76.727
Function evaluations= 157

Run with Costfactor = 2.450 cub= 39.802 qlb= 0.846
Initial Values
f= 80.811 E= 80.811 cost= 16.246 q= 0.778
Final Values
S1 Recon Time, E= 11.979 cost= 39.802 q= 0.846
x= 94.477 0.974 0.250 3.000 79.711
Function evaluations= 123

Run with Costfactor = 2.500 cub= 40.614 qlb= 0.846
Initial Values
f= 80.811 E= 80.811 cost= 16.246 q= 0.778
Final Values

 144

S1 Recon Time, E= 11.877 cost= 40.614 q= 0.846
x= 96.309 0.975 0.250 3.000 82.769

 145

Function evaluations= 125
cost factor cub E cost qfinal fun. evals
 1.25 20.307 30.766 20.307 0.846 115
 1.30 21.119 27.286 21.119 0.846 175
 1.35 21.932 24.478 21.932 0.846 172
 1.40 22.744 22.061 22.744 0.846 148
 1.45 23.556 19.909 23.556 0.846 136
 1.50 24.369 18.028 24.369 0.846 133
 1.55 25.181 17.152 25.181 0.846 188
 1.60 25.993 16.266 25.993 0.846 174
 1.65 26.805 15.592 26.805 0.846 155
 1.70 27.618 15.081 27.618 0.846 187
 1.75 28.430 14.670 28.430 0.846 191
 1.80 29.242 14.326 29.242 0.846 183
 1.85 30.055 14.030 30.055 0.846 179
 1.90 30.867 13.769 30.867 0.846 214
 1.95 31.679 13.536 31.679 0.846 207
 2.00 32.491 13.325 32.491 0.846 172
 2.05 33.304 13.132 33.304 0.846 190
 2.10 34.116 12.953 34.116 0.846 189
 2.15 34.928 12.787 34.928 0.846 199
 2.20 35.741 12.632 35.741 0.846 204
 2.25 36.553 12.486 36.553 0.846 212
 2.30 37.365 12.348 37.365 0.846 154
 2.35 38.177 12.218 38.177 0.846 190
 2.40 38.990 12.094 38.990 0.846 157
 2.45 39.802 11.979 39.802 0.846 123
 2.50 40.614 11.877 40.614 0.846 125

1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8
10

15

20

25

30

35
System S1 MOE as Function of Cost

Cost Factor on Threshold System Costs

Ti
m

e
to

 C
om

pl
et

e
M

is
si

on
 (

ho
ur

s)

20 25 30 35 40 45
10

15

20

25

30

35
System S1 MOE as Function of Cost

Cost ($M)

Ti
m

e
to

 C
om

pl
et

e
M

is
si

on
 (

ho
ur

s)

 146

1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
System S1 MOPs as Function of Cost

Cost Factor on Threshold System Costs

M
O

P
s

1-
5

(p
er

ce
nt

 o
f t

ec
hn

ol
og

y
th

re
sh

ol
d)

x1
x2
x3
x4
x5

MCM System S2—Single System Optimization Code:

% MCM System Two of Two--Single System Optimization

% CONSTR w/o Explicit Gradient
%
% Filename: \matlab\dissertation\MCM32s2.m
% Output file initialization

fid=fopen('c:\matlab\dissertation\mcm32s2 output.doc','w');
fprintf(fid,'output from execution of MCM32s2.m\n\n');

%==
%
% MCM Initialization
%
%==
% x2=p12= S1 classification probability
% x3=p13= S1 FAR (#/nm^2)
% x5=p15= S1 navigation accuracy (yards)
% x(6)=p21= S2 Re-acquisition range (yards)
% x(7)=p22= S2 time to prosecute a false target (min)
% x(8)=p23= S3 time to neutralize (min)
pd=0.90; %S1 detection system probability of detection

x0=[0,0,0,0,0,75,6.6,10.0]; %Might need to start at feasible point. This won't meet q(x)
constraint.
fprintf(fid,'x0=\n');fprintf(fid,'%10.3f',x0);fprintf(fid,'\n');
vlb=[0,0,0,0,0,75,1.0,3.0]; % lower bound constraint on x
vub=[0,0,0,0,0,700,7.0,10.0]; % upper bound constraint on x
%Try to get away with not re-coding x6-x8, so set up dummy x1-x5 with zerio initial
conditions and bounds
fprintf(fid,'vlb=\n');fprintf(fid,'%10.3f',vlb);fprintf(fid,'\n');
fprintf(fid,'vub=\n');fprintf(fid,'%10.3f',vub);fprintf(fid,'\n\n');
%
s2x2(1)=.963;s2x2(2)=.963;s2x2(3)=.963;s2x2(4)=.963;s2x2(5)=.963;
s2x2(6)=.962;s2x2(7)=.962;s2x2(8)=.962;s2x2(9)=.961;s2x2(10)=.961;
s2x2(11)=.961;s2x2(12)=.961;s2x2(13)=.961;s2x2(14)=.961;s2x2(15)=.961;
s2x2(16)=.961;s2x2(17)=.961;s2x2(18)=.961;s2x2(19)=.963;s2x2(20)=.963;
s2x2(21)=.963;s2x2(22)=.963;s2x2(23)=.963;s2x2(24)=.963;s2x2(25)=.964;
s2x2(26)=.973;
s2x3(1)=2;s2x3(2)=2;s2x3(3)=2;s2x3(4)=2;s2x3(5)=2;
s2x3(6)=1.342;s2x3(7)=1.249;s2x3(8)=1.181;s2x3(9)=1.126;s2x3(10)=1.080;
s2x3(11)=1.040;s2x3(12)=1.004;s2x3(13)=0.901;s2x3(14)=0.765;s2x3(15)=0.651;
s2x3(16)=.552;s2x3(17)=.463;s2x3(18)=.383;s2x3(19)=.570;s2x3(20)=.481;
s2x3(21)=.400;s2x3(22)=.326;s2x3(23)=.257;s2x3(24)=.250;s2x3(25)=.250;
s2x3(26)=.250;
s2x5(1)=45.108;s2x5(2)=44.820;s2x5(3)=44.418;s2x5(4)=44.632;s2x5(5)=44.802;
s2x5(6)=43.341;s2x5(7)=43.502;s2x5(8)=42.596;s2x5(9)=42.245;s2x5(10)=42;
s2x5(11)=42;s2x5(12)=42;s2x5(13)=42;s2x5(14)=42;s2x5(15)=42;
s2x5(16)=42;s2x5(17)=42;s2x5(18)=42;s2x5(19)=45.839;s2x5(20)=45.694;

 147

s2x5(21)=45.508;s2x5(22)=45.239;s2x5(23)=44.947;s2x5(24)=45.575;s2x5(25)=46.343;
s2x5(26)=64.008;
% Compute px6, polynomial fit cost function parameters for x(6)
x1=[129,457,622,75];
y1=[3,4.8,7.655,1.5];
px6=polyfit(x1,y1,3);
% Compute px7, polynomial fit cost function parameters for x(7)
x1=[6.6,4.4,3.3,2.64,1.32];
y1=[5.0,7.5,8.190,9.191,16.621];
px7=polyfit(x1,y1,3);
% Compute px8, polynomial fit cost function parameters for x(8)
x1=[10,8,7,5,3];
y1=[5.3,6,7,10,15];
px8=polyfit(x1,y1,2);
%compute threshold system cost
%
cost0=polyval(px6,x0(6))+polyval(px7,x0(7))+polyval(px8,x0(8))
costfactor=1.5; %nominal value
%Insert costfactor loop
i=0
for costfactor=1.25:0.05:2.5 %Note problem is infeasible with costfactor<1.25

i=i+1
x2=s2x2(i);x3=s2x3(i);x5=s2x5(i);
x2=.958;x3=1.0;x5=55;
costfactor
cub=costfactor*cost0 %system of systems cost constraint
qlb=0.846 %quality constraint lower bound
fprintf(fid,'\n');
fprintf(fid,'Run with Costfactor = ');fprintf(fid,'%10.3f',costfactor);fprintf(fid,'

cub=');fprintf(fid,'%10.3f',cub);fprintf(fid,' qlb=');fprintf(fid,'%10.3f\n',qlb);
sminefield=20; %minefield area, (nm^2)
m0=100; %number of mines in minefield, initially
lambda=m0/sminefield; %mine density, (#/nm^2)
dmine=600; %average distance between mines, (yards)
vtransit=7; %S1 vehicle transit speed (knots)
ttransit=dmine/(2000*vtransit); %transit time during classification (hours)
lambdaft=1.0; %false target density (#/nm^2)
% Define parameters for the objective function
p1=pd;
p2=lambda;
p3=lambdaft;
p4=ttransit;
p5=sminefield;
p6=cub;
p7=qlb;
[f,g]=mcmfuns2(x0,p1,p2,p3,p4,p5,p6,p7,x2,x3,x5)
fprintf(fid,'Initial Values\n');
x=x0;

cost = polyval(px6,x(6))+polyval(px7,x(7))+polyval(px8,x(8))
q=p1*x2*exp(-x5/(4.481*x(6)));
f2 = (p5/60)*(p1*x2*x(8)*p2*exp(-x5/(4.481*x(6)))+(1-exp(-

x5/(4.481*x(6))))*p1*x2*x(7)*p2 + (1-x2)*(x3+p1*p3)*x(7));
E=f2;
q=p1*x2*exp(-x5/(4.481*x0(6)));

fprintf(fid,'f=');fprintf(fid,'%10.3f',f);fprintf(fid,' E=');
fprintf(fid,'%10.3f',E);fprintf(fid,' cost=');
fprintf(fid,'%10.3f',cost);fprintf(fid,' q=');fprintf(fid,'%10.3f\n',q);
% Print out threshold system values for f and constraints, g.

%==
%
% CONSTR Initialization and Call
%
%==

[f,g]=mcmfuns2(x0,p1,p2,p3,p4,p5,p6,p7,x2,x3,x5)
% Print out initial system values for f and constraints, g.
grad=[]; % need to set to null matrix in order to pass p1....p7 to mcmfun
options(1)=1; % print output table
%options(2)=1e-5; % relax x termination criteria
options(3)=1e-5; % relax f termination criteria
%options(4)=1e-5; % relax constraint violation limits
options(9) = 0; % if =1, check analytic gradient
[x,options]=constr('mcmfuns2',x0,options,vlb,vub,'mcmgrads2',p1,p2,p3,p4,p5,p6,p7,x2,x3,x5
)
[f,g]=mcmfuns2(x,p1,p2,p3,p4,p5,p6,p7,x2,x3,x5)
fprintf(fid,'Final Values\n');

 148

cost = polyval(px6,x(6))+polyval(px7,x(7))+polyval(px8,x(8))
q=p1*x2*exp(-x5/(4.481*x(6)))
f2 = (p5/60)*(p1*x2*x(8)*p2*exp(-x5/(4.481*x(6)))+(1-exp(-x5/(4.481*x(6))))*p1*x2*x(7)*p2
+ (1-x2)*(x3+p1*p3)*x(7));
E=f2
fprintf(fid,'S2 Clearance time, E=');fprintf(fid,'%10.3f',E);
fprintf(fid,' cost=');fprintf(fid,'%10.3f',cost);fprintf(fid,'
q=');fprintf(fid,'%10.3f\n',q);
fprintf(fid,'x=');fprintf(fid,'%10.3f',x);fprintf(fid,'\n');
fprintf(fid,'Function evaluations= ');fprintf(fid,'%8.0f\n',options(10));
cf(i)=costfactor; fval(i)=f;
costval(i)=cub;fevals(i)=options(10);costi(i)=cost;qfinal(i)=q;
z6(i)=x(6);z7(i)=x(7);z8(i)=x(8);
z6(i)=abs((z6(i)-x0(6))/(vlb(6)-vub(6)));
z7(i)=abs((z7(i)-x0(7))/(vlb(7)-vub(7)));
z8(i)=abs((z8(i)-x0(8))/(vlb(8)-vub(8)));
end
% Plot option 1: Plot System of systems MOE as CAIV
figure
plot(cf,fval,'-*b')
title('System S2 MOE as Function of Cost')
xlabel('Cost Factor on Threshold System Costs')
ylabel('Time to Complete Mission (hours)')
figure
plot(costval,fval,'-*b')
title('System S2 MOE as Function of Cost')
xlabel('Cost ($M)')
ylabel('Time to Complete Mission (hours)')
%
%
% Plot option 2: Plot MOPs as CAIV
figure
plot(cf,z6,'-b*',cf,z7,'-r+',cf,z8,'-go')
legend('x6','x7','x8')
title('System S2 MOPs as Function of Cost')
xlabel('Cost Factor on Threshold System Costs')
ylabel('MOPs 6-8 (percent of technology threshold)')
% print table of results to file
fprintf(fid,'\n');
fprintf(fid,'cost factor');fprintf(fid,' cub');fprintf(fid,' E');fprintf(fid,'
cost');fprintf(fid,' qfinal');fprintf(fid,' fun. evals\n');
for j=1:i
fprintf(fid,'%10.2f',cf(j));fprintf(fid,'%10.3f',costval(j));
fprintf(fid,'%10.3f',fval(j));fprintf(fid,'%10.3f',costi(j));
fprintf(fid,'%10.3f',qfinal(j));fprintf(fid,'%10.0f\n',fevals(j));
end
status=fclose(fid)

function [f,g] = mcmfuns2(x,p1,p2,p3,p4,p5,p6,p7,x2,x3,x5)
%MCM function for optimizing system S2 only
px6=[1.504875482450802e-007, -1.578229837871938e-004, 5.516694369186904e-002, -

1.813253427503106e+000];
px7=[-2.850358103957624e-001, 3.846213159671302e+000, -1.726423877731832e+001,

3.334408692656030e+001];
px8=[2.102445277065673e-001, -4.109593768487483e+000, 2.539723920331297e+001];
f2 = (p5/60)*(p1*x2*x(8)*p2*exp(-x5/(4.481*x(6)))+(1-exp(-x5/(4.481*x(6))))*p1*x2*x(7)*p2
+ (1-x2)*(x3+p1*p3));
f=f2;
% evaluate cost constraint
g(1) = polyval(px6,x(6))+polyval(px7,x(7))+polyval(px8,x(8))-p6;
% evaluate negative of quality constraint
g(2) = -p1*x2*exp(-x5/(4.481*x(6)))+p7;
%p1=pd
%p2=lambda
%p3=lambdaft
%p4=ttransit
%p5=sminefield
%p6=cub
%p7=qlb

 149

S2 Optimization Results with Imperfect Knowledge of S1:

output from execution of MCM32s2.m
S2 Imperfect.doc 09/14/97 9:14 PM

x0=
 0.000 0.000 0.000 0.000 0.000 75.000 6.600 10.000
vlb=
 0.000 0.000 0.000 0.000 0.000 75.000 1.000 3.000
vub=
 0.000 0.000 0.000 0.000 0.000 700.000 7.000 10.000

Run with Costfactor = 1.250 cub= 14.775 qlb= 0.846
Initial Values
f= 13.941 E= 13.941 cost= 11.820 q= 0.759
Final Values
S2 Clearance time, E= 4.585 cost= 25.086 q= 0.846
x= 0.000 0.000 0.000 0.000 0.000 592.043 6.966 3.000
Function evaluations= 504

Run with Costfactor = 1.300 cub= 15.366 qlb= 0.846
Initial Values
f= 13.941 E= 13.941 cost= 11.820 q= 0.759
Final Values
S2 Clearance time, E= 13.155 cost= 15.366 q= 0.846
x= 0.000 0.000 0.000 0.000 0.000 592.043 7.000 9.077
Function evaluations= 91

Run with Costfactor = 1.350 cub= 15.957 qlb= 0.846
Initial Values
f= 13.941 E= 13.941 cost= 11.820 q= 0.759
Final Values
S2 Clearance time, E= 11.578 cost= 15.957 q= 0.846
x= 0.000 0.000 0.000 0.000 0.000 592.043 7.000 7.958
Function evaluations= 82

Run with Costfactor = 1.400 cub= 16.548 qlb= 0.846
Initial Values
f= 13.941 E= 13.941 cost= 11.820 q= 0.759
Final Values
S2 Clearance time, E= 10.653 cost= 16.548 q= 0.846
x= 0.000 0.000 0.000 0.000 0.000 592.043 7.000 7.302
Function evaluations= 82

Run with Costfactor = 1.450 cub= 17.139 qlb= 0.846
Initial Values
f= 13.941 E= 13.941 cost= 11.820 q= 0.759
Final Values
S2 Clearance time, E= 9.927 cost= 17.139 q= 0.846
x= 0.000 0.000 0.000 0.000 0.000 592.043 7.000 6.787
Function evaluations= 82

Run with Costfactor = 1.500 cub= 17.730 qlb= 0.846
Initial Values
f= 13.941 E= 13.941 cost= 11.820 q= 0.759
Final Values
S2 Clearance time, E= 9.308 cost= 17.730 q= 0.846
x= 0.000 0.000 0.000 0.000 0.000 592.043 7.000 6.349
Function evaluations= 73

Run with Costfactor = 1.550 cub= 18.321 qlb= 0.846
Initial Values
f= 13.941 E= 13.941 cost= 11.820 q= 0.759
Final Values

 150

S2 Clearance time, E= 8.761 cost= 18.321 q= 0.846
x= 0.000 0.000 0.000 0.000 0.000 592.043 7.000 5.960
Function evaluations= 91

Run with Costfactor = 1.600 cub= 18.912 qlb= 0.846
Initial Values
f= 13.941 E= 13.941 cost= 11.820 q= 0.759
Final Values
S2 Clearance time, E= 8.264 cost= 18.912 q= 0.846
x= 0.000 0.000 0.000 0.000 0.000 592.043 7.000 5.608
Function evaluations= 82

Run with Costfactor = 1.650 cub= 19.503 qlb= 0.846
Initial Values
f= 13.941 E= 13.941 cost= 11.820 q= 0.759
Final Values
S2 Clearance time, E= 7.806 cost= 19.503 q= 0.846
x= 0.000 0.000 0.000 0.000 0.000 592.043 7.000 5.283
Function evaluations= 82

Run with Costfactor = 1.700 cub= 20.094 qlb= 0.846
Initial Values
f= 13.941 E= 13.941 cost= 11.820 q= 0.759
Final Values
S2 Clearance time, E= 7.379 cost= 20.094 q= 0.846
x= 0.000 0.000 0.000 0.000 0.000 592.043 7.000 4.980
Function evaluations= 91

Run with Costfactor = 1.750 cub= 20.685 qlb= 0.846
Initial Values
f= 13.941 E= 13.941 cost= 11.820 q= 0.759
Final Values
S2 Clearance time, E= 6.978 cost= 20.685 q= 0.846
x= 0.000 0.000 0.000 0.000 0.000 592.043 7.000 4.695
Function evaluations= 91

Run with Costfactor = 1.800 cub= 21.276 qlb= 0.846
Initial Values
f= 13.941 E= 13.941 cost= 11.820 q= 0.759
Final Values
S2 Clearance time, E= 6.597 cost= 21.276 q= 0.846
x= 0.000 0.000 0.000 0.000 0.000 592.043 7.000 4.426
Function evaluations= 100

Run with Costfactor = 1.850 cub= 21.867 qlb= 0.846
Initial Values
f= 13.941 E= 13.941 cost= 11.820 q= 0.759
Final Values
S2 Clearance time, E= 6.236 cost= 21.867 q= 0.846
x= 0.000 0.000 0.000 0.000 0.000 592.043 7.000 4.169
Function evaluations= 100

Run with Costfactor = 1.900 cub= 22.458 qlb= 0.846
Initial Values
f= 13.941 E= 13.941 cost= 11.820 q= 0.759
Final Values
S2 Clearance time, E= 5.889 cost= 22.458 q= 0.846
x= 0.000 0.000 0.000 0.000 0.000 592.043 7.000 3.924
Function evaluations= 100

Run with Costfactor = 1.950 cub= 23.049 qlb= 0.846
Initial Values
f= 13.941 E= 13.941 cost= 11.820 q= 0.759
Final Values
S2 Clearance time, E= 5.557 cost= 23.049 q= 0.846
x= 0.000 0.000 0.000 0.000 0.000 592.043 7.000 3.688
Function evaluations= 100

 151

Run with Costfactor = 2.000 cub= 23.641 qlb= 0.846
Initial Values
f= 13.941 E= 13.941 cost= 11.820 q= 0.759
Final Values
S2 Clearance time, E= 5.238 cost= 23.641 q= 0.846
x= 0.000 0.000 0.000 0.000 0.000 592.043 7.000 3.461
Function evaluations= 100

Run with Costfactor = 2.050 cub= 24.232 qlb= 0.846
Initial Values
f= 13.941 E= 13.941 cost= 11.820 q= 0.759
Final Values
S2 Clearance time, E= 4.929 cost= 24.232 q= 0.846
x= 0.000 0.000 0.000 0.000 0.000 592.043 7.000 3.243
Function evaluations= 109

Run with Costfactor = 2.100 cub= 24.823 qlb= 0.846
Initial Values
f= 13.941 E= 13.941 cost= 11.820 q= 0.759
Final Values
S2 Clearance time, E= 4.630 cost= 24.823 q= 0.846
x= 0.000 0.000 0.000 0.000 0.000 592.043 7.000 3.031
Function evaluations= 109

Run with Costfactor = 2.150 cub= 25.414 qlb= 0.846
Initial Values
f= 13.941 E= 13.941 cost= 11.820 q= 0.759
Final Values
S2 Clearance time, E= 4.582 cost= 25.414 q= 0.846
x= 0.000 0.000 0.000 0.000 0.000 592.043 6.901 3.000
Function evaluations= 127

Run with Costfactor = 2.200 cub= 26.005 qlb= 0.846
Initial Values
f= 13.941 E= 13.941 cost= 11.820 q= 0.759
Final Values
S2 Clearance time, E= 4.575 cost= 26.005 q= 0.846
x= 0.000 0.000 0.000 0.000 0.000 592.043 6.774 3.000
Function evaluations= 127

