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he method of Common Random Numbers is a technique used to reduce the variance of

difference estimates in simulation optimization problems. These differences are com-
monly used to estimate gradients of objective functions as part of the process of determining
optimal values for parameters of a simulated system. Asymptotic results exist which show
that using the Common Random Numbers method in the iterative Finite Difference Stochastic
Approximation optimization algorithm (FDSA) can increase the optimal rate of convergence
of the algorithm from the typical rate of k™'’ to the faster k%, where k is the algorithm’s
iteration number. Simultaneous Perturbation Stochastic Approximation (SPSA) is a newer and
often much more efficient optimization algorithm, and we will show that this algorithm, too,
converges faster when the Common Random Numbers method is used.-We will also provide
multivariate asymptotic covariance matrices for both the SPSA and FDSA errors.
(Common Random Numbers; Simultaneous Perturbation Stochastic Approximation (SPSA); Finite

Difference Stochastic Approximation (FDSA); Discrete Event Dynamic Systems)

1. Introduction

Consider the problem of minimizing (or maximizing)
a particular system performance measure by deter-
mining values for a set of controllable parameters
when the system is modeled by a computer simula-
tion. Often, the form of the performance measure (or
loss function) is unknown to the person attempting to
optimize, particularly when the simulation is complex
or when the person has little or no access to the
computer code in which the performance measure is
embedded. In this paper, we consider situations
where all one can do is obtain (possibly noisy) mea-
surements of the loss function for given parameter
values. Here, the gradient of the loss function is also
unavailable, thus making gradient-based methods in-
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capable of finding the optimal parameters. Some in-
terest has surfaced in automatic differentiation tools
(see Iri 1991, Juedes 1991, and Soulié 1991), but again
these require access to the source code of the computer
simulation. These also require that the source code be
in a certain programming language or a certain for-
mat, and some require prohibitively large amounts of
computer memory (Soulié 1991).

With these considerations in mind, we turn to
non-gradient-based methods. Stochastic approxima-
tion (SA) is an iterative technique introduced in the
1950s by Robbins and Monro (1951), Kiefer and Wolf-
owitz (1952), and Blum (1954), which can often be
used to solve optimization problems from both real
systems and computer simulations of real systems.
The category of SA algorithms introduced by Kiefer
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and Wolfowitz can be used in situations where loss
function extrema are desired and only noisy loss
function measurements are available. Although the
Robbins-Monro SA algorithms generally converge to
the optimum faster than those of the Kiefer-Wolfowitz
type, they require direct measurements of the gradi-
ent, and thus are not applicable to the above kinds of
problems. Section 2 of this paper will discuss how
Kiefer-Wolfowitz type stochastic approximation algo-
rithms can be used to optimize these kinds of systems
and will review two key examples of SA algorithms,
simultaneous perturbation stochastic approximation
(SPSA) and finite differences stochastic approximation
(FDSA).

Practitioners have often attempted to reduce the
variance of the parameter estimates produced from SA
algorithms, FDSA in particular, by using the method
of Common Random Numbers (CRN) (see Gal et al.
1984, Glasserman and Yao 1992, L’Ecuyer and Perron
1994, and L’Ecuyer and Yin 1998). When models of
real systems are represented as computer programs,
the noise in the system is modeled by using combina-
tions of computer generated random numbers. To
optimize the parameters of such a system, SA algo-
rithms at each iteration use an estimate of the differ-
ence in performance measures, (X — Y), for example,
to obtain new parameter estimates. Instead of using
two independent vectors or streams of independent
Uniform (0, 1) random numbers to generate X and Y,
the CRN method attempts to increase Cov(X, Y) and
thereby improve the efficiency of the SA algorithm by
using the same realization of the vector of Uniform
(0, 1) random numbers to generate both X and Y.

