IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 27, NO. 2, APRIL 1997

Comparative Study of Stochastic Algorithms for System
Optimization Based on Gradient Approximations

Daniel C. Chin

Abstract— Stochastic approximation (SA) algorithms can be used in
system optimization problems for which only noisy measurements of
the system are available and the gradient of the loss function is not.
This type of problem can be found in adaptive control, neural network
training, experimental design, stochastic optimization, and many other
areas. This paper studies three types of SA algorithms in a multivariate
Kiefer-Wolfowitz setting, which uses only noisy measurements of the loss
function (i.e., no loss function gradient measurements). The algorithms
considered are: the standard finite-difference SA (FDSA) and two acceler-
ated algorithms, the random-directions SA (RDSA) and the simultaneous-
perturbation SA (SPSA). RDSA and SPSA use randomized gradient
approximations based on (generally) far fewer function measurements
than FDSA in each iteration. This paper describes the asymptotic error
distribution for a class of RDSA algorithms, and compares the RDSA,
SPSA, and FDSA algorithms theoretically (using mean-square errors
computed from asymptotic distributions) and numerically. Based on the
theoretical and numerical results, SPSA is the preferable algorithm to use.

Index Terms— Asymptotic normality, convergence rate, gradient ap-
proximation, Kiefer-Wolfowitz algorithm, optimization, stechastic ap-
proximation.

1. INTRODUCTION

In virtually all areas of engineering and the physical and social
sciences, one encounters problems involving the optimization of some
mathematical objective function (e.g., as in optimal control, system
design and planning, model fitting, and performance evaluation from
system test data). Typically, the solution to this optimization problem
corresponds to a vector of parameters such that the gradient of
the objective function (with respect to the system parameters being
optimized) is zero. Over the last several years, there has been a
growing interest in recursive optimization algorithms that do not
depend on direct gradient information or measurements. Rather, these
algorithms are based on and approximation to the gradient formed
.from (generally noisy) measurements of the objective function. This
interest has been motivated, for example, by problems in the adaptive
control and statistical identification of complex systems, the optimiza-
tion of processes by large Monte Carlo simulations, the training of
recurrent neural networks, and the design of complex queuing and
discrete-event systems.

Overall, such algorithms exhibit certain convergence properties
of gradient-based algorithms while requiring only objective (say,
loss) function measurements. A main advantage of such algorithms
is that they do not require the detailed knowledge of the func-
tional relationship between the parameters being adjusted (optimized)
and the loss function being minimized that is a requirement in
gradient-based algorithms. Such a relationship can be notoriously
difficult to develop in problem areas such as nonlinear feedback
controller design. Further, in areas such as Monte Carlo optimization
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or recursive statistical parameter estimation, there may be large
computational savings in calculating the loss function relative to
that required in calculating gradients. Because of the inherent ran-
domness in the data and search algorithms here, all algorithms
will be viewed from the perspective of stochastic approximation
(SA).

Let us elaborate on the distinction between algorithms based on
direct gradient information or measurements and algorithms based
on gradient approximation from measurements of the loss function.
Examples of the former include Robbins—Monro SA [13], steepest
descent and Newton—Raphson [1, ch. 8] neural network backpropaga-
tion [14], perturbation analysis [8], and likelihood ratio methods [12].
Examples of the approximation-based methods using loss function
measurements are given below but include as an early prototype
the Kiefer~Wolfowitz finite-difference SA (FDSA) algorithm [9].
The gradient-based algorithms rely on direct measurements of the
gradient of the loss function with respect to the parameters being
optimized. These measurements typically yield an estimate of the
gradient since the underlying data generally include noise. Because
it is not usually the case that one would obtain direct measurements
of the gradient (with or without noise) naturally in the course of
operating or simulating a system, one must have knowledge of the
underlying system input-output relationships in order to calculate
the gradient estimate (using the chain rule) from basic system
output measurements. In contrast, the approaches based on gradient
approximation use only the sample values of the loss function, which
can be observed without knowledge of the system input—output
relationships.

The purpose of this paper is to compare three different types of
SA algorithms of the Kiefer—Wolfowitz form. These are iterative
procedures to find the minimum, *, of a loss function L: RF —
R, p > 1, when the function L(-) can be observed only in the
presence of (unknown) noise and its gradient, g(6), is unknown and
has to be approximated from the measurements on L(-), where

aL(#)

9(6) = 50

(1.1)

We are interested in finding the minimizing 8* such that g(6*) = 0.
The SA iterative procedure usually has the following form

Ok+1 = O — argi(6x) (1.2)

where the subscripts k£ and k + 1 represent the number of iterations,
ai is a positive scalar gain and g (-) will be approximated.