Run with Costfactor = 2.250 cub= 26.596 qlb= 0.846
Initial Values
f= 13.941 E= 13.941 cost= 11.820 q= 0.759
Final Values
S2 Clearance time, E= 4.568 cost= 26.596 q= 0.846
x= 0.000 0.000 0.000 0.000 0.000 592.043 6.631 3.000
Function evaluations= 127

Run with Costfactor = 2.300 cub= 27.187 qlb= 0.846
Initial Values
f= 13.941 E= 13.941 cost= 11.820 q= 0.759
Final Values
S2 Clearance time, E= 4.560 cost= 27.187 q= 0.846
x= 0.000 0.000 0.000 0.000 0.000 592.043 6.465 3.000
Function evaluations= 127

Run with Costfactor = 2.350 cub= 27.778 qlb= 0.846
Initial Values
f= 13.941 E= 13.941 cost= 11.820 q= 0.759
Final Values
S2 Clearance time, E= 4.549 cost= 27.778 q= 0.846
x= 0.000 0.000 0.000 0.000 0.000 592.043 6.264 3.000
Function evaluations= 145

Run with Costfactor = 2.400 cub= 28.369 qlb= 0.846
Initial Values

 152

f= 13.941 E= 13.941 cost= 11.820 q= 0.759
Final Values
S2 Clearance time, E= 4.906 cost= 28.369 q= 0.846
x= 0.000 0.000 0.000 0.000 0.000 592.043 4.102 3.331
Function evaluations= 157

Run with Costfactor = 2.450 cub= 28.960 qlb= 0.846
Initial Values
f= 13.941 E= 13.941 cost= 11.820 q= 0.759
Final Values
S2 Clearance time, E= 4.604 cost= 28.960 q= 0.846
x= 0.000 0.000 0.000 0.000 0.000 592.043 4.098 3.117
Function evaluations= 147

Run with Costfactor = 2.500 cub= 29.551 qlb= 0.846
Initial Values
f= 13.941 E= 13.941 cost= 11.820 q= 0.759
Final Values
S2 Clearance time, E= 4.407 cost= 29.551 q= 0.846
x= 0.000 0.000 0.000 0.000 0.000 592.043 3.479 3.000
Function evaluations= 118

cost factor cub E cost qfinal fun. evals
 1.25 14.775 4.585 25.086 0.846 504
 1.30 15.366 13.155 15.366 0.846 91
 1.35 15.957 11.578 15.957 0.846 82
 1.40 16.548 10.653 16.548 0.846 82
 1.45 17.139 9.927 17.139 0.846 82
 1.50 17.730 9.308 17.730 0.846 73
 1.55 18.321 8.761 18.321 0.846 91
 1.60 18.912 8.264 18.912 0.846 82
 1.65 19.503 7.806 19.503 0.846 82
 1.70 20.094 7.379 20.094 0.846 91
 1.75 20.685 6.978 20.685 0.846 91
 1.80 21.276 6.597 21.276 0.846 100
 1.85 21.867 6.236 21.867 0.846 100
 1.90 22.458 5.889 22.458 0.846 100
 1.95 23.049 5.557 23.049 0.846 100
 2.00 23.641 5.238 23.641 0.846 100
 2.05 24.232 4.929 24.232 0.846 109
 2.10 24.823 4.630 24.823 0.846 109
 2.15 25.414 4.582 25.414 0.846 127
 2.20 26.005 4.575 26.005 0.846 127
 2.25 26.596 4.568 26.596 0.846 127
 2.30 27.187 4.560 27.187 0.846 127
 2.35 27.778 4.549 27.778 0.846 145
 2.40 28.369 4.906 28.369 0.846 157
 2.45 28.960 4.604 28.960 0.846 147
 2.50 29.551 4.407 29.551 0.846 118

 153

1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8
4

5

6

7

8

9

10

11

12

13

14
System S2 MOE as Function of Cost

Cost Factor on Threshold System Costs

Ti
m

e
to

 C
om

pl
et

e
M

is
si

on
 (

ho
ur

s)

14 16 18 20 22 24 26 28 30
4

5

6

7

8

9

10

11

12

13

14
System S2 MOE as Function of Cost

Cost ($M)

Ti
m

e
to

 C
om

pl
et

e
M

is
si

on
 (

ho
ur

s)

1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
System S2 MOPs as Function of Cost

Cost Factor on Threshold System Costs

M
O

P
s

6-
8

(p
er

ce
nt

 o
f t

ec
hn

ol
og

y
th

re
sh

ol
d)

x6
x7
x8

 154

APPENDIX C

CONSTRAINED SQP OPTIMIZATION (PENALTY FUNCTION) MATLAB CODE

AND RESULTS

The same basic code it utilized for this method as that shown in Appendix A, with the

exception of the objective function, which is listed below.

function [f,g] = mcmfunpf(x,p1,p2,p3,p4,p5,p6,p7)
% Modified to have smaller Px2 on 7/3/97
a1=2000; % penalty function gains for absolute value PF
a2=2e6;
px1=[4.503408803940725e-005, -5.386095666335044e-003, 2.159330101073730e-001,

1.334245377520354e+000];
px2=[2.834645669291690e+002, -5.076377952756583e+002, 2.274598425197177e+002];
px3=[-2.048380952380911e+000, 9.987333333333214e+000, -1.794233333333325e+001,

2.032238095238094e+001];
px4=[1.159691730856429e-001, -2.175732453433467e+000, 1.520381256718985e+001];
px5=[2.061825086032983e-004, -3.775958229500408e-002, 1.777803488786043e+000];
px6=[1.504875482450802e-007, -1.578229837871938e-004, 5.516694369186904e-002, -

1.813253427503106e+000];
px7=[-2.850358103957624e-001, 3.846213159671302e+000, -1.726423877731832e+001,

3.334408692656030e+001];
px8=[2.102445277065673e-001, -4.109593768487483e+000, 2.539723920331297e+001];
f1 = (p5/60)*(24*60/x(1) + p2*x(2)*x(4)*p1 + (2*x(4)-p4)*((1-x(2))*p1*p2 + x(3) + p1*p3));
f2 = (p5/60)*(p1*x(2)*x(8)*p2*exp(-x(5)/(4.481*x(6)))+(1-exp(-
x(5)/(4.481*x(6))))*p1*x(2)*x(7)*p2 + (1-x(2))*(x(3)+p1*p3)*x(7));
f=f1+f2;
% evaluate cost constraint
g1=polyval(px1,x(1))+polyval(px2,x(2))+polyval(px3,x(3))+polyval(px4,x(4))+polyval(px5,x(5
))+polyval (px6,x(6))+polyval(px7,x(7))+polyval(px8,x(8))-p6;
% evaluate negative of quality constraint
g2 = -p1*x(2)*exp(-x(5)/(4.481*x(6)))+p7;
f=f1 + f2 + a1*g1*g1 + a2*g2*g2;
%f=f1+f2+a1*abs(g1)+a2*abs(g2);
g=[];
%p1=pd
%p2=lambda
%p3=lambdaft
%p4=ttransit
%p5=sminefield
%p6=cub
%p7=qlb

output from execution of MCM42pf.m
09/15/97 12:15 AM MCM42PF Baseline 9-15-97.doc

x0=
 10.000 0.900 2.000 9.170 90.000 75.000 6.600 10.000
vlb=
 10.000 0.900 0.250 3.000 42.000 75.000 1.000 3.000
vub=
 100.000 0.980 2.000 9.170 90.000 700.000 7.000 10.000

Run with Costfactor = 1.250
Initial Values
Total time, f=200978.782
Costfactor = 1.250
cost= 28.066 q= 0.620
Final Values
Total time, f= 38.589
cost= 35.083 q= 0.846
x= 57.379 0.963 2.000 4.981 45.127 417.387 7.000 8.793

 155

Function evaluations= 1329

Run with Costfactor = 1.300
Initial Values
Total time, f=244302.199
Costfactor = 1.300
cost= 28.066 q= 0.620
Final Values
Total time, f= 66.522
cost= 36.491 q= 0.846
x= 21.494 0.962 2.000 8.703 44.724 417.375 4.285 9.622
Function evaluations= 668

Run with Costfactor = 1.350
Initial Values
Total time, f=295502.600
Costfactor = 1.350
cost= 28.066 q= 0.620
Final Values
Total time, f= 44.935
cost= 37.890 q= 0.846
x= 54.484 0.963 2.000 6.584 45.440 417.385 4.259 9.150
Function evaluations= 792

Run with Costfactor = 1.400
Initial Values
Total time, f=354579.987
Costfactor = 1.400
cost= 28.066 q= 0.620
Final Values
Total time, f= 38.954
cost= 39.293 q= 0.846
x= 57.161 0.963 2.000 5.120 45.533 417.408 4.243 8.824
Function evaluations= 1658

Run with Costfactor = 1.450
Initial Values
Total time, f=421534.358
Costfactor = 1.450
cost= 28.066 q= 0.620
Final Values
Total time, f= 34.564
cost= 40.696 q= 0.846
x= 58.769 0.963 2.000 4.026 45.351 417.392 4.231 8.580
Function evaluations= 1778

Run with Costfactor = 1.500
Initial Values
Total time, f=496365.715
Costfactor = 1.500
cost= 28.066 q= 0.620
Final Values
Total time, f= 30.932
cost= 42.100 q= 0.846
x= 59.942 0.963 2.000 3.113 45.043 417.385 4.222 8.376
Function evaluations= 1846

Run with Costfactor = 1.550
Initial Values
Total time, f=579074.056
Costfactor = 1.550
cost= 28.066 q= 0.620
Final Values
Total time, f= 28.390
cost= 43.503 q= 0.846
x= 64.779 0.963 2.000 3.000 45.649 417.394 4.177 7.280
Function evaluations= 2356

 156

Run with Costfactor = 1.600
Initial Values
Total time, f=669659.382
Costfactor = 1.600
cost= 28.066 q= 0.620
Final Values
Total time, f= 26.816
cost= 44.906 q= 0.846
x= 65.900 0.963 1.533 3.000 45.352 416.227 4.173 6.928
Function evaluations= 2395

Run with Costfactor = 1.650
Initial Values
Total time, f=768121.693
Costfactor = 1.650
cost= 28.066 q= 0.620
Final Values
Total time, f= 25.329
cost= 46.309 q= 0.846
x= 68.013 0.963 1.366 3.000 45.410 417.394 4.154 6.276
Function evaluations= 2247

Run with Costfactor = 1.700
Initial Values
Total time, f=874460.989
Costfactor = 1.700
cost= 28.066 q= 0.620
Final Values
Total time, f= 24.096
cost= 47.712 q= 0.846
x= 69.876 0.963 1.260 3.000 47.367 429.961 4.147 5.688
Function evaluations= 1966

Run with Costfactor = 1.750
Initial Values
Total time, f=988677.270
Costfactor = 1.750
cost= 28.066 q= 0.620
Final Values
Total time, f= 23.020
cost= 49.116 q= 0.846
x= 71.052 0.963 1.197 3.000 45.337 417.504 4.123 5.098
Function evaluations= 2525

Run with Costfactor = 1.800
Initial Values
Total time, f=1110770.536
Costfactor = 1.800
cost= 28.066 q= 0.620
Final Values
Total time, f= 22.066
cost= 50.519 q= 0.846
x= 72.231 0.963 1.141 3.000 45.808 419.586 4.090 4.582
Function evaluations= 2129

Run with Costfactor = 1.850
Initial Values
Total time, f=1240740.786
Costfactor = 1.850
cost= 28.066 q= 0.620
Final Values
Total time, f= 21.200
cost= 51.922 q= 0.846
x= 73.220 0.963 1.094 3.000 45.681 417.212 4.100 4.099
Function evaluations= 3429

 157

Run with Costfactor = 1.900
Initial Values
Total time, f=1378588.022
Costfactor = 1.900
cost= 28.066 q= 0.620
Final Values
Total time, f= 20.402
cost= 53.325 q= 0.846
x= 74.134 0.963 1.052 3.000 46.129 418.973 4.084 3.651
Function evaluations= 3633

Run with Costfactor = 1.950
Initial Values
Total time, f=1524312.242
Costfactor = 1.950
cost= 28.066 q= 0.620
Final Values
Total time, f= 19.660
cost= 54.729 q= 0.846
x= 74.887 0.963 1.015 3.000 45.445 416.088 4.080 3.225
Function evaluations= 4130

Run with Costfactor = 2.000
Initial Values
Total time, f=1677913.448
Costfactor = 2.000
cost= 28.066 q= 0.620
Final Values
Total time, f= 18.981
cost= 56.132 q= 0.846
x= 76.993 0.964 0.924 3.000 46.944 419.530 4.055 3.000
Function evaluations= 3704

Run with Costfactor = 2.050
Initial Values
Total time, f=1839391.638
Costfactor = 2.050
cost= 28.066 q= 0.620
Final Values
Total time, f= 18.448
cost= 57.535 q= 0.846
x= 80.227 0.964 0.787 3.000 45.544 408.849 4.012 3.000
Function evaluations= 5184

Run with Costfactor = 2.100
Initial Values
Total time, f=2008746.813
Costfactor = 2.100
cost= 28.066 q= 0.620
Final Values
Total time, f= 18.022
cost= 58.939 q= 0.846
x= 82.877 0.963 0.672 3.000 46.788 434.541 3.980 3.000
Function evaluations= 4160

Run with Costfactor = 2.150
Initial Values
Total time, f=2185978.973
Costfactor = 2.150
cost= 28.066 q= 0.620
Final Values
Total time, f= 17.661
cost= 60.342 q= 0.846
x= 85.025 0.964 0.567 3.000 48.223 435.763 3.962 3.000
Function evaluations= 5054

Run with Costfactor = 2.200

 158

Initial Values
Total time, f=2371088.117
Costfactor = 2.200
cost= 28.066 q= 0.620
Final Values
Total time, f= 17.346
cost= 61.745 q= 0.846
x= 87.141 0.963 0.481 3.000 45.604 417.051 3.920 3.000
Function evaluations= 4042

Run with Costfactor = 2.250
Initial Values
Total time, f=2564074.247
Costfactor = 2.250
cost= 28.066 q= 0.620
Final Values
Total time, f= 17.070
cost= 63.148 q= 0.846
x= 88.943 0.963 0.401 3.000 45.574 417.080 3.887 3.000
Function evaluations= 6250

Run with Costfactor = 2.300
Initial Values
Total time, f=2764937.362
Costfactor = 2.300
cost= 28.066 q= 0.620
Final Values
Total time, f= 16.822
cost= 64.552 q= 0.846
x= 90.519 0.963 0.325 3.000 45.361 417.815 3.876 3.000
Function evaluations= 5658

Run with Costfactor = 2.350
Initial Values
Total time, f=2973677.461
Costfactor = 2.350
cost= 28.066 q= 0.620
Final Values
Total time, f= 16.596
cost= 65.955 q= 0.846
x= 92.032 0.963 0.257 3.000 45.133 417.483 3.856 3.000
Function evaluations= 5391

Run with Costfactor = 2.400
Initial Values
Total time, f=3190294.545
Costfactor = 2.400
cost= 28.066 q= 0.620
Final Values
Total time, f= 16.399
cost= 67.358 q= 0.846
x= 95.287 0.964 0.250 3.000 46.376 417.007 3.783 3.000
Function evaluations= 4955

Run with Costfactor = 2.450
Initial Values
Total time, f=3414788.615
Costfactor = 2.450
cost= 28.066 q= 0.620
Final Values
Total time, f= 16.237
cost= 68.762 q= 0.846
x= 98.415 0.966 0.250 3.000 50.354 415.269 3.745 3.000
Function evaluations= 3347

Run with Costfactor = 2.500
Initial Values

 159

Total time, f=3647159.669
Costfactor = 2.500
cost= 28.066 q= 0.620
Final Values
Total time, f= 16.122
cost= 70.165 q= 0.846
x= 100.000 0.973 0.250 3.000 65.289 417.588 3.166 3.000
Function evaluations= 3268

cost factor cost MOE function evals
 1.25 35.082 38.589 1329.000
 1.30 36.486 66.522 668.000
 1.35 37.889 44.935 792.000
 1.40 39.292 38.954 1658.000
 1.45 40.696 34.564 1778.000
 1.50 42.099 30.932 1846.000
 1.55 43.502 28.390 2356.000
 1.60 44.906 26.816 2395.000
 1.65 46.309 25.329 2247.000
 1.70 47.712 24.096 1966.000
 1.75 49.115 23.020 2525.000
 1.80 50.519 22.066 2129.000
 1.85 51.922 21.200 3429.000
 1.90 53.325 20.402 3633.000
 1.95 54.729 19.660 4130.000
 2.00 56.132 18.981 3704.000
 2.05 57.535 18.448 5184.000
 2.10 58.939 18.022 4160.000
 2.15 60.342 17.661 5054.000
 2.20 61.745 17.346 4042.000
 2.25 63.148 17.070 6250.000
 2.30 64.552 16.822 5658.000
 2.35 65.955 16.596 5391.000
 2.40 67.358 16.399 4955.000
 2.45 68.762 16.237 3347.000
 2.50 70.165 16.122 3268.000

 160

1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8
10

20

30

40

50

60

70
System of Systems MOE as Function of Cost

Cost Factor on Threshold System Costs

Ti
m

e
to

 C
om

pl
et

e
M

is
si

on
 (

ho
ur

s)

35 40 45 50 55 60 65 70 75
10

20

30

40

50

60

70
System of Systems MOE as Function of Cost

Cost ($M)

Ti
m

e
to

 C
om

pl
et

e
M

is
si

on
 (

ho
ur

s)

1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
System of Systems MOPs as Function of Cost

Cost Factor on Threshold System Costs

M
O

P
s

1-
4

(p
er

ce
nt

 o
f t

ec
hn

ol
og

y
th

re
sh

ol
d)

x1
x2
x3
x4

1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
System of Systems MOPs as Function of Cost

Cost Factor on Threshold System Costs

M
O

P
s

5-
8

(p
er

ce
nt

 o
f t

ec
hn

ol
og

y
th

re
sh

ol
d)

x5
x6
x7
x8

 161

APPENDIX D

FIRST ORDER CONSTRAINED SPSA MATLAB CODE, EXAMPLE, AND

RESULTS

The following three dimensional nonlinear programming problem was used to

check out implementation of the constrained SPSA algorithm and code developed for this

dissertation effort:

26
42

1032
:subject to

 ,43Min

2

1

21

2
2

2
1

−≤≤−
≤≤

≤−

+=

x
x

xx

xxz

Geometrically, z is an elliptic cone with its origin at (0,0). The interval constraints form a

box with the linear constraint making an intersecting plane. The problem boils down to

finding a point on section of the elliptic cone that lies inside the clipped box formed by

the constraints. The correct solution is [2,-2], yielding z=28 as the constrained minimum.

Since the objective function is simply a quadratic, the Lagrangian method was used in a

straightforward manner to transform the problem:

multiplier Lagrangian theis here w,0
26

42
:subject to

 10)32(--43),,F(Min

33

2

1

213
2

2
2

1321

xx
x
x

xxxxxxxx

≤
−≤≤−

≤≤

+++=

With initial condition vector [3,-4,0], 1SPSA took an average of 9.8 iterations to achieve

the exact solution, with an absolute blocking criteria applied. Without blocking, the

average number of iterations was 13.4. Other initial conditions were investigated, with

similar results. The following code was used to solve this initial problem, and served as

the basis for algorithm/code development for the MCM system of systems problem.