Results exist (for FDSA) that show the use of CRN
improves the rate of convergence of the SA estimates
to the optimal parameter values under certain condi-
tions (L'Ecuyer and Yin 1998). Without the use of
CRN, the optimal FDSA rate is typically k7 (see
L’Ecuyer and Yin 1998, or Spall 1992), where k is the
number of iterations of the algorithm. Using CRN,
however, it was shown under certain conditions (see
L’Ecuyer and Yin 1998) that the FDSA rate could be
k"2, 1t is important to note that this is the same rate
of convergence attained by the Robbins-Monro SA
algorithms, but here it is attained without the use of
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direct gradient measurements. The results in L’Ecuyer
and Yin (1998), however, do not include specific
expressions for the multivariate asymptotic mean and
covariance matrix of the parameter estimation errors
at this faster rate of convergence. In §2 of this paper
we will show that the SPSA algorithm also attains this
faster rate of convergence when CRN can be used, and
furthermore, we will provide multivariate expressions
of the asymptotic error means and covariances for
both FDSA and SPSA.

Section 3 illustrates the theoretical results of the
previous section with a numerical example comparing
the use of CRN and independent random numbers
(IRN) for both SPSA and FDSA. In the example, we
find the parameter estimation error to be smaller when
the CRN method is employed than when independent
random numbers are used.

Conclusions will be given in §4, and Appendix A
provides proofs of the theoretical results in §2.

2. Stochastic Approximation and

Common Random Numbers

In this section we focus on simulation-based opti-
mization via stochastic approximation algorithms.
First, we give a description of the FDSA and SPSA
algorithms along with results that apply when CRN
is not used. Then we will discuss how CRN can be
implemented in the SA algorithms and give new
results.

2.1. Stochastic Approximation Background

If 6 € R is a vector representing the p parameters in
the system we can control, and w is a vector represent-
ing (uncontrollable) randomness in the system, let

L(6) = E[f(6, w)]

be the loss function we wish to minimize, where f is a
performance measure on the system, and the expecta-
tion is with respect to the random vector w. Let g(8) be
the gradient of L with respect to 6. Stochastic approx-
imation algorithms attempt to find a local minimizer
6* by starting at a fixed 8, and iterating according to
the following scheme:

.1)

ék+1 = ék - akgk(ék)/ (2.2)
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where ¢, is an estimate of the gradient g, and {a,} is a
gain sequence of positive scalars such that 4, — 0 and
2., 4, = . We will focus on non-gradient-based SA
algorithms, that is, those for which only loss function
measurements are required to obtain ¢,.

The two primary non-gradient-based SA algo-
rithms we will discuss are distinguished by the
manner in which the estimate ¢, is defined. In the
classical finite differences stochastic approximation
(FDSA) (Kiefer and Wolfowitz 1952, Kushner and
Clark 1978), the Ith component of the gradient
estimate is defined as

gkl(ék) = y_klzckykl ’ (23)
where {c,} is a sequence of positive scalars such that c,
— 0 and 27, ajc,® < », and where y;; and y,
represent noisy measurements of the loss function and
are defined as

Y = f(b = cie), 0f) (2.4)

for I = 1,..., p (where the notation * means the
expression is valid using either + throughout or
— throughout). Here, ¢, is the Ith unit vector and w,”
represent realizations of the uncontrolled randomness
in the system. Note that 2p loss function measure-
ments are required to generate one estimate of the
gradient. The forward differences version of FDSA
(which uses p + 1 measurements for each gradient
estimate) is not considered here because it has been
shown to converge much more slowly than the central
differences FDSA algorithm described above (Chin
1997, Kushner and Clark 1978).

A newer SA algorithm, simultaneous perturbation
stochastic approximation (SPSA), was introduced and
developed by Spall (Spall 1987, 1988, 1992). In this
algorithm the gradient estimate is defined as follows.
Let A, € R’ be a vector of p mutually independent
random variables satisfying conditions in Spall (1992).
For example, the components could be independent
Bernoulli (1) distributed random variables with each
outcome occurring with probability one half (and this
distribution, in fact, is asymptotically optimal (Sadegh
and Spall 1998) and will be used throughout this
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paper). Then the /th component of the SPSA gradient
estimate is defined as

oA YE Yk
Sulbi) = T3, (2.5)
where
yi = f(0e = cidy, o). (2.6)

Observe that the numerator in Equation (2.5) is the
same for each I. Thus, only two measurements of the
loss function are required to obtain one SPSA gradient
estimate.'