 162

% Filename: \lumanrr1\matlab\prob43xx.m
% Output file initialization
fid=fopen('/home/lumanrr1/matlab/output.txt','w');
fprintf(fid,'output from execution of prob43.m\n\n');
%===%
% SPSA Initialization
%
%===
x0=[3,-4,0]
fprintf(fid,'x0=');
fprintf(fid,'%8.3f %8.3f %8.3f\n',x0);
vlb=[2,-6,0] % lower bound constraint on x
vub=[4,-2,1000] % upper bound constraint on x
x=x0
n=100 % maximum allowable number of iterations
blocks=0 % number of blocked iterations
tolf=0.001 % convergence tolerances
tolx=0.00001
p=3 % dimension of x
[f,g]=funa4(x) % evaluate f right away
%
A=20 % Spall cookbook, about 5% of max iterations
alpha=0.602 % Spall cookbook values
gamma=0.101
c=0.5 % Value for c used by Ilenda was 0.05. Critical parameter.
% May need to scale whole problem's x so that the optimal
% values lie in a similar range.
a=0.078 % Select a consistent with expectation of about 0.1 movement
% in x during initial iterations. Hence,
% [a/(A+1)^alpha]*20.0 = 0.1, solve for a.
fprintf(fid,'vlb=\n');fprintf(fid,'%8.3f',vlb);fprintf(fid,'\n');
fprintf(fid,'vub=\n');fprintf(fid,'%8.3f',vub);fprintf(fid,'\n');
fprintf(fid,'tolf=');fprintf(fid,'%10.6f\n',tolf);
fprintf(fid,'tolx=');fprintf(fid,'%10.6f\n',tolx);
fprintf(fid,'A=');fprintf(fid,'%8.3f',A);fprintf(fid,'
alpha=');fprintf(fid,'%8.3f\n',alpha);
fprintf(fid,'c=');fprintf(fid,'%8.3f',c);fprintf(fid,' a=');fprintf(fid,'%8.3f\n',a);
%===
%
% SPSA Loop
%
%===
for k=1:n

k
fprintf(fid,'\n');fprintf(fid,'===

=\n');
fprintf(fid,'iteration #');fprintf(fid,'%3.0f\n',k);
a_k=a/(k+A)^alpha % strongly dependent on a, A initialization
c_k=c/k^gamma % strongly dependednt on c: small relative to x
fprintf(fid,'a_k=');fprintf(fid,'%8.3f',a_k);fprintf(fid,'

c_k=');fprintf(fid,'%8.3f\n',c_k);
for j=1:p

delta(j)=2*round(rand(1))-1;
delta(j);

end
% delta

xplus=x+c_k*delta % If the elements of x vary significantly in magnitude,
xminus=x-c_k*delta % then should either scale delta or x elements.
fprintf(fid,'delta=');fprintf(fid,'%8.3f',delta);fprintf(fid,'\n');
fprintf(fid,'xminus(raw)=');fprintf(fid,'%8.3f',xminus);fprintf(fid,'\n');
fprintf(fid,'xplus(raw)=');fprintf(fid,'%8.3f',xplus);fprintf(fid,'\n');

% Key is probably the jitter, not magnitude.
% check for infeasible vectors

for j=1:p
if xplus(j)<vlb(j)
xplus(j)=vlb(j);
end
if xminus(j)<vlb(j)
xminus(j)=vlb(j);
end
if xplus(j)>vub(j)
xplus(j)=vub(j);
end
if xminus(j)>vub(j)
xminus(j)=vub(j);

 163

end
end
xminus,xplus
fprintf(fid,'xminus(constr)=');fprintf(fid,'%8.3f',xminus);fprintf(fid,'\n');
fprintf(fid,'xplus(constr)=');fprintf(fid,'%8.3f',xplus);fprintf(fid,'\n');

%
% Update, checking for convergence

[fplus,g]=funa4(xplus);
[fminus,g]=funa4(xminus);
fminus
fplus
ghat=(fplus-fminus)./(2*c_k*delta)
fprintf(fid,'fminus=');fprintf(fid,'%8.3f',fminus);
fprintf(fid,' fplus=');fprintf(fid,'%8.3f\n',fplus);
fprintf(fid,'ghat=');fprintf(fid,'%8.3f',ghat);fprintf(fid,'\n');
xkp1=x-a_k*ghat
fprintf(fid,'xkp1(raw)=');fprintf(fid,'%8.3f',xkp1);fprintf(fid,'\n');

%
% check for infeasible updated estimate

for j=1:p
if xkp1(j)<vlb(j)
xkp1(j)=vlb(j);
end
if xkp1(j)>vub(j)
xkp1(j)=vub(j);
end

end
xkp1
fprintf(fid,'xkp1(constr)=');fprintf(fid,'%8.3f',xkp1);fprintf(fid,'\n');
[fkp1,g]=funa4(xkp1);
fkp1
fprintf(fid,'f_k=');fprintf(fid,'%8.3f',f);fprintf(fid,'f_kp1=');
fprintf(fid,'%8.3f\n',fkp1);

%
fundiff=abs(fkp1-f);
if fundiff < tolf

fundiff
xkp1
fkp1
k
fprintf(fid,'Terminate: fundiff=');fprintf(fid,'%12.8f\n',fundiff);
return

end
xdifnorm=norm(x-xkp1);
if xdifnorm < tolx

xdifnorm
xkp1
fkp1
k
fprintf(fid,'Terminate: xdifnorm=');fprintf(fid,'%12.8f\n',xdifnorm);
return

end
if fkp1<f

x=xkp1 % Accept new estimate. Otherwise block the update passively.
f=fkp1

else
blocks=blocks+1
fprintf(fid,'Update Blocked. Block number:');fprintf(fid,'%3.0\n',blocks)

end
end

function [f,g] = funa4(x)
f = 3*(x(1))^2 + 4*(x(2))^2 + x(3)*(2*x(1)-3*x(2)-10); % LaGrangian
g=[] ; % only constraints are upper and lower bounds

1SPSA Code for MCM System of Systems:

% MCM System of Systems
% SPSA utilizing penalty function MCMFUNPF that was used with MCM42PF.m
% Except that the penalty functions have a gain that increases with k, iteration

number.
% Filename: \matlab\dissertation\MCMSPSA.m

 164

%This file utilizes the standard scalar gain, a_k, which will not compensate for
scaling

%differences in variables.
% Output file initialization
clear

fid=fopen('c:\matlab\dissertation\output SPSA.doc','w');
fprintf(fid,'output from execution of MCMspsa.m, scalar gain a_k\n\n');

%==
%
% MCM Initialization
%
%==
%
% x(1)=p11= S1 area coverage rate (nm^2/day)
% x(2)=p12= S1 classification probability
% x(3)=p13= S1 FAR (#/nm^2)
% x(4)=p14= S1 time to classify (min)
% x(5)=p15= S1 navigation accuracy (yards)
% x(6)=p21= S2 Re-acquisition range (yards)
% x(7)=p22= S2 time to prosecute a false target (min)
% x(8)=p23= S2 time to neutralize (min)
pd=0.90; %S1 detection system probability of detection

x0=[10;0.9;2.0;9.17;90;75;6.6;10.0]; %Might need to start at feasible point. This won't
meet q(x) constraint.

p=8; % dimension of x
xstar=x0 %this is the threshold system. But too far from opimal for SPSA to start with.
x0=[70;.95;1.0;5.0;45;430;3.5;6]; %pretty near optimal for costfactor around 1.6.
xoptimal=[10.000 0.900 2.000 9.170 90.000 75.000 6.600 10.000;...

57.379 0.963 2.000 4.983 45.108 417.391 7.000 8.793;...
58.915 0.963 2.000 3.915 44.820 417.374 7.000 8.555;...
60.058 0.963 2.000 3.017 44.418 417.371 7.000 8.355;...
65.201 0.963 2.000 3.000 44.632 417.375 7.000 7.162;...
67.996 0.963 2.000 3.000 44.802 417.387 7.000 6.282;...
68.194 0.962 1.342 3.000 43.341 417.304 7.000 6.213;...
69.825 0.962 1.249 3.000 42.959 417.274 7.000 5.603;...
71.172 0.962 1.181 3.000 42.596 417.237 7.000 5.045;...
72.316 0.961 1.126 3.000 42.245 417.195 7.000 4.532;...
73.310 0.961 1.080 3.000 42.000 417.254 7.000 4.055;...
74.189 0.961 1.040 3.000 42.000 417.519 7.000 3.607;...
74.979 0.961 1.004 3.000 42.000 417.757 7.000 3.184;...
77.328 0.961 0.901 3.000 42.000 418.623 7.000 3.000;...
80.440 0.961 0.765 3.000 42.000 420.090 7.000 3.000;...
83.033 0.961 0.651 3.000 42.000 421.627 7.000 3.000;...
85.261 0.961 0.552 3.000 42.000 423.201 7.000 3.000;...
87.217 0.961 0.463 3.000 42.000 424.790 7.000 3.000;...
88.965 0.961 0.383 3.000 42.000 426.399 7.000 3.000;...
85.153 0.963 0.570 3.000 45.839 417.389 3.948 3.000;...
87.149 0.963 0.481 3.000 45.694 417.395 3.921 3.000;...
88.941 0.963 0.400 3.000 45.508 417.412 3.894 3.000;...
90.539 0.963 0.326 3.000 45.239 417.380 3.876 3.000;...
92.010 0.963 0.257 3.000 44.947 417.360 3.857 3.000;...
95.302 0.963 0.250 3.000 45.572 417.461 3.797 3.000;...
98.430 0.964 0.250 3.000 46.343 417.398 3.737 3.000;...
100.000 0.973 0.250 3.000 64.008 412.202 3.162 3.000];

fprintf(fid,'x0=\n');fprintf(fid,'%10.3f',x0);fprintf(fid,'\n');
vlb=[10.0;0.9;0.25;3.0;42;75;1.0;3.0]; % lower bound constraint on x
vub=[100;0.98;2.0;9.17;90;700;7.0;10.0]; % upper bound constraint on x
fprintf(fid,'vlb=\n');fprintf(fid,'%10.3f',vlb);fprintf(fid,'\n');
fprintf(fid,'vub=\n');fprintf(fid,'%10.3f',vub);fprintf(fid,'\n\n');
% Compute px1, polynomial fit cost function parameters for x(1)
x1=[10,57,82,94];
y1=[3,4.483,7.655,11.445];
px1=polyfit(x1,y1,3);
% Compute px2, polynomial fit cost function parameters for x(2)
x1=[0.9,0.93,0.96,0.98];
y1=[.2,.5,1.4,2.2]; %revised PBCM that reflects COTS/NDI development
px2=polyfit(x1,y1,2);
% Compute px3, polynomial fit cost function parameters for x(3)
x1=[2,1,0.5,0.25];
y1=[8,10.319,13.592,16.429];
px3=polyfit(x1,y1,3);
% Compute px4, polynomial fit cost function parameters for x(4)
x1=[3.513,3.89,4.77,9.17];
y1=[9.191,8.190,7.574,5.0];
px4=polyfit(x1,y1,2);

 165

% Compute px5, polynomial fit cost function parameters for x(5)
x1=[90,60,48,42];
y1=[0.050,0.250,0.450,0.550];
px5=polyfit(x1,y1,2);
% Compute px6, polynomial fit cost function parameters for x(6)
x1=[129,457,622,75];
y1=[3,4.8,7.655,1.5];
px6=polyfit(x1,y1,3);
% Compute px7, polynomial fit cost function parameters for x(7)
x1=[6.6,4.4,3.3,2.64,1.32];
y1=[5.0,7.5,8.190,9.191,16.621];
px7=polyfit(x1,y1,3);
% Compute px8, polynomial fit cost function parameters for x(8)
x1=[10,8,7,5,3];
y1=[5.3,6,7,10,15];
px8=polyfit(x1,y1,2);
%compute threshold system cost
cost0=polyval(px1,xstar(1))+polyval(px2,xstar(2))+polyval(px3,xstar(3))+polyval(px4,xstar(
4))+polyval(px5,xstar(5))+polyval(px6,xstar(6))+polyval(px7,xstar(7))+polyval(px8,xstar(8)
)
%Insert costfactor loop
i=0;
for costfactor=1.25:0.05:2.5 %Note problem is infeasible with costfactor<1.25

i=i+1;
for j=1:p %start "near the optimal solution"--perturb randomly by 20%

del=2*round(rand)-1; %this is +/-1 random number
x0(j)=(1+0.20*del)*xoptimal(i,j); % results in either 120% or 80% of optimal.
if x0(j)<vlb(j);x0(j)=vlb(j);end %make sure x0 is feasible
if x0(j)>vub(j);x0(j)=vub(j);end
end

costfactor
fprintf(fid,'\n');
cub=costfactor*cost0; %system of systems cost constraint
qlb=0.846; %quality constraint lower bound
fprintf(fid,'Run with Costfactor = ');fprintf(fid,'%10.3f',costfactor);fprintf(fid,'

cub=');fprintf(fid,'%10.3f',cub);fprintf(fid,' qlb=');fprintf(fid,'%10.3f\n',qlb);
sminefield=20; %minefield area, (nm^2)
m0=100; %number of mines in minefield, initially
lambda=m0/sminefield; %mine density, (#/nm^2)
dmine=600; %average distance between mines, (yards)
vtransit=7; %S1 vehicle transit speed (knots)
ttransit=dmine/(2000*vtransit); %transit time during classification (hours)
lambdaft=1.0; %false target density (#/nm^2)
% Define parameters for the objective function
p1=pd;
p2=lambda;
p3=lambdaft;
p4=ttransit;
p5=sminefield;
p6=cub;
p7=qlb;
p8=1; %Placeholder---p8 will be iteration number of SPSA algorithm.
[f,g]=mcmfunpfs(x0,p1,p2,p3,p4,p5,p6,p7,p8);
fprintf(fid,'Initial Values\n');
x=x0
cost=polyval(px1,x(1))+polyval(px2,x(2))+polyval(px3,x(3))+polyval(px4,x(4))+polyval(px5,x

(5))+polyval(px6,x(6))+polyval(px7,x(7))+polyval(px8,x(8))
q=p1*x(2)*exp(-x(5)/(4.481*x(6)));
f1 = (p5/60)*(24*60/x(1) + p2*x(2)*x(4)*p1 + (2*x(4)-p4)*((1-x(2))*p1*p2 + x(3) + p1*p3));
f2 = (p5/60)*(p1*x(2)*x(8)*p2*exp(-x(5)/(4.481*x(6)))+(1-exp(-

x(5)/(4.481*x(6))))*p1*x(2)*x(7)*p2 + (1-x(2))*(x(3)+p1*p3)*x(7));
E=f1+f2;
q=p1*x0(2)*exp(-x0(5)/(4.481*x0(6)));
fprintf(fid,'f=');fprintf(fid,'%10.3f',f);fprintf(fid,' E=');fprintf(fid,'%10.3f',E);
fprintf(fid,' cost=');fprintf(fid,'%10.3f',cost);fprintf(fid,'
q=');fprintf(fid,'%10.3f',q);
% Print out threshold system values for f and constraints, g.
%==
%
% SPSA Initialization
%
%==
n=2500; % maximum allowable number of iterations
blocks=0; % number of blocked iterations
tolf=0.000015; % convergence tolerances

 166

tolx=0.00001;
p=8; % dimension of x
%[f,g]=mcmfunpfs(x0,p1,p2,p3,p4,p5,p6,p7,p8) % evaluate f right away
%
A=50; % Spall cookbook, about 5% of max iterations
alpha=0.602; % Spall cookbook values
gamma=0.101;
c=0.002; % Value for c used by Ilenda was 0.05. Critical parameter.
% May need to scale whole problem's x so that the optimal
% values lie in a similar range.
a=0.02;
%a=[.02,1e-4,.006,.02,.2,.4,.02,.02] % Select a consistent with
expectation of about 0.1 movement
% in x during initial iterations. Hence,
% [a/(A+1)^alpha]*20.0 = 0.1, solve for a.
fprintf(fid,' tolx=');fprintf(fid,'%10.6f',tolx);
fprintf(fid,' tolf=');fprintf(fid,'%10.6f\n',tolf);
fprintf(fid,'A=');fprintf(fid,'%8.3f',A);fprintf(fid,'
alpha=');fprintf(fid,'%8.3f',alpha);
fprintf(fid,' c=');fprintf(fid,'%8.3f',c);fprintf(fid,'
a=');fprintf(fid,'%8.3f\n',a);
%===
%
% SPSA Loop
%
%===
for k=1:n;

p8=k;
%fprintf(fid,'\n');fprintf(fid,'==\n');
%fprintf(fid,'iteration #');fprintf(fid,'%3.0f\n',k);
a_k=a/(k+A)^alpha; % strongly dependent on a, A initialization
c_k=c/k^gamma; % strongly dependednt on c: small relative to x
%fprintf(fid,'a_k=');fprintf(fid,'%8.3f',a_k);fprintf(fid,'
c_k=');fprintf(fid,'%8.3f\n',c_k);
delta=2*round(rand(p,1))-1;

% delta
xplus=x+c_k*delta; % If the elements of x vary significantly in magnitude,
xminus=x-c_k*delta; % then should either scale delta or x elements.
%fprintf(fid,'delta=');fprintf(fid,'%8.3f',delta);fprintf(fid,'\n');
%fprintf(fid,'xminus(raw)=');fprintf(fid,'%8.3f',xminus);fprintf(fid,'\n');
%fprintf(fid,'xplus(raw)=');fprintf(fid,'%8.3f',xplus);fprintf(fid,'\n');

% Key is probably the jitter, not magnitude.
% check for infeasible vectors
for j=1:p; %if on a border, pull back and adjust c_k component j.

if xplus(j)<vlb(j);
xplus(j)=vlb(j);

end;
if xminus(j)<vlb(j);

xminus(j)=vlb(j);
end;
if xplus(j)>vub(j);

xplus(j)=vub(j);
end;

if xminus(j)>vub(j);
xminus(j)=vub(j);

end;
end;

%xminus,xplus
%fprintf(fid,'xminus(constr)=');%fprintf(fid,'%8.3f',xminus);%fprintf(fid,'\n');
%fprintf(fid,'xplus(constr)=');%fprintf(fid,'%8.3f',xplus);%fprintf(fid,'\n');

%
% Update, checking for convergence

[fplus,g]=mcmfunpfs(xplus,p1,p2,p3,p4,p5,p6,p7,p8);
[fminus,g]=mcmfunpfs(xminus,p1,p2,p3,p4,p5,p6,p7,p8);

fminus;
fplus;
ghat=(fplus-fminus)./(2*c_k*delta);

% xkp1(j)=x(j)-a_k(j)*ghat(j); %vector gain to compensate for scaling
xkp1=x-a_k*ghat; %scalar gain as standard SPSA
%fprintf(fid,'fminus=');fprintf(fid,'%8.3f',fminus);fprintf(fid,'
fplus=');fprintf(fid,'%8.3f\n',fplus);
%fprintf(fid,'ghat=');fprintf(fid,'%8.3f',ghat);fprintf(fid,'\n');
%fprintf(fid,'xkp1(raw)=');fprintf(fid,'%8.3f',xkp1);fprintf(fid,'\n');
%
% check for infeasible updated estimate

 167

for j=1:p;
if xkp1(j)<vlb(j);
xkp1(j)=vlb(j);
end;
if xkp1(j)>vub(j);
xkp1(j)=vub(j);
end;

end;
xkp1;
%fprintf(fid,'xkp1(constr)=');fprintf(fid,'%8.3f',xkp1);fprintf(fid,'\n');
[fkp1,g]=mcmfunpfs(xkp1,p1,p2,p3,p4,p5,p6,p7,p8);
%fprintf(fid,'f_k=');fprintf(fid,'%8.3f',f);fprintf(fid,'
f_kp1=');fprintf(fid,'%8.3f\n',fkp1);

%
if fkp1<f+1;

x=xkp1; % Accept new estimate. Otherwise block the update passively.
f=fkp1;

else;
blocks=blocks+1;
%%fprintf(fid,'Update Blocked. Block number:');%fprintf(fid,'%3.0\n',blocks)

end;
end
mcmeval(x,p1,p2,p3,p4,p5,p6,p7)
[f,g]=mcmfunpfs(x,p1,p2,p3,p4,p5,p6,p7,p8)
fprintf(fid,'Final Values\n');
cost =
polyval(px1,x(1))+polyval(px2,x(2))+polyval(px3,x(3))+polyval(px4,x(4))+polyval(px5,x(5))+
polyval(px6,x(6))+polyval(px7,x(7))+polyval(px8,x(8))
q=p1*x(2)*exp(-x(5)/(4.481*x(6)))
f1 = (p5/60)*(24*60/x(1) + p2*x(2)*x(4)*p1 + (2*x(4)-p4)*((1-x(2))*p1*p2 + x(3) + p1*p3));
f2 = (p5/60)*(p1*x(2)*x(8)*p2*exp(-x(5)/(4.481*x(6)))+(1-exp(-
x(5)/(4.481*x(6))))*p1*x(2)*x(7)*p2 + (1-x(2))*(x(3)+p1*p3)*x(7));
E=f1+f2
fprintf(fid,'Total time, E=');fprintf(fid,'%10.3f',E);
fprintf(fid,' cost=');fprintf(fid,'%10.3f',cost);fprintf(fid,'
q=');fprintf(fid,'%10.3f',q);
fprintf(fid,' Function evaluations= ');fprintf(fid,'%8.0f',2*k);
fprintf(fid,' Blocks=');fprintf(fid,'%8.0f\n',blocks);
fprintf(fid,'x=');fprintf(fid,'%10.3f',x);fprintf(fid,'\n');
cf(i)=costfactor; fval(i)=E; costval(i)=cub;fevals(i)=2*k; costi(i)=cost;
qfinal(i)=q;nblock(i)=blocks;
z1(i)=x(1);z2(i)=x(2);z3(i)=x(3);z4(i)=x(4);z5(i)=x(5);z6(i)=x(6);z7(i)=x(7);z8(i)=x(8);
z1(i)=abs((z1(i)-xstar(1))/(vlb(1)-vub(1)));
z2(i)=abs((z2(i)-xstar(2))/(vlb(2)-vub(2)));
z3(i)=abs((z3(i)-xstar(3))/(vlb(3)-vub(3)));
z4(i)=abs((z4(i)-xstar(4))/(vlb(4)-vub(4)));
z5(i)=abs((z5(i)-xstar(5))/(vlb(5)-vub(5)));
z6(i)=abs((z6(i)-xstar(6))/(vlb(6)-vub(6)));
z7(i)=abs((z7(i)-xstar(7))/(vlb(7)-vub(7)));
z8(i)=abs((z8(i)-xstar(8))/(vlb(8)-vub(8)));
end
% Plot option 1: Plot System of systems MOE as CAIV
figure
plot(cf,fval,'-*b')
title('System of Systems MOE as Function of Cost')
xlabel('Cost Factor on Threshold System Costs')
ylabel('Time to Complete Mission (hours)')
figure
plot(costval,fval,'-*b')
title('System of Systems MOE as Function of Cost')
xlabel('Cost ($M)')
ylabel('Time to Complete Mission (hours)')
%
%
% Plot option 2: Plot MOPs as CAIV
figure
plot(cf,z1,'-b*',cf,z2,'-r+',cf,z3,'-go',cf,z4,'-kx')
legend('x1','x2','x3','x4')
title('System of Systems MOPs as Function of Cost')
xlabel('Cost Factor on Threshold System Costs')
ylabel('MOPs 1-4 (percent of technology threshold)')
figure
plot(cf,z5,'-b*',cf,z6,'-r+',cf,z7,'-go',cf,z8,'-kx')
legend('x5','x6','x7','x8')
title('System of Systems MOPs as Function of Cost')

 168

xlabel('Cost Factor on Threshold System Costs')
ylabel('MOPs 5-8 (percent of technology threshold)')
% print table of results to file
fprintf(fid,'\n');
fprintf(fid,'cost factor');fprintf(fid,' cub');fprintf(fid,' E');fprintf(fid,'
cost');fprintf(fid,' qfinal');fprintf(fid,' fun. evals');fprintf(fid,'
#blocks\n');
for j=1:i
fprintf(fid,'%10.2f',cf(j));fprintf(fid,'%10.3f',costval(j));
fprintf(fid,'%10.3f',fval(j));fprintf(fid,'%10.3f',costi(j));
fprintf(fid,'%10.3f',qfinal(j));fprintf(fid,'%10.0f',fevals(j));
fprintf(fid,'%10.0f\n',nblock(j));
end
status=fclose(fid)

function [f,g] = mcmfunpfs(x,p1,p2,p3,p4,p5,p6,p7,p8)
% squared penalty function version
kmax=600;
k=p8; %k is the iteration number of the SPSA algorithm
A1=20;
A2=2000;
if k<kmax

a1=0.5*(A1)*sin((k-1)*pi/kmax-pi/2)+A1/2+1;
a2=0.5*(A2)*sin((k-1)*pi/kmax-pi/2)+A2/2+1;

else
a1=A1;
a2=A2;

end
px1=[4.503408803940725e-005, -5.386095666335044e-003, 2.159330101073730e-001,

1.334245377520354e+000];
px2=[2.834645669291690e+002, -5.076377952756583e+002, 2.274598425197177e+002];
px3=[-2.048380952380911e+000, 9.987333333333214e+000, -1.794233333333325e+001,

2.032238095238094e+001];
px4=[1.159691730856429e-001, -2.175732453433467e+000, 1.520381256718985e+001];
px5=[2.061825086032983e-004, -3.775958229500408e-002, 1.777803488786043e+000];
px6=[1.504875482450802e-007, -1.578229837871938e-004, 5.516694369186904e-002, -

1.813253427503106e+000];
px7=[-2.850358103957624e-001, 3.846213159671302e+000, -1.726423877731832e+001,

3.334408692656030e+001];
px8=[2.102445277065673e-001, -4.109593768487483e+000, 2.539723920331297e+001];
f1 = (p5/60)*(24*60/x(1) + p2*x(2)*x(4)*p1 + (2*x(4)-p4)*((1-x(2))*p1*p2 + x(3) + p1*p3));
f2 = (p5/60)*(p1*x(2)*x(8)*p2*exp(-x(5)/(4.481*x(6)))+(1-exp(-
x(5)/(4.481*x(6))))*p1*x(2)*x(7)*p2 + (1-x(2))*(x(3)+p1*p3)*x(7));
E=f1+f2;
% evaluate cost constraint
g1=polyval(px1,x(1))+polyval(px2,x(2))+polyval(px3,x(3))+polyval(px4,x(4))+polyval(px5,x(5
))+polyval (px6,x(6))+polyval(px7,x(7))+polyval(px8,x(8))-p6;
% evaluate negative of quality constraint
g2 = -p1*x(2)*exp(-x(5)/(4.481*x(6)))+p7;
%f=f1 + f2 + a1*g1*g1 + a2*g2*g2;
%E,g1,g2,f
f=f1+f2+a1*abs(g1)+a2*abs(g2);
g=[];
%p1=pd
%p2=lambda
%p3=lambdaft
%p4=ttransit
%p5=sminefield
%p6=cub
%p7=qlb
%p8=k

09/11/97 6:48 PM 1SPSA Baseline 9-11-97.doc

Block criteria relaxed to 1.0. Came out pretty good.

output from execution of mcmspsa2500Final.m, scalar gain a_k

x0=
 70.000 0.950 1.000 5.000 45.000 430.000 3.500 6.000
vlb=
 10.000 0.900 0.250 3.000 42.000 75.000 1.000 3.000
vub=

 169

 100.000 0.980 2.000 9.170 90.000 700.000 7.000 10.000

Run with Costfactor = 1.250 cub= 35.082 qlb= 0.846
Initial Values
f= 88.894 E= 83.317 cost= 29.646 q= 0.706 tolx= 0.000010 tolf= 0.000015
A= 50.000 alpha= 0.602 c= 0.002 a= 0.020
Final Values
Total time, E= 71.155 cost= 34.986 q= 0.705 Function evaluations= 5000 Blocks= 2419
x= 13.048 0.980 1.090 8.328 89.695 89.340 6.366 7.356

Run with Costfactor = 1.300 cub= 36.486 qlb= 0.846
Initial Values
f= 43.267 E= 38.874 cost= 40.863 q= 0.861 tolx= 0.000010 tolf= 0.000015
A= 50.000 alpha= 0.602 c= 0.002 a= 0.020
Final Values
Total time, E= 37.667 cost= 40.349 q= 0.846 Function evaluations= 5000 Blocks= 2422
x= 45.835 0.963 1.994 3.733 54.072 500.902 5.711 9.805

Run with Costfactor = 1.350 cub= 37.889 qlb= 0.846
Initial Values
f= 35.761 E= 35.349 cost= 38.290 q= 0.858 tolx= 0.000010 tolf= 0.000015
A= 50.000 alpha= 0.602 c= 0.002 a= 0.020
Final Values
Total time, E= 34.544 cost= 37.804 q= 0.810 Function evaluations= 5000 Blocks= 2460
x= 47.373 0.926 1.227 4.886 42.049 334.142 6.902 6.680

Run with Costfactor = 1.400 cub= 39.292 qlb= 0.846
Initial Values
f= 35.161 E= 33.700 cost= 40.694 q= 0.788 tolx= 0.000010 tolf= 0.000015
A= 50.000 alpha= 0.602 c= 0.002 a= 0.020
Final Values
Total time, E= 33.915 cost= 41.980 q= 0.846 Function evaluations= 5000 Blocks= 2418
x= 48.108 0.967 1.618 3.010 42.049 333.894 5.699 9.836

Run with Costfactor = 1.450 cub= 40.696 qlb= 0.846
Initial Values
f= 39.858 E= 34.258 cost= 35.160 q= 0.782 tolx= 0.000010 tolf= 0.000015
A= 50.000 alpha= 0.602 c= 0.002 a= 0.020
Final Values
Total time, E= 32.065 cost= 40.746 q= 0.851 Function evaluations= 5000 Blocks= 2453
x= 52.340 0.980 1.615 3.208 53.654 333.883 6.471 8.603

Run with Costfactor = 1.500 cub= 42.099 qlb= 0.846
Initial Values
f= 26.358 E= 23.208 cost= 45.198 q= 0.795 tolx= 0.000010 tolf= 0.000015
A= 50.000 alpha= 0.602 c= 0.002 a= 0.020
Final Values
Total time, E= 23.240 cost= 46.095 q= 0.846 Function evaluations= 5000 Blocks= 2439
x= 81.526 0.958 1.641 3.007 42.041 500.990 7.000 5.077

Run with Costfactor = 1.550 cub= 43.502 qlb= 0.846
Initial Values
f= 31.370 E= 31.285 cost= 43.433 q= 0.862 tolx= 0.000010 tolf= 0.000015
A= 50.000 alpha= 0.602 c= 0.002 a= 0.020
Final Values
Total time, E= 30.662 cost= 43.686 q= 0.862 Function evaluations= 5000 Blocks= 2488
x= 54.368 0.980 1.667 3.524 52.024 500.858 5.734 7.072

Run with Costfactor = 1.600 cub= 44.906 qlb= 0.846
Initial Values
f= 27.323 E= 26.697 cost= 44.338 q= 0.788 tolx= 0.000010 tolf= 0.000015
A= 50.000 alpha= 0.602 c= 0.002 a= 0.020
Final Values
Total time, E= 26.708 cost= 45.738 q= 0.848 Function evaluations= 5000 Blocks= 2432
x= 56.366 0.969 1.044 3.006 42.094 334.064 5.687 6.605

 170

Run with Costfactor = 1.650 cub= 46.309 qlb= 0.846
Initial Values
f= 26.913 E= 26.584 cost= 45.986 q= 0.852 tolx= 0.000010 tolf= 0.000015
A= 50.000 alpha= 0.602 c= 0.002 a= 0.020
Final Values
Total time, E= 25.501 cost= 47.260 q= 0.852 Function evaluations= 5000 Blocks= 2438
x= 57.010 0.980 0.976 3.000 51.396 333.643 5.797 5.920

Run with Costfactor = 1.700 cub= 47.712 qlb= 0.846
Initial Values
f= 29.037 E= 24.617 cost= 43.344 q= 0.795 tolx= 0.000010 tolf= 0.000015
A= 50.000 alpha= 0.602 c= 0.002 a= 0.020
Final Values
Total time, E= 23.766 cost= 47.672 q= 0.830 Function evaluations= 5000 Blocks= 2471
x= 58.073 0.940 0.483 3.163 42.000 500.474 6.887 5.209

Run with Costfactor = 1.750 cub= 49.115 qlb= 0.846
Initial Values
f= 23.467 E= 21.615 cost= 50.917 q= 0.795 tolx= 0.000010 tolf= 0.000015
A= 50.000 alpha= 0.602 c= 0.002 a= 0.020
Final Values
Total time, E= 22.057 cost= 51.587 q= 0.846 Function evaluations= 5000 Blocks= 2434
x= 87.775 0.958 1.415 3.698 42.074 500.725 6.942 3.353

Run with Costfactor = 1.800 cub= 50.519 qlb= 0.846
Initial Values
f= 24.508 E= 19.979 cost= 54.993 q= 0.792 tolx= 0.000010 tolf= 0.000015
A= 50.000 alpha= 0.602 c= 0.002 a= 0.020
Final Values
Total time, E= 20.791 cost= 54.596 q= 0.846 Function evaluations= 5000 Blocks= 2429
x= 88.950 0.962 1.101 3.038 50.396 501.052 5.634 4.478

Run with Costfactor = 1.850 cub= 51.922 qlb= 0.846
Initial Values
f= 26.518 E= 17.885 cost= 60.544 q= 0.858 tolx= 0.000010 tolf= 0.000015
A= 50.000 alpha= 0.602 c= 0.002 a= 0.020
Final Values
Total time, E= 18.993 cost= 57.732 q= 0.847 Function evaluations= 5000 Blocks= 2429
x= 89.906 0.968 1.186 3.000 42.124 334.208 5.653 3.198

Run with Costfactor = 1.900 cub= 53.325 qlb= 0.846
Initial Values
f= 24.233 E= 21.072 cost= 50.176 q= 0.858 tolx= 0.000010 tolf= 0.000015
A= 50.000 alpha= 0.602 c= 0.002 a= 0.020
Final Values
Total time, E= 20.388 cost= 53.791 q= 0.851 Function evaluations= 5000 Blocks= 2450
x= 62.143 0.972 0.363 3.068 42.123 335.117 6.866 3.536

Run with Costfactor = 1.950 cub= 54.729 qlb= 0.846
Initial Values
f= 21.818 E= 20.607 cost= 53.571 q= 0.792 tolx= 0.000010 tolf= 0.000015
A= 50.000 alpha= 0.602 c= 0.002 a= 0.020
Final Values
Total time, E= 20.457 cost= 54.733 q= 0.841 Function evaluations= 5000 Blocks= 2460
x= 64.350 0.956 0.602 3.032 50.405 504.265 5.704 3.515

Run with Costfactor = 2.000 cub= 56.132 qlb= 0.846
Initial Values
f= 22.244 E= 19.815 cost= 58.544 q= 0.863 tolx= 0.000010 tolf= 0.000015
A= 50.000 alpha= 0.602 c= 0.002 a= 0.020
Final Values
Total time, E= 20.579 cost= 57.189 q= 0.847 Function evaluations= 5000 Blocks= 2444
x= 99.689 0.962 0.914 3.803 50.305 505.697 6.996 3.467

Run with Costfactor = 2.050 cub= 57.535 qlb= 0.846
Initial Values
f= 19.888 E= 19.686 cost= 57.718 q= 0.866 tolx= 0.000010 tolf= 0.000015

 171

A= 50.000 alpha= 0.602 c= 0.002 a= 0.020
Final Values
Total time, E= 19.423 cost= 57.575 q= 0.847 Function evaluations= 5000 Blocks= 2473
x= 68.126 0.959 0.326 3.044 42.300 507.746 6.124 3.464

Run with Costfactor = 2.100 cub= 58.939 qlb= 0.846
Initial Values
f= 29.146 E= 21.381 cost= 51.182 q= 0.853 tolx= 0.000010 tolf= 0.000015
A= 50.000 alpha= 0.602 c= 0.002 a= 0.020
Final Values
Total time, E= 19.642 cost= 59.005 q= 0.853 Function evaluations= 5000 Blocks= 2389
x= 69.626 0.980 0.250 3.206 51.167 339.978 5.719 3.576

Run with Costfactor = 2.150 cub= 60.342 qlb= 0.846
Initial Values
f= 22.147 E= 19.227 cost= 57.476 q= 0.792 tolx= 0.000010 tolf= 0.000015
A= 50.000 alpha= 0.602 c= 0.002 a= 0.020
Final Values
Total time, E= 19.033 cost= 60.448 q= 0.863 Function evaluations= 5000 Blocks= 2429
x= 71.258 0.980 0.250 3.031 49.908 512.145 5.377 3.575

Run with Costfactor = 2.200 cub= 61.745 qlb= 0.846
Initial Values
f= 25.242 E= 21.096 cost= 57.619 q= 0.866 tolx= 0.000010 tolf= 0.000015
A= 50.000 alpha= 0.602 c= 0.002 a= 0.020
Final Values
Total time, E= 19.042 cost= 61.897 q= 0.866 Function evaluations= 5000 Blocks= 2448
x= 68.379 0.980 0.250 3.237 42.274 500.831 3.130 3.116

Run with Costfactor = 2.250 cub= 63.148 qlb= 0.846
Initial Values
f= 26.027 E= 19.099 cost= 56.276 q= 0.790 tolx= 0.000010 tolf= 0.000015
A= 50.000 alpha= 0.602 c= 0.002 a= 0.020
Final Values
Total time, E= 18.342 cost= 61.312 q= 0.854 Function evaluations= 5000 Blocks= 2391
x= 68.871 0.973 0.257 3.000 55.084 500.842 3.983 3.000

Run with Costfactor = 2.300 cub= 64.552 qlb= 0.846
Initial Values
f= 24.204 E= 19.125 cost= 59.488 q= 0.861 tolx= 0.000010 tolf= 0.000015
A= 50.000 alpha= 0.602 c= 0.002 a= 0.020
Final Values
Total time, E= 18.121 cost= 61.619 q= 0.855 Function evaluations= 5000 Blocks= 2395
x= 71.850 0.973 0.257 3.007 55.124 500.295 5.139 3.000

Run with Costfactor = 2.350 cub= 65.955 qlb= 0.846
Initial Values
f= 25.381 E= 19.502 cost= 60.127 q= 0.795 tolx= 0.000010 tolf= 0.000015
A= 50.000 alpha= 0.602 c= 0.002 a= 0.020
Final Values
Total time, E= 18.063 cost= 64.211 q= 0.849 Function evaluations= 5000 Blocks= 2389
x= 72.962 0.961 0.269 3.021 42.005 500.999 2.284 3.071

Run with Costfactor = 2.400 cub= 67.358 qlb= 0.846
Initial Values
f= 18.302 E= 16.198 cost= 69.412 q= 0.795 tolx= 0.000010 tolf= 0.000015
A= 50.000 alpha= 0.602 c= 0.002 a= 0.020
Final Values
Total time, E= 16.936 cost= 67.868 q= 0.852 Function evaluations= 5000 Blocks= 2457
x= 99.799 0.965 0.378 3.033 42.000 500.886 3.283 3.320

Run with Costfactor = 2.450 cub= 68.762 qlb= 0.846
Initial Values
f= 18.166 E= 16.985 cost= 67.637 q= 0.791 tolx= 0.000010 tolf= 0.000015
A= 50.000 alpha= 0.602 c= 0.002 a= 0.020
Final Values
Total time, E= 17.283 cost= 69.190 q= 0.861 Function evaluations= 5000 Blocks= 2465

 172

x= 99.760 0.980 0.250 3.265 54.661 501.335 3.478 3.374

Run with Costfactor = 2.500 cub= 70.165 qlb= 0.846
Initial Values
f= 16.824 E= 16.191 cost= 69.584 q= 0.795 tolx= 0.000010 tolf= 0.000015
A= 50.000 alpha= 0.602 c= 0.002 a= 0.020
Final Values
Total time, E= 16.377 cost= 70.334 q= 0.850 Function evaluations= 5000 Blocks= 2467
x= 99.906 0.963 0.283 3.049 42.083 501.176 2.910 3.050

cost factor cub E cost qfinal fun. evals #blocks
 1.25 35.082 71.155 34.986 0.705 5000 2419
 1.30 36.486 37.667 40.349 0.846 5000 2422
 1.35 37.889 34.544 37.804 0.810 5000 2460
 1.40 39.292 33.915 41.980 0.846 5000 2418
 1.45 40.696 32.065 40.746 0.851 5000 2453
 1.50 42.099 23.240 46.095 0.846 5000 2439
 1.55 43.502 30.662 43.686 0.862 5000 2488
 1.60 44.906 26.708 45.738 0.848 5000 2432
 1.65 46.309 25.501 47.260 0.852 5000 2438
 1.70 47.712 23.766 47.672 0.830 5000 2471
 1.75 49.115 22.057 51.587 0.846 5000 2434
 1.80 50.519 20.791 54.596 0.846 5000 2429
 1.85 51.922 18.993 57.732 0.847 5000 2429
 1.90 53.325 20.388 53.791 0.851 5000 2450
 1.95 54.729 20.457 54.733 0.841 5000 2460
 2.00 56.132 20.579 57.189 0.847 5000 2444
 2.05 57.535 19.423 57.575 0.847 5000 2473
 2.10 58.939 19.642 59.005 0.853 5000 2389
 2.15 60.342 19.033 60.448 0.863 5000 2429
 2.20 61.745 19.042 61.897 0.866 5000 2448
 2.25 63.148 18.342 61.312 0.854 5000 2391
 2.30 64.552 18.121 61.619 0.855 5000 2395
 2.35 65.955 18.063 64.211 0.849 5000 2389
 2.40 67.358 16.936 67.868 0.852 5000 2457
 2.45 68.762 17.283 69.190 0.861 5000 2465
 2.50 70.165 16.377 70.334 0.850 5000 2467

 173

1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8
10

20

30

40

50

60

70

80
System of Systems MOE as Function of Cost

Cost Factor on Threshold System Costs

Ti
m

e
to

 C
om

pl
et

e
M

is
si

on
 (

ho
ur

s)

35 40 45 50 55 60 65 70 75
10

20

30

40

50

60

70

80
System of Systems MOE as Function of Cost

Cost ($M)

Ti
m

e
to

 C
om

pl
et

e
M

is
si

on
 (

ho
ur

s)

1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
System of Systems MOPs as Function of Cost

Cost Factor on Threshold System Costs

M
O

P
s

1-
4

(p
er

ce
nt

 o
f t

ec
hn

ol
og

y
th

re
sh

ol
d)

x1
x2
x3
x4

1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
System of Systems MOPs as Function of Cost

Cost Factor on Threshold System Costs

M
O

P
s

5-
8

(p
er

ce
nt

 o
f t

ec
hn

ol
og

y
th

re
sh

ol
d)

x5
x6
x7
x8

 174

APPENDIX E

SECOND ORDER CONSTRAINED SPSA MATLAB CODE AND RESULTS

% MCM System of Systems
% SPSA utilizing penalty function MCMFUNPF that was used with MCM42PF.m
% Except that the penalty functions have a gain that increases with k, iteration

number.
% Filename: \matlab\dissertation\MCMSPSA.m
%This file implements constrained, second-order SPSA, with fixed number of

iterations.
% Output file initialization

clear
fid=fopen('c:\matlab\dissertation\output 2SPSA.doc','w');
fprintf(fid,'output from execution of MCM2spsaAvgFinal.m with stepped blocktol (0.2,0.1),
averaging of last 5 iterates\n\n');

%==
%
% MCM Initialization
%
%==
%
% x(1)=p11= S1 area coverage rate (nm^2/day)
% x(2)=p12= S1 classification probability
% x(3)=p13= S1 FAR (#/nm^2)
% x(4)=p14= S1 time to classify (min)
% x(5)=p15= S1 navigation accuracy (yards)
% x(6)=p21= S2 Re-acquisition range (yards)
% x(7)=p22= S2 time to prosecute a false target (min)
% x(8)=p23= S2 time to neutralize (min)
pd=0.90; %S1 detection system probability of detection
p=8; % dimension of x
xstar=[10;0.9;2.0;9.17;90;75;6.6;10.0];
%this is the threshold system. But too far from opimal for SPSA to start with.

x0=[70;.95;1.0;5.0;45;430;3.5;6]; %pretty near optimal for costfactor around 1.6.
xoptimal=[10.000 0.900 2.000 9.170 90.000 75.000 6.600 10.000;...