The following assumptions are similar to those in
Kiefer and Wolfowitz (1952), Spall (1992), and others.
See Spall (1992) for a discussion.

AsSUMPTION (Al). Let a, «,, and «, denote positive
constants. Consider all k = K for some K < . Suppose
that, for each such k, the (A} areiid. (i =1,2, ..., r)
and symmetrically distributed about 0 with |A,| < a, a.s.
and E|AY| < a,. Also, for almost all 8, (at each k = K),
suppose that for all 0 in an open neighborhood of 8, that is
not a function of k or w, L®(0) = 9°L/06700796" exists
continuously with individual elements satisfying |LY, (0)]
= «,.

AssUMPTION (A2). For some a,, a,, as > 0,8 = 0
and Vk, assume E[(y;, — L(8, = ¢, A)*"] = a,,
EIL(B, * ¢,4)™1 = oy, and E[A;*"] = o, (I = 1,
2,...,p)

AssuMPTION (A3). ||§,]| < « as. Vk.

ASSUMPTION (A4). 0% is an asymptotically stable so-
lution of the differential equation dx(t)/dt = —g(x).

AssUMPTION (A5). Let D(6%) = {x, : lim,__ x(t|x,)
= 0%}, where x(t|x,) denotes the solution to the differential
equation in (A4) based on initial condition x,. There exists
a compact S C D(6*) such that 8, € S infinitely often for
almost all sample points.

AssUMPTION (A6). Let o, p®, and & be such that
E[(}/k+ = L(6, + c,A) —y, + L(O, — CkAk))zlgk] -

' Random directions stochastic approximation (see Kushner and
Clark 1978, pp. 58-60) also requires only two measurements per
gradient estimate, but its overall performance has not compared
favorably with that of SPSA (see Chin 1997).
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o’ as., E[A}}] — p?, and E[A}] — & as k — « VI,
where F, is the sigma field generated by {8,, ..., 6,).
Also, Yk sufficiently large and almost all w, let the sequence
(El(ys — L(B, + c,A) — y, + L, — c,A))|F,
c A, = 11} be equicontinuous at v = 0 and continuous in
T on some compact, connected set containing ¢, A, a.s.

Under (Al)-(A5), Proposition 1 of Spall (1992)
proves that 8, — a.s. 6* for SPSA (and similarly for
FDSA), where 6* is a local minimizer of L. If we add
Assumption (A6) and constrain 8 to be strictly positive
in (A2), then asymptotic distribution and rate of
convergence results for the SPSA parameter estimate
errors for the general L and y defined above are given
as follows (FDSA results are similar). Again, for ease
of notation, we let {A,;} be independent Bernoulli (*1)
random variables Vk, I. Define the gain sequences as
a,=akandc¢, = ck”" wherea,c, y>0,0<a=1,
2 —2y>1,and a — 2y > 0. Let B = a — 27y, and
assume f3 — 4y = (0. Next, let H(8) be the Hessian
matrix of L(#), and let P be an orthogonal matrix
satisfying PTH(6*) P = a~" diag(A,, ..., A,). lfa =1,
define B, = B < 2 min,; A; otherwise set B, = 0 (note
that requiring 8 < 2 min, A; is not restrictive since we
can always choose a such that the inequality holds).
Then from Fabian (1968) and Proposition 2 of Spall
(1992) we have that the normalized estimation error
kP’*(, — 6*) is asymptotically N (1, PMPT) distrib-
uted in the SPSA case (where N, denotes the p-variate
normal distribution). Here, /2 = 1/3, and p is a
mean vector that involves the second and third deriv-
atives of L(8) at 6* and for which formulas are given
in Spall (1992). We also have

a’o? 1
M =zc—z—dlag —

yoeer |, (27
TV TR Twy 7 (Rl

where

o? =2 Var[f(6*, w)]. (2.8)

2.2. Using Common Random Numbers to Reduce
Variance

A key ingredient used in Fabian (1968) and Proposi-

tion 2 of Spall (1992) in deriving the above asymptotic

distributions is the asymptotic variance of ¢,. We will

show it is possible to reduce the asymptotic variability
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of the SPSA and FDSA parameter estimation error in
cases where we can reduce the variance of §,.