57.379 0.963 2.000 4.983 45.108 417.391 7.000 8.793;...
58.915 0.963 2.000 3.915 44.820 417.374 7.000 8.555;...
60.058 0.963 2.000 3.017 44.418 417.371 7.000 8.355;...
65.201 0.963 2.000 3.000 44.632 417.375 7.000 7.162;...
67.996 0.963 2.000 3.000 44.802 417.387 7.000 6.282;...
68.194 0.962 1.342 3.000 43.341 417.304 7.000 6.213;...
69.825 0.962 1.249 3.000 42.959 417.274 7.000 5.603;...
71.172 0.962 1.181 3.000 42.596 417.237 7.000 5.045;...
72.316 0.961 1.126 3.000 42.245 417.195 7.000 4.532;...
73.310 0.961 1.080 3.000 42.000 417.254 7.000 4.055;...
74.189 0.961 1.040 3.000 42.000 417.519 7.000 3.607;...
74.979 0.961 1.004 3.000 42.000 417.757 7.000 3.184;...
77.328 0.961 0.901 3.000 42.000 418.623 7.000 3.000;...
80.440 0.961 0.765 3.000 42.000 420.090 7.000 3.000;...
83.033 0.961 0.651 3.000 42.000 421.627 7.000 3.000;...
85.261 0.961 0.552 3.000 42.000 423.201 7.000 3.000;...
87.217 0.961 0.463 3.000 42.000 424.790 7.000 3.000;...
88.965 0.961 0.383 3.000 42.000 426.399 7.000 3.000;...
85.153 0.963 0.570 3.000 45.839 417.389 3.948 3.000;...
87.149 0.963 0.481 3.000 45.694 417.395 3.921 3.000;...
88.941 0.963 0.400 3.000 45.508 417.412 3.894 3.000;...
90.539 0.963 0.326 3.000 45.239 417.380 3.876 3.000;...
92.010 0.963 0.257 3.000 44.947 417.360 3.857 3.000;...
95.302 0.963 0.250 3.000 45.572 417.461 3.797 3.000;...
98.430 0.964 0.250 3.000 46.343 417.398 3.737 3.000;...
100.000 0.973 0.250 3.000 64.008 412.202 3.162 3.000];

%fprintf(fid,'x0=\n');fprintf(fid,'%10.3f',xoptimal);fprintf(fid,'\n');
vlb=[10.0;0.9;0.25;3.0;42;75;1.0;3.0]; % lower bound constraint on x
vub=[100;0.98;2.0;9.17;90;700;7.0;10.0]; % upper bound constraint on x
fprintf(fid,'vlb=\n');fprintf(fid,'%10.3f',vlb);fprintf(fid,'\n');
fprintf(fid,'vub=\n');fprintf(fid,'%10.3f',vub);fprintf(fid,'\n\n');
% Compute px1, polynomial fit cost function parameters for x(1)
x1=[10,57,82,94];
y1=[3,4.483,7.655,11.445];
px1=polyfit(x1,y1,3);
% Compute px2, polynomial fit cost function parameters for x(2)

 175

x1=[0.9,0.93,0.96,0.98];
%y1=[3,4.483,7.655,11.445];%original PBCM for Pc
y1=[.2,.5,1.4,2.2]; %revised PBCM that reflects COTS/NDI development
px2=polyfit(x1,y1,2);
% Compute px3, polynomial fit cost function parameters for x(3)
x1=[2,1,0.5,0.25];
y1=[8,10.319,13.592,16.429];
px3=polyfit(x1,y1,3);
% Compute px4, polynomial fit cost function parameters for x(4)
x1=[3.513,3.89,4.77,9.17];
y1=[9.191,8.190,7.574,5.0];
px4=polyfit(x1,y1,2);
% Compute px5, polynomial fit cost function parameters for x(5)
x1=[90,60,48,42];
y1=[0.050,0.250,0.450,0.550];
px5=polyfit(x1,y1,2);
% Compute px6, polynomial fit cost function parameters for x(6)
x1=[129,457,622,75];
y1=[3,4.8,7.655,1.5];
px6=polyfit(x1,y1,3);
% Compute px7, polynomial fit cost function parameters for x(7)
x1=[6.6,4.4,3.3,2.64,1.32];
y1=[5.0,7.5,8.190,9.191,16.621];
px7=polyfit(x1,y1,3);
% Compute px8, polynomial fit cost function parameters for x(8)
x1=[10,8,7,5,3];
y1=[5.3,6,7,10,15];
px8=polyfit(x1,y1,2);
%compute threshold system cost
cost0=polyval(px1,xstar(1))+polyval(px2,xstar(2))+polyval(px3,xstar(3))+polyval(px4,xstar(

4))+polyval(px5,xstar(5))+polyval(px6,xstar(6))+polyval(px7,xstar(7))+polyval(px8,
xstar(8))

%Insert costfactor loop
i=0;
for costfactor=1.2:0.05:2.5 %Note problem is infeasible with costfactor<1.25

i=i+1;
for j=1:p %start 2SPSA "near the optimal solution"--perturb randomly by 20%
del=2*round(rand)-1; %this is +/-1 random number
x0(j)=(1+0.20*del)*xoptimal(i,j); % results in either 120% or 80% of optimal.
if x0(j)<vlb(j);x0(j)=vlb(j);end %make sure x0 is feasible
if x0(j)>vub(j);x0(j)=vub(j);end

end
costfactor
fprintf(fid,'\n');
cub=costfactor*cost0; %system of systems cost constraint
qlb=0.846; %quality constraint lower bound
fprintf(fid,'Run with Costfactor = ');fprintf(fid,'%10.3f',costfactor);
fprintf(fid,' cub=');fprintf(fid,'%10.3f',cub);
fprintf(fid,' qlb=');fprintf(fid,'%10.3f\n',qlb);
sminefield=20; %minefield area, (nm^2)
m0=100; %number of mines in minefield, initially
lambda=m0/sminefield; %mine density, (#/nm^2)
dmine=600; %average distance between mines, (yards)
vtransit=7; %S1 vehicle transit speed (knots)
ttransit=dmine/(2000*vtransit); %transit time during classification (hours)
lambdaft=1.0; %false target density (#/nm^2)
% Define parameters for the objective function
p1=pd;
p2=lambda;
p3=lambdaft;
p4=ttransit;
p5=sminefield;
p6=cub;
p7=qlb;
p8=1; %Placeholder---p8 will be iteration number of SPSA algorithm.
[f,g]=mcmfunpf2s(x0,p1,p2,p3,p4,p5,p6,p7,p8);
fprintf(fid,'Initial Values\n');
fprintf(fid,'x0=');fprintf(fid,'%10.3f',x0);fprintf(fid,'\n');
x=x0;
cost=polyval(px1,x(1))+polyval(px2,x(2))+polyval(px3,x(3))+polyval(px4,x(4))+polyval(px5,x

(5))+polyval(px6,x(6))+polyval(px7,x(7))+polyval(px8,x(8))
q=p1*x(2)*exp(-x(5)/(4.481*x(6)));
f1 = (p5/60)*(24*60/x(1) + p2*x(2)*x(4)*p1 + (2*x(4)-p4)*((1-x(2))*p1*p2 + x(3) + p1*p3));
f2 = (p5/60)*(p1*x(2)*x(8)*p2*exp(-x(5)/(4.481*x(6)))+(1-exp(-

x(5)/(4.481*x(6))))*p1*x(2)*x(7)*p2 + (1-x(2))*(x(3)+p1*p3)*x(7));

 176

E=f1+f2;
q=p1*x0(2)*exp(-x0(5)/(4.481*x0(6)));
fprintf(fid,'f=');fprintf(fid,'%10.3f',f);fprintf(fid,' E=');fprintf(fid,'%10.3f',E);
fprintf(fid,' cost=');fprintf(fid,'%10.3f',cost);fprintf(fid,'
q=');fprintf(fid,'%10.3f',q);
% Print out threshold system values for f and constraints, g.
%==
%
% SPSA Initialization
%
%==
for k1=1:50;s1(k1)=0;s2(k1)=0;s3(k1)=0;s4(k1)=0;s5(k1)=0;s6(k1)=0;s7(k1)=0;s8(k1)=0;end
n=1000; % maximum allowable number of iterations
N=0;
blocks=0; % number of blocked iterations
tolf=0.00005; % convergence tolerances
tolx=0.00001;
A=10; % Spall cookbook, about 5% of max iterations
alpha=0.602; % Spall cookbook values
gamma=0.101;
c=0.005; % Value for c used by Ilenda was 0.05. Critical parameter.
% May need to scale whole problem's x so that the optimal
% values lie in a similar range.
a=50;
fprintf(fid,' tolx=');fprintf(fid,'%10.6f',tolx);
fprintf(fid,' tolf=');fprintf(fid,'%10.6f\n',tolf);
fprintf(fid,'A=');fprintf(fid,'%8.3f',A);fprintf(fid,'alpha=');
fprintf(fid,'%8.3f',alpha);fprintf(fid,' c=');fprintf(fid,'%8.3f',c);
fprintf(fid,' a=');fprintf(fid,'%8.3f\n',a);
%2SPSA Initialization
%number of individual gradient/Hessian estimates to be averaged at each iter.
gH_avg=3;
%rand('seed',31415297) %this makes each run the same, if fixed number of iterations.
%randn('seed',111113)
%
%
%the loop 1:n does 2SPSA following guidelines in Spall, 1997 CISS.
%
%lines below initialize various recuresions for the gradient/Hess. averaging
%and for final error reporting based on the average of the solutions for
%"cases" replications.
meanHbar=0;
errthetaH=0;
errtheta=0;
losstheta=0;
lossthetaH=0;
theta_0=x0;
[f,g]=mcmfunpf2s(theta_0,p1,p2,p3,p4,p5,p6,p7,p8) % evaluate f right away
%DUMMY STATEMENT FOR SETTING DIMENSIONS OF Hhat (AVOIDS OCCASIONAL
%ERROR MESSAGES)
Hhat=eye(p);
theta=theta_0;
thetaH=theta;
Hbar=eye(p);
%===
%
% SPSA Loop
%
%===
k1=0; %counter for last fifty iterations
for k=1:n;

p8=k;
%fprintf(fid,'\n');fprintf(fid,'==\n');
%fprintf(fid,'iteration #');fprintf(fid,'%3.0f\n',k);
ak=a/(k+A)^alpha;
ck=c/k^gamma;
ghatinput=0;
Hhatinput=0;
% GENERATION OF AVERAGED GRADIENT AND HESSIAN (NO AVERAGING IF gH_avg=1)

for m=1:gH_avg
delta=2*round(rand(p,1))-1;
thetaplus=thetaH+ck*delta;
thetaminus=thetaH-ck*delta;
% check for infeasible vectors
for j=1:p;

 177

if thetaplus(j)<vlb(j);
thetaplus(j)=vlb(j);

end;
if thetaminus(j)<vlb(j);

thetaminus(j)=vlb(j);
end;
if thetaplus(j)>vub(j);

thetaplus(j)=vub(j);
end;
if thetaminus(j)>vub(j);

thetaminus(j)=vub(j);
end;

end;
[yplus,g]=mcmfunpf2s(thetaplus,p1,p2,p3,p4,p5,p6,p7,p8);
[yminus,g]=mcmfunpf2s(thetaminus,p1,p2,p3,p4,p5,p6,p7,p8);
ghat=(yplus-yminus)./(2*ck*delta);

% GENERATE THE HESSIAN UPDATE
deltatilda=2*round(rand(p,1))-1;
thetaplustilda=thetaplus+ck*deltatilda;
thetaminustilda=thetaminus+ck*deltatilda;
% check for infeasible vectors
for j=1:p;

if thetaplustilda(j)<vlb(j);
thetaplustilda(j)=vlb(j);

end;
if thetaminustilda(j)<vlb(j);

thetaminustilda(j)=vlb(j);
end;
if thetaplustilda(j)>vub(j);

thetaplustilda(j)=vub(j);
end;
if thetaminustilda(j)>vub(j);

thetaminustilda(j)=vub(j);
end;

end;
% LOSS FUNCTION CALLS

[yplustilda,g]=mcmfunpf2s(thetaplustilda,p1,p2,p3,p4,p5,p6,p7,p8);
[yminustilda,g]=mcmfunpf2s(thetaminustilda,p1,p2,p3,p4,p5,p6,p7,p8);
ghatplus=(yplustilda-yplus)./(ck*deltatilda);
ghatminus=(yminustilda-yminus)./(ck*deltatilda);

% STATEMENT PROVIDING AN AVERAGE OF SP GRAD. APPROXS. PER ITERATION
ghatinput=((m-1)/m)*ghatinput+ghat/m;
deltaghat=ghatplus-ghatminus;
for j=1:p

Hhat(:,j)=deltaghat(j)./(2*ck*delta);
end
Hhat=.5*(Hhat+Hhat');
Hhatinput=((m-1)/m)*Hhatinput+Hhat/m;

end
Hbar=((k-N)/(k-N+1))*Hbar+Hhatinput/(k-N+1);

% THE THETA UPDATE (FORM BELOW USES NAIVE DIRECT HESSIAN INVERSE FORM;
% LARGER-SCALE IMPLEMENTATIONS SHOULD USE MORE NUMERICALLY EFFICIENT APPROACH
% SUCH AS GAUSSIAN ELIMINATION TO AVOID DIRECT COMPUTATION OF HESSIAN INVERSE)

thetaHlag=thetaH;
Hbarbar=sqrtm(Hbar*Hbar)+.000001*eye(p)/k;
update=inv(Hbarbar)*ghatinput;
thetaH=thetaH-ak*update;
% check for infeasible updated estimate

for j=1:p;
if thetaH(j)<vlb(j);
thetaH(j)=vlb(j);
end;
if thetaH(j)>vub(j);
thetaH(j)=vub(j);
end;

end;
thetaH;
xkp1=thetaH;x=thetaHlag;
[fkp1,g]=mcmfunpf2s(xkp1,p1,p2,p3,p4,p5,p6,p7,p8);
%Blocking test on f.
if k<200; blocktol=0.2; else blocktol=0.1;end;
if fkp1<f+blocktol;

x=xkp1; % Accept new estimate. Otherwise block the update passively.
f=fkp1;
k1=k1+1; %store last 10 iterates for averaging

 178

if k1<6;
s1(k1)=x(1);s2(k1)=x(2);s3(k1)=x(3);s4(k1)=x(4);s5(k1)=x(5);s6(k1)=x(6);s7(k1)=x(7

);s8(k1)=x(8);
else
for j=1:4
s1(j)=s1(j+1);s2(j)=s2(j+1);s3(j)=s3(j+1);s4(j)=s4(j+1);s5(j)=s5(j+1);

s6(j)=s6(j+1);s7(j)=s7(j+1);s8(j)=s8(j+1);
s1(5)=x(1);s2(5)=x(2);s3(5)=x(3);s4(5)=x(4);s5(5)=x(5);s6(5)=x(6);

s7(5)=x(7);s8(5)=x(8);
end

end
else;

blocks=blocks+1;
thetaH=thetaHlag;

end;
end

%average the last 5 unblocked iterates to get final estimate
if k1>5; k1=5; end
sum1=0;sum2=0;sum3=0;sum4=0;sum5=0;sum6=0;sum7=0;sum8=0;
for j=1:k1

sum1=sum1+s1(j);sum2=sum2+s2(j);sum3=sum3+s3(j);sum4=sum4+s4(j);
sum5=sum5+s5(j);sum6=sum6+s6(j);sum7=sum7+s7(j);sum8=sum8+s8(j);

end
x(1)=sum1/k1;x(2)=sum2/k1;x(3)=sum3/k1;x(4)=sum4/k1;x(5)=sum5/k1;

x(6)=sum6/k1;x(7)=sum7/k1;x(8)=sum8/k1;
x %x is now average over last 5 unblocked iterates, or all iterates if less than 5 are
blocked.
[f,g]=mcmfunpf2s(x,p1,p2,p3,p4,p5,p6,p7,p8)
fprintf(fid,'Final Values\n');
cost=polyval(px1,x(1))+polyval(px2,x(2))+polyval(px3,x(3))+polyval(px4,x(4))+polyval(px5,x

(5))+polyval(px6,x(6))+polyval(px7,x(7))+polyval(px8,x(8))
q=p1*x(2)*exp(-x(5)/(4.481*x(6)))
f1 = (p5/60)*(24*60/x(1) + p2*x(2)*x(4)*p1 + (2*x(4)-p4)*((1-x(2))*p1*p2 + x(3) + p1*p3));
f2 = (p5/60)*(p1*x(2)*x(8)*p2*exp(-x(5)/(4.481*x(6)))+(1-exp(-

x(5)/(4.481*x(6))))*p1*x(2)*x(7)*p2 + (1-x(2))*(x(3)+p1*p3)*x(7));
E=f1+f2
fprintf(fid,'Total time, E=');fprintf(fid,'%10.3f',E);
fprintf(fid,' cost=');fprintf(fid,'%10.3f',cost);
fprintf(fid,' q=');fprintf(fid,'%10.3f',q);
fprintf(fid,' Function evaluations= ');fprintf(fid,'%8.0f',5*k);
fprintf(fid,' Blocks=');fprintf(fid,'%8.0f\n',blocks);
fprintf(fid,'x=');fprintf(fid,'%10.3f',x);fprintf(fid,'\n');
cf(i)=costfactor; fval(i)=E; costval(i)=cub;fevals(i)=5*k; costi(i)=cost;
qfinal(i)=q;nblock(i)=blocks;
z1(i)=x(1);z2(i)=x(2);z3(i)=x(3);z4(i)=x(4);z5(i)=x(5);z6(i)=x(6);z7(i)=x(7);z8(i)=x(8);
z1(i)=abs((z1(i)-xstar(1))/(vlb(1)-vub(1)));
z2(i)=abs((z2(i)-xstar(2))/(vlb(2)-vub(2)));
z3(i)=abs((z3(i)-xstar(3))/(vlb(3)-vub(3)));
z4(i)=abs((z4(i)-xstar(4))/(vlb(4)-vub(4)));
z5(i)=abs((z5(i)-xstar(5))/(vlb(5)-vub(5)));
z6(i)=abs((z6(i)-xstar(6))/(vlb(6)-vub(6)));
z7(i)=abs((z7(i)-xstar(7))/(vlb(7)-vub(7)));
z8(i)=abs((z8(i)-xstar(8))/(vlb(8)-vub(8)));
end
% Plot option 1: Plot System of systems MOE as CAIV
figure
plot(cf,fval,'-*b')
title('System of Systems MOE as Function of Cost')
xlabel('Cost Factor on Threshold System Costs')
ylabel('Time to Complete Mission (hours)')
figure
plot(costval,fval,'-*b')
title('System of Systems MOE as Function of Cost')
xlabel('Cost ($M)')
ylabel('Time to Complete Mission (hours)')
%
%
% Plot option 2: Plot MOPs as CAIV
figure
plot(cf,z1,'-b*',cf,z2,'-r+',cf,z3,'-go',cf,z4,'-kx')
legend('x1','x2','x3','x4')
title('System of Systems MOPs as Function of Cost')
xlabel('Cost Factor on Threshold System Costs')
ylabel('MOPs 1-4 (percent of technology threshold)')
figure

 179

plot(cf,z5,'-b*',cf,z6,'-r+',cf,z7,'-go',cf,z8,'-kx')
legend('x5','x6','x7','x8')
title('System of Systems MOPs as Function of Cost')
xlabel('Cost Factor on Threshold System Costs')
ylabel('MOPs 5-8 (percent of technology threshold)')
% print table of results to file
fprintf(fid,'\n');
fprintf(fid,'cost factor');fprintf(fid,' cub');fprintf(fid,' E');fprintf(fid,'
cost');fprintf(fid,' qfinal');fprintf(fid,' fun. evals');fprintf(fid,'
#blocks\n');
for j=1:i

fprintf(fid,'%10.2f',cf(j));fprintf(fid,'%10.3f',costval(j));
fprintf(fid,'%10.3f',fval(j));fprintf(fid,'%10.3f',costi(j));
fprintf(fid,'%10.3f',qfinal(j));fprintf(fid,'%10.0f',fevals(j));
fprintf(fid,'%10.0f\n',nblock(j));

end
status=fclose(fid)

function [f,g] = mcmfunpf2s(x,p1,p2,p3,p4,p5,p6,p7,p8)
A1=50;
A2=1e3;
kmax=600;
k=p8; %k is the iteration number of the SPSA algorithm
if k<kmax

a1=0.5*(A1)*sin((k-1)*pi/kmax-pi/2)+A1/2+1;
a2=0.5*(A2)*sin((k-1)*pi/kmax-pi/2)+A2/2+1;

else
a1=A1;
a2=A2;

end
px1=[4.503408803940725e-005, -5.386095666335044e-003, 2.159330101073730e-001,

1.334245377520354e+000];
px2=[2.834645669291690e+002, -5.076377952756583e+002, 2.274598425197177e+002];
px3=[-2.048380952380911e+000, 9.987333333333214e+000, -1.794233333333325e+001,

2.032238095238094e+001];
px4=[1.159691730856429e-001, -2.175732453433467e+000, 1.520381256718985e+001];
px5=[2.061825086032983e-004, -3.775958229500408e-002, 1.777803488786043e+000];
px6=[1.504875482450802e-007, -1.578229837871938e-004, 5.516694369186904e-002, -

1.813253427503106e+000];
px7=[-2.850358103957624e-001, 3.846213159671302e+000, -1.726423877731832e+001,

3.334408692656030e+001];
px8=[2.102445277065673e-001, -4.109593768487483e+000, 2.539723920331297e+001];
f1 = (p5/60)*(24*60/x(1) + p2*x(2)*x(4)*p1 + (2*x(4)-p4)*((1-x(2))*p1*p2 + x(3) + p1*p3));
f2 = (p5/60)*(p1*x(2)*x(8)*p2*exp(-x(5)/(4.481*x(6)))+(1-exp(-
x(5)/(4.481*x(6))))*p1*x(2)*x(7)*p2 + (1-x(2))*(x(3)+p1*p3)*x(7));
E=f1+f2;
% evaluate cost constraint
g1=polyval(px1,x(1))+polyval(px2,x(2))+polyval(px3,x(3))+polyval(px4,x(4))+polyval(px5,x(5
))+polyval (px6,x(6))+polyval(px7,x(7))+polyval(px8,x(8))-p6;
% evaluate negative of quality constraint
g2 = -p1*x(2)*exp(-x(5)/(4.481*x(6)))+p7;
%E,g1,g2,f
f=f1+f2+A1*abs(g1)+A2*abs(g2);
%f=f1+f2+A1*g1*g1+A2*g2*g2;
g=[];
%p1=pd
%p2=lambda
%p3=lambdaft
%p4=ttransit
%p5=sminefield
%p6=cub
%p7=qlb
%p8=k

output from execution of MCM2spsaAvgFinal.m with stepped blocktol (0.2,0.1), averaging of last 5 iterates
09/14/97 3:04 PM 2SPSA Baseline C 9-14-97.doc
vlb=
 10.000 0.900 0.250 3.000 42.000 75.000 1.000 3.000
vub=
 100.000 0.980 2.000 9.170 90.000 700.000 7.000 10.000

 180

Run with Costfactor = 1.200 cub= 33.679 qlb= 0.846
Initial Values
x0= 10.000 0.900 1.600 9.170 72.000 75.000 5.280 8.000
f= 362.523 E= 88.904 cost= 32.051 q= 0.654 tolx= 0.000010 tolf= 0.000050
A= 10.000 alpha= 0.602 c= 0.005 a= 50.000
Final Values
Total time, E= 52.545 cost= 33.695 q= 0.737 Function evaluations= 5000 Blocks= 978
x= 18.548 0.980 1.739 4.921 61.902 76.895 6.994 7.087

Run with Costfactor = 1.250 cub= 35.082 qlb= 0.846
Initial Values
x0= 68.855 0.980 2.000 5.980 42.000 500.869 5.600 10.000
f= 315.989 E= 42.326 cost= 40.163 q= 0.866 tolx= 0.000010 tolf= 0.000050
A= 10.000 alpha= 0.602 c= 0.005 a= 50.000
Final Values
Total time, E= 40.251 cost= 35.109 q= 0.844 Function evaluations= 5000 Blocks= 980
x= 64.176 0.956 1.999 5.600 43.213 502.870 7.000 9.053