From Equations (2.3) to (2.6) we see each SA gradi-
ent estimate is formed from the difference of pairs of
observed system performance measures. For example,
in the SPSA algorithm

. 1 . A _
8u(6) = 2eA, (B + cly, of) — f(6, — ¢y, wf)]

2.9

forl =1,...,p. Inareal system, functions of &, and w,
in (2.6) (and similarly in (2.4)) represent instances of the
system’s uncontrolled randomness. On the other hand, if
the optimization is based on a computer simulation of a
real world system, the researcher may have some control
over how the w, are generated. In the code of a com-
puter simulation, it is usually the case that, for eachk, w;
and w, are implemented as vectors or streams of mutu-
ally independent Uniform (0, 1) random variables (and
each is generated independently of 8,,..., 8,). If so, it
may be possible (by setting random number seeds, for
example) to implement the CRN method by setting w, =
w; =: w, Yk in the SPSA case, and w, = w;" =: w, Vk, I
in the FDSA case. Then the SPSA gradient estimate is
written as

o 1 , n
$u(6) = 20, [f(6 + ciAy, @) — f(B, — cidy, wp)]
Vk,I

(and similarly for the FDSA gradient estimate). Recall
that f(6, w) is a measurement of the loss function and
is the output of a computer simulation that uses 6 and
w as inputs. Thus, using the same sequence of Uniform
(0, 1) random numbers to run both simulations each
iteration results (via the cancellation of terms in the
difference of the Taylor expansions of f) in a reduction
in the variance of ¢, compared to the case where w;
and @, were independent, and this subsequently
leads to smaller asymptotic variances of the SPSA and
FDSA estimates. These results are summarized in the
following new theorem and corollary. In the SPSA
case (Theorem 2.1), for all k, §, is defined as in (2.5),
and y; = f(8, = c,A,, »,). Also, the A, are indepen-
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dent Bernoulli (=1) random variables, with each out-
come occurring with probability one half, for all k and
I. In the FDSA case (Corollary 2.1), §, is defined as in
(2.3),and y;; = f(8, = c,e, w}) forallkand! =1, ...,
p, where e, is the Ith unit vector. In both results, L(8)
= E[A(6, o).

THEOREM 2.1. Suppose Assumptions (A1)—(A5) hold
and that & in (A2) is strictly positive. Also assume |df(8,,
w)/38,| = a, for some g > 0 and for almost all B, (k
sufficiently large), almost all w, and alll =1, ..., p. Let
a,=ak “andc, = ck witha,c,y>0,0< a =1,
and2a — 2y > 1. Let B = a with B — 4y < 0 (note the
change from §2.1 where B = « — 2v). Define B, P, and
Ayovos Ay as in §2.1.

Then,

d
kB/2(§, — 6*) — N,(0, PMPT)
with the ij-entry of M as follows:
1
— ,2(pT -
My =TSR (5 )

where

ifi=j,

>] Wi
0=

(2.10)

5 (5o 0]...)]

= 1=1

09,-f o @ o=o ,’)9], r @

COROLLARY 2.1. In the FDSA case, assume the condi-
tions of Theorem 2.1. Then,

k#/2(B, — 6*) > N,(0, PMPT)

with the ij-entry of M as follows:

M,-]» = aZ(PTiP),-/(m),
i ] +
where ,
a e
"o if i+ ].

Note that while the faster rate of convergence (8/2
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= 1/2) for FDSA with CRN has been shown previ-
ously (see L’Ecuyer and Yin 1998), this faster rate is a
new result for SPSA. Additionally, the multivariate
asymptotic covariance results for both SPSA and
FDSA shown above have not been reported previ-
ously. Note that if we let p = 1 above (a one-
dimensional optimization problem), then our results
coincide with those in 4.1 of L’Ecuyer and Yin (1998),
where our 8, equals 1 + 8 in Theorem 4.1 of L’Ecuyer
and Yin (1998).2

An area for further study would be to compare the
asymptotic mean square errors (MSE) of SPSA and
FDSA, taking into account that SPSA requires p times
fewer loss function measurements than does FDSA. If
we consider the special case where the Hessian matrix,
H, of L is a diagonal matrix, then P is the identity
matrix, and we gain insight by looking at the relative
shapes of L and f. Note that in this case, the larger
diagonal entries of the matrix ¥ represent directions
from the point 6* in which f more steeply increases or
decreases. Also, if A; > A,, say, then at the point 6*, the
slope of L is changing more rapidly in the direction of
its first component than in its second. Thus, roughly
speaking, if f has a steep slope in the same directions
from 6 as in the directions where the slope of L is
rapidly changing, then the larger diagonal entries of 3.
will be paired with the larger values of {A;, ..., A,}.
This would then imply that the trace of PMP" will be
larger than p times the trace of PMP7, and FDSA will
perform better than SPSA (even though SPSA uses p
times fewer measurements each iteration). But, on the
other hand, when the larger diagonal entries of 3 are
paired with the smaller A values, then tr(PMP")
< tr(PMP") - p, and SPSA outperforms FDSA. In an
even more specific case, when H is some constant
times the identity matrix, we have tr(PMP")
= tr(PMPT) - p, and the same number of measure-
ments are required by each algorithm to obtain the
same level of accuracy. These specific cases (using

? Using CRN, note that when we define ¢, = ck”* we have some
freedom in how we choose the exponent. We may choose vy large
enough (i.e., choose B large enough in L'Ecuyer and Yin (1998)) so
that the bias term in the gradient estimate is asymptotically negli-
gible compared to the variance, making Case 1 in L"Ecuyer and Yin
(1998) (4y > a in our notation) the applicable case.
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CRN) contrast the case where independent random
numbers are used. There, SPSA attains greater accuracy
than FDSA under fairly general conditions (see Spall
1992, §IV), even when the same number of total mea-
surements are used in each algorithm. Hence, tr(PMP")
< tr(PMP"), not just tr(PMP") < tr(PMP") - p.

3. Numerical Illustration of Results

3.1. Introduction
In this section we present a numerical study that
illustrates and compares the performances of the SPSA
and FDSA algorithms in different scenarios depend-
ing on whether w, and w, use independent or com-
mon random numbers. We also examine the situation
where an attempt to use CRN is made, but w; and o,
do not have all components in common. We call this
scenario “Partial Common Random Numbers” (see
also the air traffic simulation study in Kleinman et al.
1997). As the theoretical results of the previous section
imply, we expect SPSA and FDSA will perform best
when using common random numbers and worst
when using independent random numbers.

The loss function we wish to minimize is

r
L(6) =070 + E[ > e'x""}

i=1

where 6, is the ith component of 6 € [0, ») X - -+ X
[0, ») C R*, and X, is an exponentially distributed
random variable with parameter ;, i = 1, ..., p. This
loss function is similar to the one Chin (1997) uses in
his comparison of several SA algorithms. Using the
relatively simple loss function in place of a larger,
more complex real simulation allows us to compute a
large number of optimization runs and thereby reduce
case-dependent variation.

3.2. Numerical Study
In this study we chose p = 10 in the above definition

of L(8). The exponential random variables {X} were
generated independently by the inversion method.
That is, for each iteration k and eachi =1, ..., p, we
set X = (—=1/7m) In(1 w;) where {w;;} are
independent Uniform (0, 1) random variables gener-
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ated using the system C function drand48(). The
constant vector n was defined as

[1.10254, 1.69449, 1.47894, 1.92617, 0.750471,
1.32673, 0.842822, 0.724652, 0.769311, 1.3986]7,

each component representing the parameter of the
particular exponential distribution. The study was
performed on a Sun Sparcl0 workstation.