Run with Costfactor = 1.300 cub= 36.486 qlb= 0.846
Initial Values
x0= 47.132 0.900 1.600 3.132 53.784 333.899 7.000 10.000
f= 110.994 E= 34.470 cost= 36.247 q= 0.781 tolx= 0.000010 tolf= 0.000050
A= 10.000 alpha= 0.602 c= 0.005 a= 50.000
Final Values
Total time, E= 39.047 cost= 36.483 q= 0.846 Function evaluations= 5000 Blocks= 917
x= 45.805 0.974 1.585 4.488 52.753 333.880 6.956 9.758

Run with Costfactor = 1.350 cub= 37.889 qlb= 0.846
Initial Values
x0= 72.070 0.900 2.000 3.000 53.302 333.897 5.600 6.684
f= 356.863 E= 26.876 cost= 43.202 q= 0.782 tolx= 0.000010 tolf= 0.000050
A= 10.000 alpha= 0.602 c= 0.005 a= 50.000
Final Values
Total time, E= 32.061 cost= 38.170 q= 0.826 Function evaluations= 5000 Blocks= 990
x= 75.543 0.948 1.911 3.656 48.934 333.321 6.960 9.061

Run with Costfactor = 1.400 cub= 39.292 qlb= 0.846
Initial Values
x0= 78.241 0.980 1.600 3.000 42.000 333.900 5.600 8.594
f= 352.992 E= 28.293 cost= 45.555 q= 0.858 tolx= 0.000010 tolf= 0.000050
A= 10.000 alpha= 0.602 c= 0.005 a= 50.000
Final Values
Total time, E= 37.628 cost= 39.292 q= 0.846 Function evaluations= 5000 Blocks= 676
x= 83.273 0.967 1.956 5.039 42.065 333.152 6.858 9.937

Run with Costfactor = 1.450 cub= 40.696 qlb= 0.846
Initial Values
x0= 81.595 0.900 1.600 3.600 42.000 500.864 5.600 7.538
f= 279.433 E= 28.376 cost= 44.696 q= 0.795 tolx= 0.000010 tolf= 0.000050
A= 10.000 alpha= 0.602 c= 0.005 a= 50.000
Final Values
Total time, E= 30.482 cost= 40.697 q= 0.846 Function evaluations= 5000 Blocks= 603
x= 79.004 0.959 1.608 4.091 45.503 497.790 6.941 7.646

Run with Costfactor = 1.500 cub= 42.099 qlb= 0.846
Initial Values
x0= 81.833 0.980 1.610 3.000 52.009 333.843 7.000 7.456
f= 74.647 E= 26.493 cost= 42.945 q= 0.852 tolx= 0.000010 tolf= 0.000050
A= 10.000 alpha= 0.602 c= 0.005 a= 50.000
Final Values
Total time, E= 27.900 cost= 42.105 q= 0.846 Function evaluations= 5000 Blocks= 569
x= 81.656 0.973 1.522 3.270 52.242 333.536 6.959 7.974

Run with Costfactor = 1.550 cub= 43.502 qlb= 0.846
Initial Values
x0= 83.790 0.980 1.499 3.000 42.000 333.819 5.600 6.724

 181

f= 295.128 E= 25.008 cost= 48.673 q= 0.858 tolx= 0.000010 tolf= 0.000050
A= 10.000 alpha= 0.602 c= 0.005 a= 50.000
Final Values
Total time, E= 32.265 cost= 43.414 q= 0.851 Function evaluations= 5000 Blocks= 983
x= 86.095 0.973 0.921 5.707 42.042 329.523 6.847 7.476

Run with Costfactor = 1.600 cub= 44.906 qlb= 0.846
Initial Values
x0= 85.406 0.900 0.945 3.600 42.000 500.684 7.000 4.036
f= 291.830 E= 21.908 cost= 49.284 q= 0.795 tolx= 0.000010 tolf= 0.000050
A= 10.000 alpha= 0.602 c= 0.005 a= 50.000
Final Values
Total time, E= 36.752 cost= 44.906 q= 0.846 Function evaluations= 5000 Blocks= 884
x= 75.642 0.958 0.935 8.797 42.201 500.654 6.944 3.941

Run with Costfactor = 1.650 cub= 46.309 qlb= 0.846
Initial Values
x0= 86.779 0.900 0.901 3.600 50.694 333.756 7.000 3.626
f= 280.516 E= 21.228 cost= 50.235 q= 0.783 tolx= 0.000010 tolf= 0.000050
A= 10.000 alpha= 0.602 c= 0.005 a= 50.000
Final Values
Total time, E= 25.668 cost= 46.311 q= 0.846 Function evaluations= 5000 Blocks= 699
x= 86.141 0.972 1.941 3.702 49.255 332.978 6.943 4.892

Run with Costfactor = 1.700 cub= 47.712 qlb= 0.846
Initial Values
x0= 58.648 0.980 1.296 3.000 50.400 500.705 5.600 4.866
f= 105.715 E= 24.393 cost= 49.010 q= 0.862 tolx= 0.000010 tolf= 0.000050
A= 10.000 alpha= 0.602 c= 0.005 a= 50.000
Final Values
Total time, E= 25.618 cost= 47.712 q= 0.846 Function evaluations= 5000 Blocks= 822
x= 58.614 0.960 1.043 3.867 48.174 500.120 6.313 4.302

Run with Costfactor = 1.750 cub= 49.115 qlb= 0.846
Initial Values
x0= 89.027 0.980 1.248 3.000 42.000 334.015 5.600 4.328
f= 327.869 E= 20.740 cost= 55.026 q= 0.858 tolx= 0.000010 tolf= 0.000050
A= 10.000 alpha= 0.602 c= 0.005 a= 50.000
Final Values
Total time, E= 25.512 cost= 49.116 q= 0.846 Function evaluations= 5000 Blocks= 673
x= 90.694 0.966 0.988 3.587 42.052 337.661 6.335 6.942

Run with Costfactor = 1.800 cub= 50.519 qlb= 0.846
Initial Values
x0= 59.983 0.980 0.803 3.600 50.400 501.308 7.000 3.000
f= 47.558 E= 22.192 cost= 50.697 q= 0.862 tolx= 0.000010 tolf= 0.000050
A= 10.000 alpha= 0.602 c= 0.005 a= 50.000
Final Values
Total time, E= 22.765 cost= 50.518 q= 0.846 Function evaluations= 5000 Blocks= 885
x= 60.105 0.961 0.896 3.630 50.130 501.648 6.663 3.148

Run with Costfactor = 1.850 cub= 51.922 qlb= 0.846
Initial Values
x0= 92.794 0.900 1.081 3.000 42.000 502.348 5.600 3.600
f= 331.992 E= 19.330 cost= 57.156 q= 0.795 tolx= 0.000010 tolf= 0.000050
A= 10.000 alpha= 0.602 c= 0.005 a= 50.000
Final Values
Total time, E= 28.971 cost= 51.925 q= 0.846 Function evaluations= 5000 Blocks= 973
x= 93.851 0.958 2.000 4.860 42.234 505.560 5.539 4.632

Run with Costfactor = 1.900 cub= 53.325 qlb= 0.846
Initial Values
x0= 64.352 0.980 0.612 3.600 42.000 336.072 5.600 3.600
f= 84.933 E= 22.002 cost= 54.349 q= 0.858 tolx= 0.000010 tolf= 0.000050
A= 10.000 alpha= 0.602 c= 0.005 a= 50.000
Final Values
Total time, E= 22.177 cost= 53.322 q= 0.846 Function evaluations= 5000 Blocks= 735

 182

x= 64.517 0.967 0.700 3.554 42.470 336.011 4.754 3.679

Run with Costfactor = 1.950 cub= 54.729 qlb= 0.846
Initial Values
x0= 66.426 0.900 0.781 3.000 42.000 337.302 7.000 3.000
f= 326.228 E= 20.098 cost= 49.770 q= 0.788 tolx= 0.000010 tolf= 0.000050
A= 10.000 alpha= 0.602 c= 0.005 a= 50.000
Final Values
Total time, E= 20.777 cost= 54.728 q= 0.846 Function evaluations= 5000 Blocks= 903
x= 66.356 0.967 0.832 3.343 42.248 337.055 4.621 3.016

Run with Costfactor = 2.000 cub= 56.132 qlb= 0.846
Initial Values
x0= 100.000 0.900 0.662 3.600 50.400 507.841 7.000 3.000
f= 223.718 E= 18.994 cost= 59.152 q= 0.792 tolx= 0.000010 tolf= 0.000050
A= 10.000 alpha= 0.602 c= 0.005 a= 50.000
Final Values
Total time, E= 20.968 cost= 56.134 q= 0.846 Function evaluations= 5000 Blocks= 936
x= 99.862 0.961 1.325 3.573 50.507 508.225 6.995 3.479

Run with Costfactor = 2.050 cub= 57.535 qlb= 0.846
Initial Values
x0= 69.774 0.900 0.370 3.000 42.000 509.748 7.000 3.000
f= 232.757 E= 18.790 cost= 54.271 q= 0.795 tolx= 0.000010 tolf= 0.000050
A= 10.000 alpha= 0.602 c= 0.005 a= 50.000
Final Values
Total time, E= 18.779 cost= 57.534 q= 0.846 Function evaluations= 5000 Blocks= 958
x= 69.611 0.958 0.256 3.077 42.334 509.696 6.724 3.145

Run with Costfactor = 2.100 cub= 58.939 qlb= 0.846
Initial Values
x0= 100.000 0.900 0.460 3.600 50.400 341.119 5.600 3.000
f= 351.322 E= 18.395 cost= 64.352 q= 0.784 tolx= 0.000010 tolf= 0.000050
A= 10.000 alpha= 0.602 c= 0.005 a= 50.000
Final Values
Total time, E= 22.231 cost= 58.939 q= 0.846 Function evaluations= 5000 Blocks= 943
x= 97.030 0.970 0.552 4.772 47.497 343.415 6.535 3.494

Run with Costfactor = 2.150 cub= 60.342 qlb= 0.846
Initial Values
x0= 68.122 0.980 0.684 3.600 55.007 333.911 4.738 3.600
f= 329.078 E= 21.734 cost= 54.278 q= 0.850 tolx= 0.000010 tolf= 0.000050
A= 10.000 alpha= 0.602 c= 0.005 a= 50.000
Final Values
Total time, E= 18.912 cost= 60.346 q= 0.846 Function evaluations= 5000 Blocks= 974
x= 67.364 0.975 0.261 3.131 54.230 332.306 5.260 3.006

Run with Costfactor = 2.200 cub= 61.745 qlb= 0.846
Initial Values
x0= 100.000 0.980 0.577 3.000 54.833 500.874 3.137 3.600
f= 243.127 E= 17.628 cost= 65.961 q= 0.861 tolx= 0.000010 tolf= 0.000050
A= 10.000 alpha= 0.602 c= 0.005 a= 50.000
Final Values
Total time, E= 20.120 cost= 61.746 q= 0.846 Function evaluations= 5000 Blocks= 812
x= 99.685 0.963 1.137 3.661 54.956 501.232 4.931 3.103

Run with Costfactor = 2.250 cub= 63.148 qlb= 0.846
Initial Values
x0= 100.000 0.900 0.320 3.000 54.610 500.894 3.115 3.000
f= 326.717 E= 16.347 cost= 68.246 q= 0.791 tolx= 0.000010 tolf= 0.000050
A= 10.000 alpha= 0.602 c= 0.005 a= 50.000
Final Values
Total time, E= 18.415 cost= 63.150 q= 0.846 Function evaluations= 5000 Blocks= 777
x= 99.864 0.966 1.145 3.136 62.152 509.218 3.395 3.041

Run with Costfactor = 2.300 cub= 64.552 qlb= 0.846
Initial Values

 183

x0= 100.000 0.900 0.261 3.000 42.000 333.904 4.651 3.600
f= 166.315 E= 17.128 cost= 66.367 q= 0.788 tolx= 0.000010 tolf= 0.000050
A= 10.000 alpha= 0.602 c= 0.005 a= 50.000
Final Values
Total time, E= 23.948 cost= 64.552 q= 0.846 Function evaluations= 5000 Blocks= 894
x= 99.555 0.967 0.606 4.199 42.004 330.610 1.567 5.916

Run with Costfactor = 2.350 cub= 65.955 qlb= 0.846
Initial Values
x0= 100.000 0.900 0.250 3.000 53.936 333.888 4.628 3.000
f= 179.673 E= 16.332 cost= 67.928 q= 0.781 tolx= 0.000010 tolf= 0.000050
A= 10.000 alpha= 0.602 c= 0.005 a= 50.000
Final Values
Total time, E= 17.068 cost= 65.954 q= 0.846 Function evaluations= 5000 Blocks= 916
x= 99.874 0.975 0.577 3.058 53.951 333.661 5.078 3.008

Run with Costfactor = 2.400 cub= 67.358 qlb= 0.846
Initial Values
x0= 100.000 0.980 0.300 3.000 54.686 500.953 4.556 3.600
f= 72.965 E= 17.134 cost= 68.179 q= 0.861 tolx= 0.000010 tolf= 0.000050
A= 10.000 alpha= 0.602 c= 0.005 a= 50.000
Final Values
Total time, E= 17.395 cost= 67.358 q= 0.846 Function evaluations= 5000 Blocks= 712
x= 99.979 0.963 0.265 3.009 54.520 501.143 4.722 3.806

Run with Costfactor = 2.450 cub= 68.762 qlb= 0.846
Initial Values
x0= 78.744 0.900 0.300 3.600 55.612 500.878 4.484 3.600
f= 607.749 E= 19.961 cost= 58.122 q= 0.790 tolx= 0.000010 tolf= 0.000050
A= 10.000 alpha= 0.602 c= 0.005 a= 50.000
Final Values
Total time, E= 17.390 cost= 68.761 q= 0.846 Function evaluations= 5000 Blocks= 952
x= 82.212 0.960 0.255 3.071 48.147 509.330 1.764 3.075

Run with Costfactor = 2.500 cub= 70.165 qlb= 0.846
Initial Values
x0= 80.000 0.980 0.300 3.000 76.810 329.762 3.794 3.000
f= 423.314 E= 17.471 cost= 62.222 q= 0.837 tolx= 0.000010 tolf= 0.000050
A= 10.000 alpha= 0.602 c= 0.005 a= 50.000
Final Values
Total time, E= 16.516 cost= 70.166 q= 0.846 Function evaluations= 5000 Blocks= 929
x= 95.704 0.963 0.256 3.051 42.267 382.521 2.287 3.058

cost factor cub E cost qfinal fun. evals #blocks
 1.20 33.679 52.545 33.695 0.737 5000 978
 1.25 35.082 40.251 35.109 0.844 5000 980
 1.30 36.486 39.047 36.483 0.846 5000 917
 1.35 37.889 32.061 38.170 0.826 5000 990
 1.40 39.292 37.628 39.292 0.846 5000 676
 1.45 40.696 30.482 40.697 0.846 5000 603
 1.50 42.099 27.900 42.105 0.846 5000 569
 1.55 43.502 32.265 43.414 0.851 5000 983
 1.60 44.906 36.752 44.906 0.846 5000 884
 1.65 46.309 25.668 46.311 0.846 5000 699
 1.70 47.712 25.618 47.712 0.846 5000 822
 1.75 49.115 25.512 49.116 0.846 5000 673
 1.80 50.519 22.765 50.518 0.846 5000 885
 1.85 51.922 28.971 51.925 0.846 5000 973
 1.90 53.325 22.177 53.322 0.846 5000 735
 1.95 54.729 20.777 54.728 0.846 5000 903
 2.00 56.132 20.968 56.134 0.846 5000 936
 2.05 57.535 18.779 57.534 0.846 5000 958
 2.10 58.939 22.231 58.939 0.846 5000 943
 2.15 60.342 18.912 60.346 0.846 5000 974
 2.20 61.745 20.120 61.746 0.846 5000 812
 2.25 63.148 18.415 63.150 0.846 5000 777
 2.30 64.552 23.948 64.552 0.846 5000 894

 184

 2.35 65.955 17.068 65.954 0.846 5000 916
 2.40 67.358 17.395 67.358 0.846 5000 712
 2.45 68.762 17.390 68.761 0.846 5000 952
 2.50 70.165 16.516 70.166 0.846 5000 929

1.2 1.4 1.6 1.8 2 2.2 2.4 2.6
15

20

25

30

35

40

45

50

55
System of Systems MOE as Function of Cost

Cost Factor on Threshold System Costs

Ti
m

e
to

 C
om

pl
et

e
M

is
si

on
 (

ho
ur

s)

30 35 40 45 50 55 60 65 70 75
15

20

25

30

35

40

45

50

55
System of Systems MOE as Function of Cost

Cost ($M)

Ti
m

e
to

 C
om

pl
et

e
M

is
si

on
 (

ho
ur

s)

1.2 1.4 1.6 1.8 2 2.2 2.4 2.6
0

0.2

0.4

0.6

0.8

1

1.2

1.4
System of Systems MOPs as Function of Cost

Cost Factor on Threshold System Costs

M
O

P
s

1-
4

(p
er

ce
nt

 o
f t

ec
hn

ol
og

y
th

re
sh

ol
d)

x1
x2
x3
x4

1.2 1.4 1.6 1.8 2 2.2 2.4 2.6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
System of Systems MOPs as Function of Cost

Cost Factor on Threshold System Costs

M
O

P
s

5-
8

(p
er

ce
nt

 o
f t

ec
hn

ol
og

y
th

re
sh

ol
d)

x5
x6
x7
x8

 185

APPENDIX F

MCM SYSTEM OF SYSTEMS MATLAB SIMULATION CODE AND RESULTS

function
[E,cost,q,f,g]=mcmsim(x,m0,lambda,sminefield,pd,lambdaft,dmine,vtransit,cub,qlb,k)

p11=x(1);p12=x(2);p13=x(3);p14=x(4);p15=x(5);p21=x(6);p22=x(7);p23=x(8);
Tdetect=Block1(m0,lambda,p11);
Dfa=Block2(sminefield,p13);
Dft=Block3(pd,lambdaft,sminefield);
Dm=Block4(pd,m0);
[Tclass,Cm,Cf]=Block578(Dm,Dfa,Dft,p12,p14,dmine,vtransit);
E1=Block6(Tdetect,Tclass);
PL=Block9(p15,p21);
[E2,Nreacq,Nmiss]=Block10(PL,Cm,Cf,p23,p22);
E=Block12(E1,E2);
q=Block11(Nreacq,m0);
%
A1=3;
A2=100;

px1=[4.503408803940725e-005, -5.386095666335044e-003, 2.159330101073730e-001,
1.334245377520354e+000];

px2=[2.834645669291690e+002, -5.076377952756583e+002, 2.274598425197177e+002];
px3=[-2.048380952380911e+000, 9.987333333333214e+000, -
1.794233333333325e+001, 2.032238095238094e+001];

px4=[1.159691730856429e-001, -2.175732453433467e+000, 1.520381256718985e+001];
px5=[2.061825086032983e-004, -3.775958229500408e-002, 1.777803488786043e+000];

px6=[1.504875482450802e-007, -1.578229837871938e-004, 5.516694369186904e-002,
-1.813253427503106e+000];
px7=[-2.850358103957624e-001, 3.846213159671302e+000, -
1.726423877731832e+001, 3.334408692656030e+001];

px8=[2.102445277065673e-001, -4.109593768487483e+000, 2.539723920331297e+001];
cost=polyval(px1,x(1))+polyval(px2,x(2))+polyval(px3,x(3))+polyval(px4,x(4))+polyval(px5,x

(5))+polyv al(px6,x(6))+polyval(px7,x(7))+polyval(px8,x(8));
% evaluate negative of quality constraint
g1=cost-cub;
g2 = -q+qlb;
%E,g1,g2,f
f=E+A1*abs(g1)+A2*abs(g2);
%f=f1+f2+A1*g1*g1+A2*g2*g2;
g=[];

function Tdetect=Block1(m0,lambda,p11)
Tdetect=24*m0/(lambda*p11);

function Dfa=Block2(sminefield,p13)
area=round(sminefield);
Dfa=success(p13,area);

function Dft=Block3(pd,lambdaft,sminefield)
F0=round(lambdaft*sminefield);
Dft=success(pd,F0);

function Dm=Block4(pd,m0)
Dm=success(pd,m0);

function [Tclass,Cm,Cf]=Block578(Dm,Dfa,Dft,p12,p14,dmine,vtransit)
% Number of classifications of detected mines
Cm=success(p12,Dm);
% Number of incorrect classifications of detected mines
Cf=Dm-Cm;
% Total time to classify
Tc=p14;
Tcf=2*Tc-60*dmine/(vtransit*2000);
Tclass=(1/60)*(Tc*Cm+Cf*Tcf+Tcf*(Dfa+Dft));

function E1=Block6(Tdetect,Tclass)
E1=Tdetect+Tclass;

function PL=Block9(p15,p21)
PL=exp(-p15/(4.481*p21));

function [E2,Nreacq,Nmiss]=Block10(PL,Cm,Cf,p23,p22)
% # of re-acquired MLOs
Nreacq=success(PL,Cm);
% # of not re-acquired MLOs

 186

Nmiss=Cm-Nreacq;
E2=(1/60)*(Nreacq*p23+Nmiss*p22+Cf*p22);

function q=Block11(Nreacq,m0)
q=Nreacq/m0;

function E=Block12(E1,E2)
E=E1+E2;

2SPSA Simulation Optimization Results with Perfect Initial Conditions:

output from execution of MCM2spsaAvgsim.m with blocktol=5, averages last 3 iterates, gains A1=50,A2=1000 an initial x=optimum
09/21/97 11:37 AM 2SPSAsim 1000 x0=optimal.doc

vlb=
 10.000 0.900 0.250 3.000 42.000 75.000 1.000 3.000
vub=
 100.000 0.980 2.000 9.170 90.000 700.000 7.000 10.000

Run with Costfactor = 1.250 cub= 35.082 qlb= 0.846
Initial Values
x0= 57.379 0.963 2.000 4.983 45.108 417.391 7.000 8.793
f= 68.400 E= 34.290 cost= 35.085 q= 0.880A= 50.000 alpha= 0.602 c= 0.020 a= 10.000
Final Values
Total time, E= 38.766 cost= 35.076 q= 0.810 Function evaluations= 5000 Blocks= 885
x= 56.037 0.941 1.352 6.954 44.677 416.403 6.750 9.367
Average total time, Eavg= 40.212 Esigma= 0.969 Average q= 0.827 qsigma= 0.042

Run with Costfactor = 1.300 cub= 36.486 qlb= 0.846
Initial Values
x0= 58.915 0.963 2.000 3.915 44.820 417.374 7.000 8.555
f= 65.324 E= 28.959 cost= 36.493 q= 0.810A= 50.000 alpha= 0.602 c= 0.020 a= 10.000
Final Values
Total time, E= 34.542 cost= 36.406 q= 0.920 Function evaluations= 5000 Blocks= 862
x= 58.836 0.967 1.988 5.253 45.256 418.608 6.759 8.459
Average total time, Eavg= 33.629 Esigma= 0.706 Average q= 0.844 qsigma= 0.036

Run with Costfactor = 1.350 cub= 37.889 qlb= 0.846
Initial Values
x0= 60.058 0.963 2.000 3.017 44.418 417.371 7.000 8.355
f= 31.878 E= 27.108 cost= 37.904 q= 0.850A= 50.000 alpha= 0.602 c= 0.020 a= 10.000
Final Values
Total time, E= 28.537 cost= 37.860 q= 0.830 Function evaluations= 5000 Blocks= 923
x= 59.196 0.954 1.683 3.307 44.472 417.321 6.984 8.331
Average total time, Eavg= 27.964 Esigma= 0.578 Average q= 0.833 qsigma= 0.034

Run with Costfactor = 1.400 cub= 39.292 qlb= 0.846
Initial Values
x0= 65.201 0.963 2.000 3.000 44.632 417.375 7.000 7.162
f= 80.883 E= 24.304 cost= 39.304 q= 0.790A= 50.000 alpha= 0.602 c= 0.020 a= 10.000
Final Values
Total time, E= 28.144 cost= 39.406 q= 0.750 Function evaluations= 5000 Blocks= 938
x= 63.202 0.901 1.899 4.643 42.301 417.354 6.584 6.025
Average total time, Eavg= 28.355 Esigma= 0.579 Average q= 0.792 qsigma= 0.040

Run with Costfactor = 1.450 cub= 40.696 qlb= 0.846
Initial Values
x0= 67.996 0.963 2.000 3.000 44.802 417.387 7.000 6.282

 187

f= 49.092 E= 22.714 cost= 40.703 q= 0.820A= 50.000 alpha= 0.602 c= 0.020 a= 10.000
Final Values
Total time, E= 23.039 cost= 40.715 q= 0.830 Function evaluations= 5000 Blocks= 907
x= 69.049 0.920 1.984 3.346 46.114 417.417 6.986 5.420
Average total time, Eavg= 23.023 Esigma= 0.434 Average q= 0.816 qsigma= 0.037

Run with Costfactor = 1.500 cub= 42.099 qlb= 0.846
Initial Values
x0= 68.194 0.962 1.342 3.000 43.341 417.304 7.000 6.213
f= 27.022 E= 22.943 cost= 42.097 q= 0.850A= 50.000 alpha= 0.602 c= 0.020 a= 10.000
Final Values
Total time, E= 22.659 cost= 42.113 q= 0.870 Function evaluations= 5000 Blocks= 934
x= 70.984 0.979 1.998 3.001 42.885 418.882 7.000 6.080
Average total time, Eavg= 22.591 Esigma= 0.440 Average q= 0.858 qsigma= 0.037

Run with Costfactor = 1.550 cub= 43.502 qlb= 0.846
Initial Values
x0= 69.825 0.962 1.249 3.000 42.959 417.274 7.000 5.603
f= 26.120 E= 21.874 cost= 43.507 q= 0.850A= 50.000 alpha= 0.602 c= 0.020 a= 10.000
Final Values
Total time, E= 23.389 cost= 43.552 q= 0.900 Function evaluations= 5000 Blocks= 886
x= 71.513 0.977 1.948 3.058 42.124 416.226 6.677 6.115
Average total time, Eavg= 22.801 Esigma= 0.437 Average q= 0.861 qsigma= 0.031

Run with Costfactor = 1.600 cub= 44.906 qlb= 0.846
Initial Values
x0= 71.172 0.962 1.181 3.000 42.596 417.237 7.000 5.045
f= 36.120 E= 21.518 cost= 44.918 q= 0.860A= 50.000 alpha= 0.602 c= 0.020 a= 10.000
Final Values
Total time, E= 22.408 cost= 44.876 q= 0.840 Function evaluations= 5000 Blocks= 909
x= 72.903 0.979 1.594 3.390 42.230 418.895 6.669 5.651
Average total time, Eavg= 22.869 Esigma= 0.493 Average q= 0.859 qsigma= 0.034

Run with Costfactor = 1.650 cub= 46.309 qlb= 0.846
Initial Values
x0= 72.316 0.961 1.126 3.000 42.245 417.195 7.000 4.532
f= 25.770 E= 20.841 cost= 46.290 q= 0.850A= 50.000 alpha= 0.602 c= 0.020 a= 10.000
Final Values
Total time, E= 22.202 cost= 46.300 q= 0.740 Function evaluations= 5000 Blocks= 856
x= 72.953 0.930 0.936 3.317 42.428 417.224 6.682 4.992
Average total time, Eavg= 21.856 Esigma= 0.461 Average q= 0.823 qsigma= 0.043

Run with Costfactor = 1.700 cub= 47.712 qlb= 0.846
Initial Values
x0= 73.310 0.961 1.080 3.000 42.000 417.254 7.000 4.055
f= 36.061 E= 19.319 cost= 47.697 q= 0.830A= 50.000 alpha= 0.602 c= 0.020 a= 10.000
Final Values
Total time, E= 19.120 cost= 47.617 q= 0.840 Function evaluations= 5000 Blocks= 910
x= 73.339 0.950 1.841 3.043 42.795 418.061 6.831 3.585
Average total time, Eavg= 19.105 Esigma= 0.367 Average q= 0.837 qsigma= 0.037

Run with Costfactor = 1.750 cub= 49.115 qlb= 0.846
Initial Values
x0= 74.189 0.961 1.040 3.000 42.000 417.519 7.000 3.607
f= 44.120 E= 19.431 cost= 49.102 q= 0.870A= 50.000 alpha= 0.602 c= 0.020 a= 10.000
Final Values
Total time, E= 19.982 cost= 49.161 q= 0.860 Function evaluations= 5000 Blocks= 856
x= 74.626 0.977 1.210 3.263 42.528 417.385 6.799 3.884
Average total time, Eavg= 19.851 Esigma= 0.423 Average q= 0.855 qsigma= 0.034

 188

Run with Costfactor = 1.800 cub= 50.519 qlb= 0.846
Initial Values
x0= 74.979 0.961 1.004 3.000 42.000 417.757 7.000 3.184
f= 43.092 E= 18.569 cost= 50.508 q= 0.870A= 50.000 alpha= 0.602 c= 0.020 a= 10.000
Final Values
Total time, E= 18.429 cost= 50.667 q= 0.820 Function evaluations= 5000 Blocks= 893
x= 75.439 0.940 1.715 3.049 42.450 417.358 6.103 3.453
Average total time, Eavg= 18.746 Esigma= 0.376 Average q= 0.832 qsigma= 0.037

Run with Costfactor = 1.850 cub= 51.922 qlb= 0.846
Initial Values
x0= 77.328 0.961 0.901 3.000 42.000 418.623 7.000 3.000
f= 43.706 E= 17.160 cost= 51.911 q= 0.820A= 50.000 alpha= 0.602 c= 0.020 a= 10.000
Final Values
Total time, E= 18.529 cost= 51.909 q= 0.890 Function evaluations= 5000 Blocks= 888
x= 77.849 0.964 1.635 3.208 42.881 418.669 6.479 3.029
Average total time, Eavg= 18.332 Esigma= 0.343 Average q= 0.852 qsigma= 0.033

Run with Costfactor = 1.900 cub= 53.325 qlb= 0.846
Initial Values
x0= 80.440 0.961 0.765 3.000 42.000 420.090 7.000 3.000
f= 21.814 E= 17.393 cost= 53.317 q= 0.850A= 50.000 alpha= 0.602 c= 0.020 a= 10.000
Final Values
Total time, E= 18.850 cost= 53.308 q= 0.810 Function evaluations= 5000 Blocks= 904
x= 80.105 0.940 0.584 3.458 42.623 419.849 6.733 3.438
Average total time, Eavg= 18.893 Esigma= 0.410 Average q= 0.826 qsigma= 0.036

Run with Costfactor = 1.950 cub= 54.729 qlb= 0.846
Initial Values
x0= 83.033 0.961 0.651 3.000 42.000 421.627 7.000 3.000
f= 43.357 E= 17.078 cost= 54.723 q= 0.820A= 50.000 alpha= 0.602 c= 0.020 a= 10.000
Final Values
Total time, E= 17.601 cost= 54.759 q= 0.820 Function evaluations= 5000 Blocks= 893
x= 83.277 0.966 0.612 3.110 42.588 421.281 6.968 3.190
Average total time, Eavg= 17.482 Esigma= 0.360 Average q= 0.859 qsigma= 0.035

Run with Costfactor = 2.000 cub= 56.132 qlb= 0.846
Initial Values
x0= 85.261 0.961 0.552 3.000 42.000 423.201 7.000 3.000
f= 30.685 E= 16.451 cost= 56.127 q= 0.860A= 50.000 alpha= 0.602 c= 0.020 a= 10.000
Final Values
Total time, E= 17.278 cost= 56.211 q= 0.820 Function evaluations= 5000 Blocks= 908
x= 84.923 0.971 0.493 3.244 42.517 423.708 6.999 3.142
Average total time, Eavg= 17.389 Esigma= 0.403 Average q= 0.855 qsigma= 0.031

Run with Costfactor = 2.050 cub= 57.535 qlb= 0.846
Initial Values
x0= 87.217 0.961 0.463 3.000 42.000 424.790 7.000 3.000
f= 30.414 E= 16.284 cost= 57.538 q= 0.860A= 50.000 alpha= 0.602 c= 0.020 a= 10.000
Final Values
Total time, E= 16.536 cost= 57.356 q= 0.880 Function evaluations= 5000 Blocks= 918
x= 87.659 0.978 0.568 3.188 42.387 424.798 6.877 3.144
Average total time, Eavg= 17.143 Esigma= 0.398 Average q= 0.862 qsigma= 0.034

Run with Costfactor = 2.100 cub= 58.939 qlb= 0.846
Initial Values
x0= 88.965 0.961 0.383 3.000 42.000 426.399 7.000 3.000
f= 42.309 E= 16.183 cost= 58.941 q= 0.820A= 50.000 alpha= 0.602 c= 0.020 a= 10.000
Final Values
Total time, E= 16.663 cost= 59.030 q= 0.820 Function evaluations= 5000 Blocks= 941
x= 88.815 0.977 0.512 3.255 42.271 426.596 6.651 3.154

 189

Average total time, Eavg= 17.132 Esigma= 0.405 Average q= 0.861 qsigma= 0.032

Run with Costfactor = 2.150 cub= 60.342 qlb= 0.846
Initial Values
x0= 85.153 0.963 0.570 3.000 45.839 417.389 3.948 3.000
f= 30.843 E= 16.304 cost= 60.331 q= 0.860A= 50.000 alpha= 0.602 c= 0.020 a= 10.000
Final Values
Total time, E= 17.923 cost= 60.532 q= 0.880 Function evaluations= 5000 Blocks= 870
x= 84.689 0.978 0.409 3.319 45.397 417.880 4.576 3.506
Average total time, Eavg= 17.816 Esigma= 0.403 Average q= 0.859 qsigma= 0.035

Run with Costfactor = 2.200 cub= 61.745 qlb= 0.846
Initial Values
x0= 87.149 0.963 0.481 3.000 45.694 417.395 3.921 3.000
f= 32.601 E= 16.065 cost= 61.734 q= 0.830A= 50.000 alpha= 0.602 c= 0.020 a= 10.000
Final Values
Total time, E= 16.071 cost= 61.688 q= 0.820 Function evaluations= 5000 Blocks= 922
x= 86.919 0.967 0.453 3.103 44.451 418.260 4.383 3.085
Average total time, Eavg= 16.563 Esigma= 0.376 Average q= 0.849 qsigma= 0.034

Run with Costfactor = 2.250 cub= 63.148 qlb= 0.846
Initial Values
x0= 88.941 0.963 0.400 3.000 45.508 417.412 3.894 3.000
f= 20.122 E= 16.036 cost= 63.147 q= 0.850A= 50.000 alpha= 0.602 c= 0.020 a= 10.000
Final Values
Total time, E= 17.174 cost= 62.948 q= 0.890 Function evaluations= 5000 Blocks= 924
x= 88.578 0.976 0.407 3.287 45.502 417.372 3.688 3.077
Average total time, Eavg= 16.772 Esigma= 0.362 Average q= 0.857 qsigma= 0.034

Run with Costfactor = 2.300 cub= 64.552 qlb= 0.846
Initial Values
x0= 90.539 0.963 0.326 3.000 45.239 417.380 3.876 3.000
f= 40.080 E= 15.853 cost= 64.547 q= 0.870A= 50.000 alpha= 0.602 c= 0.020 a= 10.000
Final Values
Total time, E= 15.952 cost= 64.590 q= 0.810 Function evaluations= 5000 Blocks= 940
x= 92.654 0.901 0.252 3.231 44.103 417.150 4.998 3.000
Average total time, Eavg= 16.444 Esigma= 0.367 Average q= 0.795 qsigma= 0.035

Run with Costfactor = 2.350 cub= 65.955 qlb= 0.846
Initial Values
x0= 92.010 0.963 0.257 3.000 44.947 417.360 3.857 3.000
f= 40.045 E= 15.895 cost= 65.958 q= 0.870A= 50.000 alpha= 0.602 c= 0.020 a= 10.000
Final Values
Total time, E= 17.042 cost= 65.224 q= 0.870 Function evaluations= 5000 Blocks= 938
x= 90.813 0.977 0.250 3.672 44.740 417.499 4.396 3.006
Average total time, Eavg= 17.359 Esigma= 0.397 Average q= 0.865 qsigma= 0.036

Run with Costfactor = 2.400 cub= 67.358 qlb= 0.846
Initial Values
x0= 95.302 0.963 0.250 3.000 45.572 417.461 3.797 3.000
f= 21.907 E= 15.559 cost= 67.351 q= 0.840A= 50.000 alpha= 0.602 c= 0.020 a= 10.000
Final Values
Total time, E= 15.782 cost= 67.321 q= 0.890 Function evaluations= 5000 Blocks= 932
x= 95.686 0.980 0.282 3.089 44.954 417.610 3.999 3.113
Average total time, Eavg= 15.838 Esigma= 0.287 Average q= 0.859 qsigma= 0.032

Run with Costfactor = 2.450 cub= 68.762 qlb= 0.846
Initial Values
x0= 98.430 0.964 0.250 3.000 46.343 417.398 3.737 3.000
f= 70.632 E= 15.828 cost= 68.778 q= 0.900A= 50.000 alpha= 0.602 c= 0.020 a= 10.000

 190

Final Values
Total time, E= 16.469 cost= 68.433 q= 0.850 Function evaluations= 5000 Blocks= 944
x= 98.813 0.980 0.251 3.004 46.567 417.829 4.772 3.394
Average total time, Eavg= 15.802 Esigma= 0.388 Average q= 0.858 qsigma= 0.040

Run with Costfactor = 2.500 cub= 70.165 qlb= 0.846
Initial Values
x0= 100.000 0.973 0.250 3.000 64.008 412.202 3.162 3.000
f= 69.488 E= 15.144 cost= 70.158 q= 0.900A= 50.000 alpha= 0.602 c= 0.020 a= 10.000
Final Values
Total time, E= 30.983 cost= 70.135 q= 0.900 Function evaluations= 5000 Blocks= 925
x= 96.936 0.980 0.895 8.545 61.870 414.896 1.010 3.005
Average total time, Eavg= 31.005 Esigma= 0.815 Average q= 0.852 qsigma= 0.038

cost factor cub Avg E cost Avg qfinal fun. evals #blocks
 1.25 35.082 40.212 35.076 0.827 5000 885
 1.30 36.486 33.629 36.406 0.844 5000 862
 1.35 37.889 27.964 37.860 0.833 5000 923
 1.40 39.292 28.355 39.406 0.792 5000 938
 1.45 40.696 23.023 40.715 0.816 5000 907
 1.50 42.099 22.591 42.113 0.858 5000 934
 1.55 43.502 22.801 43.552 0.861 5000 886
 1.60 44.906 22.869 44.876 0.859 5000 909
 1.65 46.309 21.856 46.300 0.823 5000 856
 1.70 47.712 19.105 47.617 0.837 5000 910
 1.75 49.115 19.851 49.161 0.855 5000 856
 1.80 50.519 18.746 50.667 0.832 5000 893
 1.85 51.922 18.332 51.909 0.852 5000 888
 1.90 53.325 18.893 53.308 0.826 5000 904
 1.95 54.729 17.482 54.759 0.859 5000 893
 2.00 56.132 17.389 56.211 0.855 5000 908
 2.05 57.535 17.143 57.356 0.862 5000 918
 2.10 58.939 17.132 59.030 0.861 5000 941
 2.15 60.342 17.816 60.532 0.859 5000 870
 2.20 61.745 16.563 61.688 0.849 5000 922
 2.25 63.148 16.772 62.948 0.857 5000 924
 2.30 64.552 16.444 64.590 0.795 5000 940
 2.35 65.955 17.359 65.224 0.865 5000 938
 2.40 67.358 15.838 67.321 0.859 5000 932
 2.45 68.762 15.802 68.433 0.858 5000 944
 2.50 70.165 31.005 70.135 0.852 5000 925

 191

1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8
15

20

25

30

35

40

45
System of Systems MOE as Function of Cost

Cost Factor on Threshold System Costs

Ti
m

e
to

 C
om

pl
et

e
M

is
si

on
 (

ho
ur

s)

35 40 45 50 55 60 65 70 75
15

20

25

30

35

40

45
System of Systems MOE as Function of Cost

Cost ($M)

Ti
m

e
to

 C
om

pl
et

e
M

is
si

on
 (

ho
ur

s)

1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8
0

0.2

0.4

0.6

0.8

1

1.2

1.4
System of Systems MOPs as Function of Cost

Cost Factor on Threshold System Costs

M
O

P
s

1-
4

(p
er

ce
nt

 o
f t

ec
hn

ol
og

y
th

re
sh

ol
d)

x1
x2
x3
x4

1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
System of Systems MOPs as Function of Cost

Cost Factor on Threshold System Costs

M
O

P
s

5-
8

(p
er

ce
nt

 o
f t

ec
hn

ol
og

y
th

re
sh

ol
d)

x5
x6
x7
x8

2SPSA Simulation Composite 2000-Iteration Optimization Results:

COMPOSITE 2000 ITERATION RUN RESULTS:
 File “composite Ramp 2000 output 10-8.doc”

output from execution of MCM2spsaAvgsim.m with blocktol=3/1, averages last 3 iterates, gains A1=50,A2=1000, ramp for x0
proportional to costfactor

vlb=
 10.000 0.900 0.250 3.000 42.000 75.000 1.000 3.000
vub=
 100.000 0.980 2.000 9.170 90.000 700.000 7.000 10.000

Run with Costfactor = 1.250 cub= 35.082 qlb= 0.846
Initial Values

 192

x0= 25.000 0.913 1.708 8.142 82.000 179.167 6.000 8.833
f= 69.228 E= 53.049 cost= 34.223 q= 0.710A= 50.000 alpha= 0.602 c= 0.020 a= 10.000
Final Values
Total time, E= 38.113 cost= 36.307 q= 0.840 Function evaluations= 10000 Blocks= 1775
x= 29.280 0.962 1.916 3.900 82.457 177.871 6.805 8.020
Average total time, Eavg= 37.379 Esigma= 0.664 Average q= 0.780 qsigma= 0.047

Run with Costfactor = 1.300 cub= 36.486 qlb= 0.846
Initial Values
x0= 28.000 0.916 1.650 7.936 80.400 200.000 5.800 8.600
f= 67.004 E= 49.470 cost= 35.174 q= 0.710A= 50.000 alpha= 0.602 c= 0.020 a= 10.000
Final Values
Total time, E= 34.616 cost= 36.595 q= 0.810 Function evaluations= 10000 Blocks= 1700
x= 39.126 0.940 1.418 3.152 82.181 204.082 6.949 9.847
Average total time, Eavg= 33.591 Esigma= 0.691 Average q= 0.774 qsigma= 0.042

Run with Costfactor = 1.350 cub= 37.889 qlb= 0.846
Initial Values
x0= 31.000 0.919 1.592 7.730 78.800 220.833 5.600 8.367
f= 61.319 E= 48.010 cost= 35.986 q= 0.770A= 50.000 alpha= 0.602 c= 0.020 a= 10.000
Final Values
Total time, E= 31.892 cost= 37.862 q= 0.840 Function evaluations= 10000 Blocks= 1627
x= 50.156 0.980 1.786 3.381 89.427 226.955 6.835 9.838
Average total time, Eavg= 31.579 Esigma= 0.726 Average q= 0.806 qsigma= 0.041

Run with Costfactor = 1.400 cub= 39.292 qlb= 0.846
Initial Values
x0= 34.000 0.921 1.533 7.525 77.200 241.667 5.400 8.133
f= 58.045 E= 45.637 cost= 36.690 q= 0.800A= 50.000 alpha= 0.602 c= 0.020 a= 10.000
Final Values
Total time, E= 40.198 cost= 39.219 q= 0.810 Function evaluations= 10000 Blocks= 1680
x= 28.007 0.967 1.511 3.904 71.816 241.400 6.242 9.940
Average total time, Eavg= 40.951 Esigma= 0.712 Average q= 0.823 qsigma= 0.041