For both SPSA and FDSA, the initial point, 8, was
chosentobe 1,1, ..., 1]". We found the minimizer,

§* = [0.286, 0.229, 0.248, 0.211, 0.325,
0.263, 0.315, 0.327, 0.323, 0.256]7,

through differentiation and by using the mathematical
software package Maple. Both SPSA and FDSA were
used to minimize L(6) in each of three scenarios. In
the first scenario, using independent random numbers
(IRN), o, and w, were chosen independently of each
other. More specifically, at each iteration we generated
2p = 20 Uniform (0, 1) random numbers and set w; =
(@1 -y ©0]" @and @ = [y, - .., Wy5]". These
random numbers were then used to generate the
exponential random numbers.

For the second scenario, Partial Common Random
Numbers (PCRN), we desired to simulate a partial
CRN case where w,” and w, had some components in
common and yet did not have full synchronicity.
Thus, in this scenario we generated 10 Uniform (0, 1)
random variables independently for each k and then
set 0, = [wgy, .., Wl and o, = [@,,, ...
Wy10r Wi, “’k,s]T-

In the third scenario (CRN), full synchronicity was
simulated in order to use the method of common
random numbers. That is, we set w;, = w,; for i
=1,...,10 and for all k.

Each row of Table 1 describes results for a different
scenario. Note that for both SPSA and FDSA and all
scenarios, we set a = 0.7 and ¢ = 0.5 in the gain
sequences. Also, for IRN and PCRN we used ¥y
= 0.167, and for CRN we used y = 0.49. All three
scenarios used a = 1.0 (from the conditions on « and
v in §2.1 we have that the values «a = 1 and y = 1/6
provide the fastest rate of convergence in the IRN and
PCRN cases, and similarly from the conditions in

’ wk,7/
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Table 1 Numerical Results for 100 Replications of SPSA and
FDSA Runs
SPSA FDSA
R ”éw,ooo - 9*" . "élooo - 9*”
L(Ow,ooo) ”éo - 9*” L(91ooo) ”90 - 6*“
IRN 8.725 0.0190 8.736 0.0410
PCRN 8.723 0.0071 8.724 0.0110
CRN 8.723 0.0065 8.723 0.0064

Theorem 2.1, we see that @ = 1 and any y € (0.25, 0.5)
are asymptotically optimal in the CRN case). Since the
FDSA algorithm requires p = 10 times more loss
function evaluations per iteration than does SPSA, all
FDSA runs were carried out using 1,000 iterations, and
all SPSA runs were carried out using 10,000 iterations
in order to equate the total number of function eval-
uations performed by each algorithm. Furthermore,
for both SPSA and FDSA in each of IRN, PCRN, and
CRN, 100 independent replications of each minimiza-
tion run were performed. Thus, the final loss function
values obtained in Columns one and three of the table
are averages over the 100 replications, as well as the
ratios in Columns two and four.

3.3. Interpretation of Results
The results in Table 1 show that for both SPSA and
FDSA, this study agrees with the theory of the previ-
ous section. The final loss function values are smallest
and the errors ”élo,ooo = 0*[lspss and [[8,000 = ¥l s, are
smallest in the pure CRN scenario. Additionally, the
final loss function values are largest and the errors
”910,000 — 0*llspss and 8,00 — 6%[|;ps4 are largest in the
IRN scenario, with the PCRN scenario results falling
in between. Note also that, as the theory implies,
V|8, — 6| appeared to be bounded as k increased
when using CRN.

Furthermore, SPSA outperforms FDSA in the IRN
and PCRN scenarios, but performs no better than
FDSA in the CRN case. More specifically, the ratio

” é10,00() - O*HSPSA

”91000 - O*HFDSA

is about 0.46 for IRN and 0.65 for PCRN, but 1.02 for
CRN.
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4. Conclusions

This article describes the use of Common Random
Numbers as a means of reducing the variance in
stochastic approximation estimates for problems
where only loss function measurements are avail-
able and simulation-based optimization is per-
formed. We show that when CRN can be used, the
estimates of both SPSA and FDSA converge to the
optimal values at a faster rate (k™'/?) than when
CRN is not used (k~'°). Multivariate asymptotic
means and variances for the SPSA and FDSA iter-
ates are also given.

This work also contains a numerical study illustrat-
ing the theoretical results. We find, in the example, the
parameter estimation errors from both SPSA and
FDSA take their smallest values in the pure CRN
setting and largest in the independent random num-
bers setting. In the example, when the number of
function evaluations performed by SPSA and FDSA is
equated, the SPSA estimates give smaller errors than
those of FDSA in the independent and partial CRN
settings. In the pure CRN setting the two algorithms
perform nearly equally well.

Further comparison between the asymptotic perfor-
mances of SPSA and FDSA in the CRN setting is an
area for future research.’

* This work was partially supported by U.S. Navy Contract N00039-
95-C-002 and the JHU/APL IRAD Program.

A. Proofs for the Pure CRN Setting
In this appendix we prove Theorem 2.1 and Corollary 2.1, which
give asymptotic distribution and rate of convergence results in
the pure CRN setting for the SPSA and FDSA algorithms,
respectively.

ProOF oF THEOREM 2.1. As in Spall (1992), define the conditional
bias

bi(8) = E[§:(6:) — g(80)]8]. A1

Note that our loss function, L(8) = E[ f(§, w)], and the sequence
{8,), including its use of CRN, satisfy the assumptions (A1)-(A5).
Thus, Lemma 1 in Spall (1992) implies b,(8,) = O(k™) with
probability one, and Proposition 1 in Spall (1992) yields § — a.s. 6*.
The remainder of the proof of Theorem 2.1 will proceed similarly to
that of Proposition 2 in Spall (1992); that is, we will show that
conditions (2.2.1), (2.2.2), and (2.2.3) in Fabian (1968) hold.

First, Lemma 1 and Proposition 1 in Spall (1992) imply that there
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exists an open neighborhood of 8,, for all sufficiently large k,
wherein H is continuous and that includes ¢*. Then using (A.1),

E[gk(ék)lgk] = E[gk(ék)]ék]
= g(8) + b(B)
= H(8) (8, — 6*) + b(D), (A2)
where 8, lies on the line segment between 8, and ¢* and where %,

is the sigma field generated by {90, ..., 8,). Then as in Fabian (1968)
we use (A.2) and write

ék+1 —gr=(- kiark)(ék = 6%)
+ k@B Y, + kBT, (A3)

where T, = _aszbk(ék)/ vV, = kw?ﬂ)/z[gk(ék) - E(gk(ék)mk)]/ P,
= —al, and T, = aH(8,).

Asin Spall (1992), T', — aH(6*) a.s. by the continuity of H and the
almost sure convergence of 8,. Furthermore, since b,(8,) is O(k ™)
with probability one, we have T, = O(k*/?™%) a.s. Thus, T, —
0 a.s. since B — 4y < 0, and Fabian'’s condition (2.2.1) holds.

Next, let A;' = (A, ..., A.)". Then we have

E[ViVIIF]

4¢3

a.s. 1
= ka_aE[ ’-\;1(/3;1)7(_) (f(ék + Ay, @)

—f(ék — by wk))z’ %k]

— kP7(g(80 + b(8))(g(8) + b,(8))T by (2.5) and (A.1),
a.s. 1
= kﬁ_u(m) E[AI‘(Ail)TE[(f(ék + ¢ Ay, wy)

= 8 — b, @)Y F i AJIF] + 0(kP),

and we may use the o(k?™*) term since b,(8,) = a.s. O(k™™), §, —
a.s. 6* and g(8*) = 0. Using Taylor expansions,

E[(f(8 + ciy, @) — (B, — cxhp @) Fr AL

2 4cIE[(ATVF(By, @) 2Fs, Ad + O(ch).
(A4)

We point out here that the improvement found in using the CRN
method comes from the cancellation of the O(1) terms in the Taylor
expansion of the left side of equation (A 4). If the CRN method were
not used, @, and w, would replace the two instances of w, in the
left side above, and the right side would be O(1) instead of O(ch).