Run with Costfactor = 1.450 cub= 40.696 qlb= 0.846
Initial Values
x0= 37.000 0.924 1.475 7.319 75.600 262.500 5.200 7.900
f= 59.454 E= 42.716 cost= 37.317 q= 0.780A= 50.000 alpha= 0.602 c= 0.020 a= 10.000
Final Values
Total time, E= 35.251 cost= 40.624 q= 0.870 Function evaluations= 10000 Blocks= 1532
x= 43.661 0.968 1.517 5.078 80.725 261.692 3.505 7.672
Average total time, Eavg= 34.528 Esigma= 0.657 Average q= 0.814 qsigma= 0.038

Run with Costfactor = 1.500 cub= 42.099 qlb= 0.846
Initial Values
x0= 40.000 0.927 1.417 7.113 74.000 283.333 5.000 7.667
f= 59.358 E= 41.156 cost= 37.898 q= 0.790A= 50.000 alpha= 0.602 c= 0.020 a= 10.000
Final Values
Total time, E= 26.304 cost= 42.038 q= 0.890 Function evaluations= 10000 Blocks= 1461
x= 65.215 0.969 1.313 3.068 62.550 300.401 6.533 7.626
Average total time, Eavg= 25.557 Esigma= 0.554 Average q= 0.832 qsigma= 0.038

Run with Costfactor = 1.550 cub= 43.502 qlb= 0.846
Initial Values
x0= 43.000 0.929 1.358 6.908 72.400 304.167 4.800 7.433
f= 56.217 E= 39.510 cost= 38.467 q= 0.830A= 50.000 alpha= 0.602 c= 0.020 a= 10.000
Final Values
Total time, E= 28.408 cost= 43.655 q= 0.790 Function evaluations= 10000 Blocks= 1526
x= 38.211 0.971 1.950 3.010 74.526 314.854 3.284 6.915
Average total time, Eavg= 29.256 Esigma= 0.447 Average q= 0.834 qsigma= 0.036

Run with Costfactor = 1.600 cub= 44.906 qlb= 0.846
Initial Values
x0= 46.000 0.932 1.300 6.702 70.800 325.000 4.600 7.200

 193

f= 57.677 E= 37.520 cost= 39.053 q= 0.820A= 50.000 alpha= 0.602 c= 0.020 a= 10.000
Final Values
Total time, E= 26.660 cost= 44.286 q= 0.810 Function evaluations= 10000 Blocks= 1585
x= 42.734 0.970 0.756 3.104 71.039 330.399 6.814 6.011
Average total time, Eavg= 27.056 Esigma= 0.502 Average q= 0.835 qsigma= 0.038

Run with Costfactor = 1.650 cub= 46.309 qlb= 0.846
Initial Values
x0= 49.000 0.935 1.242 6.496 69.200 345.833 4.400 6.967
f= 57.509 E= 36.051 cost= 39.689 q= 0.830A= 50.000 alpha= 0.602 c= 0.020 a= 10.000
Final Values
Total time, E= 23.609 cost= 46.372 q= 0.790 Function evaluations= 10000 Blocks= 1399
x= 52.165 0.979 1.738 3.104 59.748 343.736 5.978 4.973
Average total time, Eavg= 23.739 Esigma= 0.421 Average q= 0.845 qsigma= 0.035

Run with Costfactor = 1.700 cub= 47.712 qlb= 0.846
Initial Values
x0= 52.000 0.937 1.183 6.291 67.600 366.667 4.200 6.733
f= 62.633 E= 35.316 cost= 40.407 q= 0.900A= 50.000 alpha= 0.602 c= 0.020 a= 10.000
Final Values
Total time, E= 22.254 cost= 48.101 q= 0.830 Function evaluations= 10000 Blocks= 1630
x= 54.244 0.970 0.658 3.195 71.728 366.155 6.904 4.200
Average total time, Eavg= 22.233 Esigma= 0.452 Average q= 0.834 qsigma= 0.036

Run with Costfactor = 1.750 cub= 49.115 qlb= 0.846
Initial Values
x0= 55.000 0.940 1.125 6.085 66.000 387.500 4.000 6.500
f= 58.240 E= 34.004 cost= 41.237 q= 0.840A= 50.000 alpha= 0.602 c= 0.020 a= 10.000
Final Values
Total time, E= 20.055 cost= 49.102 q= 0.810 Function evaluations= 10000 Blocks= 1560
x= 78.208 0.970 1.352 3.074 59.283 357.190 6.395 4.538
Average total time, Eavg= 20.004 Esigma= 0.351 Average q= 0.842 qsigma= 0.033

Run with Costfactor = 1.800 cub= 50.519 qlb= 0.846
Initial Values
x0= 58.000 0.943 1.067 5.879 64.400 408.333 3.800 6.267
f= 62.264 E= 31.743 cost= 42.212 q= 0.790A= 50.000 alpha= 0.602 c= 0.020 a= 10.000
Final Values
Total time, E= 19.954 cost= 50.334 q= 0.830 Function evaluations= 10000 Blocks= 1481
x= 57.487 0.980 1.998 3.222 62.682 410.679 6.129 3.001
Average total time, Eavg= 20.406 Esigma= 0.341 Average q= 0.847 qsigma= 0.036

Run with Costfactor = 1.850 cub= 51.922 qlb= 0.846
Initial Values
x0= 61.000 0.945 1.008 5.674 62.800 429.167 3.600 6.033
f= 63.178 E= 28.899 cost= 43.362 q= 0.760A= 50.000 alpha= 0.602 c= 0.020 a= 10.000
Final Values
Total time, E= 19.793 cost= 51.961 q= 0.870 Function evaluations= 10000 Blocks= 1503
x= 72.033 0.971 0.762 3.555 45.498 515.835 6.921 3.158
Average total time, Eavg= 19.584 Esigma= 0.406 Average q= 0.855 qsigma= 0.035

Run with Costfactor = 1.900 cub= 53.325 qlb= 0.846
Initial Values
x0= 64.000 0.948 0.950 5.468 61.200 450.000 3.400 5.800
f= 62.783 E= 29.370 cost= 44.721 q= 0.770A= 50.000 alpha= 0.602 c= 0.020 a= 10.000
Final Values
Total time, E= 18.940 cost= 53.336 q= 0.840 Function evaluations= 10000 Blocks= 1353
x= 71.521 0.974 1.449 3.219 71.836 454.461 3.184 3.293
Average total time, Eavg= 18.949 Esigma= 0.337 Average q= 0.843 qsigma= 0.034

Run with Costfactor = 1.950 cub= 54.729 qlb= 0.846
Initial Values
x0= 67.000 0.951 0.892 5.262 59.600 470.833 3.200 5.567
f= 54.525 E= 27.694 cost= 46.318 q= 0.830A= 50.000 alpha= 0.602 c= 0.020 a= 10.000
Final Values
Total time, E= 18.566 cost= 54.787 q= 0.860 Function evaluations= 10000 Blocks= 1533

 194

x= 92.837 0.961 0.959 3.237 58.676 469.751 6.808 3.630
Average total time, Eavg= 18.194 Esigma= 0.418 Average q= 0.838 qsigma= 0.041

Run with Costfactor = 2.000 cub= 56.132 qlb= 0.846
Initial Values
x0= 70.000 0.953 0.833 5.057 58.000 491.667 3.000 5.333
f= 59.620 E= 25.184 cost= 48.187 q= 0.740A= 50.000 alpha= 0.602 c= 0.020 a= 10.000
Final Values
Total time, E= 20.360 cost= 55.028 q= 0.790 Function evaluations= 10000 Blocks= 1463
x= 61.926 0.976 1.539 3.416 65.406 491.500 2.033 3.632
Average total time, Eavg= 20.861 Esigma= 0.363 Average q= 0.847 qsigma= 0.035

Run with Costfactor = 2.050 cub= 57.535 qlb= 0.846
Initial Values
x0= 73.000 0.956 0.775 4.851 56.400 512.500 2.800 5.100
f= 47.599 E= 25.464 cost= 50.357 q= 0.840A= 50.000 alpha= 0.602 c= 0.020 a= 10.000
Final Values
Total time, E= 17.734 cost= 57.559 q= 0.860 Function evaluations= 10000 Blocks= 1502
x= 77.539 0.959 0.673 3.112 50.409 499.238 4.888 3.069
Average total time, Eavg= 17.561 Esigma= 0.347 Average q= 0.835 qsigma= 0.035

Run with Costfactor = 2.100 cub= 58.939 qlb= 0.846
Initial Values
x0= 76.000 0.959 0.717 4.645 54.800 533.333 2.600 4.867
f= 42.745 E= 23.915 cost= 52.862 q= 0.840A= 50.000 alpha= 0.602 c= 0.020 a= 10.000
Final Values
Total time, E= 18.328 cost= 58.691 q= 0.840 Function evaluations= 10000 Blocks= 1513
x= 72.180 0.948 1.804 3.104 49.428 532.036 1.678 3.296
Average total time, Eavg= 18.406 Esigma= 0.348 Average q= 0.837 qsigma= 0.039

Run with Costfactor = 2.150 cub= 60.342 qlb= 0.846
Initial Values
x0= 79.000 0.961 0.658 4.440 53.200 554.167 2.400 4.633
f= 36.838 E= 22.407 cost= 55.732 q= 0.840A= 50.000 alpha= 0.602 c= 0.020 a= 10.000
Final Values
Total time, E= 16.943 cost= 60.324 q= 0.790 Function evaluations= 10000 Blocks= 1635
x= 78.434 0.961 0.285 3.241 42.279 552.864 6.461 3.061
Average total time, Eavg= 17.419 Esigma= 0.351 Average q= 0.851 qsigma= 0.031

Run with Costfactor = 2.200 cub= 61.745 qlb= 0.846
Initial Values
x0= 82.000 0.964 0.600 4.234 51.600 575.000 2.200 4.400
f= 33.543 E= 21.904 cost= 58.999 q= 0.880A= 50.000 alpha= 0.602 c= 0.020 a= 10.000
Final Values
Total time, E= 17.365 cost= 61.710 q= 0.790 Function evaluations= 10000 Blocks= 1487
x= 79.608 0.976 1.067 3.209 50.661 575.874 2.091 3.030
Average total time, Eavg= 17.805 Esigma= 0.313 Average q= 0.863 qsigma= 0.033

Run with Costfactor = 2.250 cub= 63.148 qlb= 0.846
Initial Values
x0= 85.000 0.967 0.542 4.028 50.000 595.833 2.000 4.167
f= 25.047 E= 20.086 cost= 62.695 q= 0.810A= 50.000 alpha= 0.602 c= 0.020 a= 10.000
Final Values
Total time, E= 16.664 cost= 63.173 q= 0.800 Function evaluations= 10000 Blocks= 1559
x= 86.327 0.945 0.737 3.117 51.930 595.164 2.408 3.014
Average total time, Eavg= 16.730 Esigma= 0.331 Average q= 0.833 qsigma= 0.040

Run with Costfactor = 2.300 cub= 64.552 qlb= 0.846
Initial Values
x0= 88.000 0.969 0.483 3.823 48.400 616.667 1.800 3.933
f= 34.051 E= 19.754 cost= 66.851 q= 0.920A= 50.000 alpha= 0.602 c= 0.020 a= 10.000
Final Values
Total time, E= 16.615 cost= 64.612 q= 0.810 Function evaluations= 10000 Blocks= 1522
x= 94.376 0.971 1.942 3.173 54.769 618.622 2.197 3.064
Average total time, Eavg= 16.787 Esigma= 0.310 Average q= 0.858 qsigma= 0.034

Run with Costfactor = 2.350 cub= 65.955 qlb= 0.846

 195

Initial Values
x0= 91.000 0.972 0.425 3.617 46.800 637.500 1.600 3.700
f= 35.316 E= 18.085 cost= 71.499 q= 0.840A= 50.000 alpha= 0.602 c= 0.020 a= 10.000
Final Values
Total time, E= 16.573 cost= 65.923 q= 0.890 Function evaluations= 10000 Blocks= 1528
x= 85.410 0.969 0.627 3.050 47.148 635.212 2.278 3.225
Average total time, Eavg= 16.786 Esigma= 0.347 Average q= 0.858 qsigma= 0.035

Run with Costfactor = 2.400 cub= 67.358 qlb= 0.846
Initial Values
x0= 94.000 0.975 0.367 3.411 45.200 658.333 1.400 3.467
f= 46.281 E= 16.746 cost= 76.670 q= 0.830A= 50.000 alpha= 0.602 c= 0.020 a= 10.000
Final Values
Total time, E= 17.330 cost= 67.238 q= 0.820 Function evaluations= 10000 Blocks= 1466
x= 90.360 0.955 0.393 3.290 42.463 656.124 5.081 3.013
Average total time, Eavg= 16.750 Esigma= 0.341 Average q= 0.849 qsigma= 0.035

Run with Costfactor = 2.450 cub= 68.762 qlb= 0.846
Initial Values
x0= 97.000 0.977 0.308 3.206 43.600 679.167 1.200 3.233
f= 59.280 E= 15.777 cost= 82.396 q= 0.820A= 50.000 alpha= 0.602 c= 0.020 a= 10.000
Final Values
Total time, E= 16.558 cost= 68.115 q= 0.890 Function evaluations= 10000 Blocks= 1519
x= 97.019 0.980 1.991 3.000 42.092 674.479 2.377 3.018
Average total time, Eavg= 16.166 Esigma= 0.326 Average q= 0.871 qsigma= 0.036

Run with Costfactor = 2.500 cub= 70.165 qlb= 0.846
Initial Values
x0= 100.000 0.980 0.250 3.000 42.000 700.000 1.000 3.000
f= 75.675 E= 14.443 cost= 88.709 q= 0.790A= 50.000 alpha= 0.602 c= 0.020 a= 10.000
Final Values
Total time, E= 16.610 cost= 70.097 q= 0.830 Function evaluations= 10000 Blocks= 1496
x= 97.207 0.973 0.500 3.341 42.846 699.810 6.281 3.000
Average total time, Eavg= 16.593 Esigma= 0.415 Average q= 0.864 qsigma= 0.030

Note: Last 3 columns are from interpolating MOP values and feeding back into the simulation.

cost
factor

cub Avg. E Cost Avg.
Qfinal

function
evals.

Blocks Eavg
(interp)

Cost
(interp)

qavg
(interp)

S1 c.f
.(interp)

S2 c.f.
(interp)

 1.25 35.082 37.478 36.326 0.778 5000 1775 35.618 36.188 0.770 1.388 1.154
 1.30 36.486 33.549 36.596 0.772 5000 1700 36.023 37.196 0.787 1.416 1.201
 1.35 37.889 31.707 37.865 0.812 5000 1627 35.171 38.468 0.800 1.441 1.275
 1.40 39.292 40.865 39.201 0.818 5000 1680 33.573 39.523 0.812 1.462 1.334
 1.45 40.696 34.474 40.644 0.816 5000 1532 31.398 40.616 0.819 1.482 1.400
 1.50 42.099 25.459 42.027 0.825 5000 1461 29.276 41.982 0.829 1.499 1.491
 1.55 43.502 29.235 43.651 0.830 5000 1526 27.147 43.646 0.830 1.515 1.610
 1.60 44.906 27.040 44.301 0.829 5000 1585 25.271 45.472 0.839 1.530 1.744
 1.65 46.309 23.734 46.349 0.849 5000 1399 23.628 47.269 0.842 1.545 1.876
 1.70 47.712 22.299 48.116 0.836 5000 1630 22.377 48.876 0.849 1.559 1.992
 1.75 49.115 20.023 49.097 0.843 5000 1560 21.268 50.207 0.844 1.575 2.083
 1.80 50.519 20.405 50.336 0.850 5000 1481 20.396 51.256 0.844 1.591 2.150
 1.85 51.922 19.657 51.962 0.856 5000 1503 19.849 52.076 0.849 1.609 2.194
 1.90 53.325 18.911 53.329 0.842 5000 1353 19.406 52.752 0.850 1.629 2.224
 1.95 54.729 18.263 54.801 0.845 5000 1533 18.959 53.380 0.844 1.651 2.247
 2.00 56.132 20.888 55.021 0.847 5000 1463 18.681 54.043 0.841 1.676 2.269
 2.05 57.535 17.575 57.569 0.844 5000 1502 18.424 54.806 0.849 1.704 2.295
 2.10 58.939 18.459 58.699 0.840 5000 1513 18.107 55.708 0.845 1.735 2.328
 2.15 60.342 17.384 60.310 0.847 5000 1635 17.928 56.766 0.848 1.770 2.370
 2.20 61.745 17.789 61.695 0.863 5000 1487 17.679 57.975 0.854 1.809 2.418
 2.25 63.148 16.740 63.173 0.833 5000 1559 17.404 59.321 0.845 1.852 2.473
 2.30 64.552 16.769 64.618 0.855 5000 1522 17.231 60.793 0.848 1.900 2.531
 2.35 65.955 16.810 65.918 0.857 5000 1528 17.138 62.396 0.856 1.953 2.594
 2.40 67.358 16.745 67.225 0.844 5000 1466 17.021 64.176 0.858 2.012 2.664
 2.45 68.762 16.130 68.116 0.872 5000 1519 16.902 66.243 0.854 2.077 2.750
 2.50 70.165 16.588 70.100 0.858 5000 1496 16.615 68.800 0.865 2.148 2.868

 196

 197

 Interpolated MOP values, x1-x8
 1.25 32.382 0.953 1.763 3.779 85.656 178.329 6.855 8.155
 1.30 35.572 0.959 1.691 3.706 82.681 201.225 6.663 9.602
 1.35 38.699 0.964 1.626 3.639 79.896 223.780 6.476 9.895
 1.40 41.766 0.968 1.565 3.576 77.288 246.016 6.292 9.463
 1.45 44.774 0.971 1.510 3.520 74.847 267.953 6.113 8.630
 1.50 47.724 0.972 1.460 3.468 72.562 289.613 5.939 7.630
 1.55 50.616 0.974 1.414 3.420 70.421 311.016 5.768 6.624
 1.60 53.453 0.974 1.372 3.378 68.412 332.183 5.602 5.714
 1.65 56.235 0.974 1.334 3.340 66.525 353.136 5.441 4.953
 1.70 58.963 0.973 1.300 3.306 64.748 373.896 5.283 4.362
 1.75 61.639 0.972 1.268 3.276 63.071 394.483 5.130 3.935
 1.80 64.263 0.971 1.240 3.251 61.481 414.919 4.981 3.648
 1.85 66.837 0.970 1.214 3.229 59.967 435.224 4.836 3.472
 1.90 69.362 0.968 1.190 3.210 58.519 455.420 4.696 3.372
 1.95 71.839 0.966 1.167 3.195 57.124 475.528 4.560 3.318
 2.00 74.270 0.965 1.146 3.184 55.772 495.568 4.429 3.283
 2.05 76.654 0.964 1.126 3.175 54.451 515.562 4.301 3.249
 2.10 78.994 0.962 1.107 3.169 53.150 535.530 4.178 3.209
 2.15 81.291 0.962 1.089 3.166 51.857 555.494 4.060 3.161
 2.20 83.546 0.961 1.070 3.166 50.563 575.475 3.945 3.112
 2.25 85.759 0.962 1.051 3.167 49.254 595.494 3.835 3.073
 2.30 87.932 0.963 1.031 3.172 47.920 615.571 3.729 3.054
 2.35 90.066 0.964 1.011 3.178 46.549 635.728 3.628 3.056
 2.40 92.163 0.967 0.989 3.186 45.131 655.986 3.530 3.071
 2.45 94.223 0.970 0.966 3.195 43.654 676.366 3.438 3.066
 2.50 96.248 0.975 0.940 3.206 42.106 696.889 3.349 2.979

1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8
20

30

40

50

60

70

80

90

100
System of Systems MOPs as Function of Cost

Cost Factor on Threshold System Costs

M
O

P
s

1
an

d
5

x1
x5

1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8
0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
System of Systems MOPs as Function of Cost

Cost Factor on Threshold System Costs

M
O

P
s

2
an

d
3

x2
x3

 198

1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8
1

2

3

4

5

6

7

8

9

10
System of Systems MOPs as Function of Cost

Cost Factor on Threshold System Costs

M
O

P
s

4,
 7

,
an

d
8

x4
x7
x8

1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8
100

200

300

400

500

600

700
System of Systems MOPs as Function of Cost

Cost Factor on Threshold System Costs

M
O

P
 6

x6

1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8
15

20

25

30

35

40

45
System of Systems MOE as Function of Cost

Cost Factor on Threshold System Costs

Ti
m

e
to

 C
om

pl
et

e
M

is
si

on
 (

ho
ur

s)

35 40 45 50 55 60 65 70 75
15

20

25

30

35

40

45
System of Systems MOE as Function of Cost

Cost ($M)

Ti
m

e
to

 C
om

pl
et

e
M

is
si

on
 (

ho
ur

s)

 199

1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
System of Systems MOPs as Function of Cost

Cost Factor on Threshold System Costs

M
O

P
s

1-
4

(p
er

ce
nt

 o
f t

ec
hn

ol
og

y
th

re
sh

ol
d)

x1
x2
x3
x4

1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
System of Systems MOPs as Function of Cost

Cost Factor on Threshold System Costs

M
O

P
s

5-
8

(p
er

ce
nt

 o
f t

ec
hn

ol
og

y
th

re
sh

ol
d)

x5
x6
x7
x8

2SPSA Simulation vs. Analytic Results

15.00

20.00

25.00

30.00

35.00

40.00

45.00

50.00

55.00

1.25 1.30 1.35 1.40 1.45 1.50 1.55 1.60 1.65 1.70 1.75 1.80 1.85 1.90 1.95 2.00 2.05 2.10 2.15 2.20 2.25 2.30 2.35 2.40 2.45 2.50

Costfactor

O
ve

ra
ll

M
O

E,
 E

CONSTR Analytic Model

2SPSA Simulation (1000 Iterations, +/-20% ICs)

2SPSA Simulation (1000 Iterations, Ramp ICs)

2SPSA Simulation (2000 iterations, Ramp Ics)

2SPSA Simulation (2000 Iterations, Ramp Ics, Interpolated MOPs)