Then, using (A .4), the ij-entry of E[V, V[|%,] can, with probability
one, be written as

)
w
3
M=
=
[l

[ AklAkm

_ ] E[Vif(8: 0)Vuf(By, wp)|Fi] + o(k?)
A)uAk/
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by the independence of A, and %,, where V,f(8,, w,) is the Ith
component of the gradient vector Vf evaluated at 8, and w,. Then,
since B = a and using the fact that the {A,} are independent
Bernoulli (1) random variables (with parameter 1/2) for all k and
I=1,..., p, we have

E[VVIIF],

r
w2 | S E[(V A8 00)UF + 0(1)

ifi=j,
=1
ZE[(an(ék: wk))(V, (ékr wk))lg;k] +0(1) ifi# J-
By independence of w, and ¥,,
EL(Vif(B, @) 4] = EL(Vif(D, 00)718i]
= f (VB @0)%P,, (A5)

where P, is the probability measure associated with w,. Since {w,}
is an i.i.d. sequence,

f (Vf(By, w))?dP,, = f (Vf(By, )P, (A6)

where @ = w,. Then by the boundedness assumption on V,f and the
dominated convergence theorem, Equations (A.5) and (A.6) imply

a.s.

EL(V,f(8,, w))F] — E[(V,f(6*, @))?] ask — =

and similarly in the off diagonal-elements. Therefore, (2.2.2) of
Fabian (1968) is satisfied, and (2.10) holds.

Now we wish to show that (2.2.3) of Fabian (1968) holds.
Following the argument in Spall (1992) we have, for 0 < 8" < 8/2,

lim E[l(HVAll 22k r')" Vk” 2]
[

2\ 8/(1+8")
=< lim sup (E”V"" ) (E||Vk||2“+5'))”‘“5",
k—x

rk®
In our case, we also have
V202 < 2200 fig (B 20+ [lg(Bll % + bu(B]2+ 1.

From Assumption (A1) and arguments in the proof of Lemma 1 of
Spall (1992), we see that g(@k) and b,(8,) are uniformly bounded for
large k. Thus, the expected values of the second and third terms
above are O(1). Next, similarly to the argument in Spall (1992),
assumption (A2), the fact that 0 < §' < 8/2, and Holder’s inequality
imply E[||§,(8,)]|****°] is O(1). Thus E[|VJ****? is O(1). This shows
that the above limit goes to zero as k — o, Vr > 0, and that (2.2.3)
of Fabian (1968) is satisfied. o

Proor oF COROLLARY 2.1. First, define b,(8,) to be the condi-
tional bias in §,(8,) in a manner analogous to (A.1). Again from
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Lemma 1 in Spall (1992), 5,(8,) is O(k™*) a.s. Then with the notation
of Fabian (1968), the convergence of I',, ®,, and T, in the FDSA case
are similar to the SPSA case. Furthermore, if V, = k® 9/?[$,(8,)
~ E($48)]0)] and F, = o(b,, ..., 8,}, then with B = «,

E[V.VIIF;
as. 1 . i " ;
= v E[(f(Bs + ciei, wi) — f(O — cxes, @)

X (f(B + crej, wh) — f(By = cxej, WDNF] + 0(2)
E[(V:f(By, @}))*|Fi] + 0(1)

) 1 . . .
= 12 (L(B, + cyei) — LB — cie))(L(Bx + c4e)

ifi=j

=
i

Therefore, since (L(8, + c.e) — L(B, — ce)) = a.s. 2¢,g4(6,)
+ O(c}) and g(@,) — a.s. 0, we have, by a dominated convergence
theorem argument similar to the one in the SPSA case, that (2.2.2) of
Fabian (1968) is satisfied, and (2.11) holds. Proving (2.2.3) of Fabian
(1968) holds in the FDSA case is similar to the SPSA case, and the
proof of Corollary 2.1 is complete. o
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