FDSA uses a finite difference equation to approximate each in-
dividual element of the gradient. Let 6; and §(-) denote the FDSA
approximated estimates and gradients, u¢ be a unit vector the di-
rection of the fth coordinate in RP, and 3 denote the FDSA
measurement. For a given positive scale ck, the two-sided FDSA
gradient uses the measurements ﬂi&) defined by

ﬂi“-) = L(ék + Ckue) + egf"')
and

(£-)

57 = L(6x — crue) + € (1.3)

which are evaluated at the design levels x % crue, where ei&)

are the noises associated with the measurements, assumed to satisfy
E(e§f+) - egf_) | £) = 0 as. Vk, where £ = (fo,...,0k). Then

the two-sided FDSA gradient is

-
Gr(fx) = =— : (1.4)
26 | o) (o)
Yi - Yr

The single-sided FDSA would use §r = L(6:) + e to replace
ﬁff") V¢ and omit the 2 in the denominator. A total of 2p measure-
ments of L are required for an approximation of a double-sided g«, or
p+ 1 measurements for a single-sided. It is not worthwhile to use the
single-sided formula because it has double the noise level (comparing
to the double-sided g directly) and has a slower convergence rate
(O(cxk) vs. O(c}) as indicated in (10, p. 51}). Reference [2] showed
that under a set of conditions the FDSA iterations will converge
almost surely; [3] and [16] gave conditions for the asymptotic
distribution of the errors of the estimates; a comprehensive discussion
can be found in [10].

FDSA tends to be very hard to use for large systems. For example,
an application using neural networks for process control commonly
involves the estimation of hundreds of parameters (weights). Using
two measurements for each parameter, FDSA requires hundreds of
measurements for a single iteration. For an experiment or operation of
a process, it may be extremely costly (time, money, fuel, labor, etc.)
and difficult to make the required large number of measurements.
Therefore alternatives have been proposed that aim to use fewer
measurements to achieve a solution to (1.1). This paper addresses two
basic types of alternative algorithms: random-directions SA (RDSA)
and simultaneous-perturbation SA (SPSA), both of which can be
shown to be more efficient than FDSA.

RDSA and SPSA both use only a pair of measurements to approx-
imate all elements of a gradient at each iteration. Each measurement
is evaluated at the design levels 8 % cxbr, where i represents
the random perturbations which are generated from a statistical
distribution which satisfies the requirements of RDSA or SPSA. To
make it clear, I will use dj to represent the RDSA perturbations and

A to represent the SPSA perturbations. If (;,3,301) represent the
items used in RDSA and (6, §, ) represent the items used in SPSA
corresponding to the similar items in FDSA, then the RDSA gradient
is approximated using

ol+) o(—)

o o 1
gk(ok)='27kdk{yk - Y ] (1.5)

7. = L(a (£) N
where ¥x¥) = L(9x + cxdi) + ¢; ', and the SPSA gradient is
approximated using

~-1
Akl

. 1 . -
Gr () = 2er 3P -37) (1.6)

-1
A

where §F = L(6x £ ciAx) + €.

The SPSA algorithm is presented in [17], [18], [19]; the RDSA
algorithm is discussed by [10, p. 59], using random perturbations
distributed uniformly on a p-dimensional sphere with radius 1 (it
should use radius p instead'). There are several other kinds of

1t is incorrect to use a radius of 1. The proof of Theorem 2.3.6 in ([10, p.
60] mistakenly states that “8, — 0 wpl as n — co” where Br is expected
difference between measurement and true L(-) values and n is the number of
iterations. The proof of the convergence will hold for radius p with 2.3.19)
in [10] adjusted to reflect the different radius.
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distributions for the perturbations that have since been used in the
RDSA type of SA, such as the Cauchy and Normal (0, 1) applied in
[20] for a global optimization problem. An RDSA expressed in kemnel
functions is discussed in [11]. The extension they made to using only
one measurement per iteration tended to produce estimates having
more bias than those of standard RDSA [10, p. 51].

For some loss functions, simple averaging of gradients may stabi-
lize the convergence process and provide smaller mean-square errors
(see Section III). For example, [18] and [19] showed that there are
sometimes advantages to using (1.6) with several conditionally (on
) independent simultaneous perturbation approximations averaged
at each iteration. That is, gx(-) in (1.2) can be replaced by

2 - ~
g =a" Y o7 (8), g>1 1.7

=1

where each g(') (-) is generated as in (1.6) based on a new pair of
measurements, which are conditionally (on fx) independent. This
averaging idea could also benefit RDSA in the same way as for
SPSA. The averaging technique used for RDSA in [15] and [20] is
a running average (across iterations) and is different from (1.7). The
estimation error distribution associated with this type of average has
not yet been established.

Although RDSA and SPSA have a superficial similarity, they differ
in several critical ways. For example, the gradient approximation
forms in the two approaches differ somewhat and the convergence
results for the algorithms place different requirements on the distribu-
tions of the random perturbations. The convergence theories require
the distribution of the SPSA perturbations to have a finite second
inverse moment and that of RDSA to have a unit second moment
and a finite fourth moment. '

The conditions for the almost sure convergence and the asymptotic
error distribution of the estimates have been established for FDSA as
mentioned before, and for SPSA in [18], [19]. The conditions for the
almost sure convergence for RDSA using perturbation distributions
N(0, 1) have been given in [7]. To compare all three algorithms
using the mean-square errors computed from asymptotic distributions,
this paper will derive the results for RDSA for a general class of
distributions for the perturbations. Also, numerical studies will be
given for a demonstration of the properties of the three algorithms.

The remainder of this paper is organized as follows: Section II
discusses the convergence conditions and distribution of the errors in
their estimates, Section IIf compares the accuracy and efficiency of
the algorithms, Section IV presents numerical studies, and Section V
states some conclusions.

II. CONVERGENCE CONDITIONS AND
DISTRIBUTIONS OF THE ESTIMATION ERRORS

A. Convergence Conditions

Under certain conditions, all three algorithms, FDSA, SPSA, and
RDSA, will converge almost surely if the derivatives of L are
equicontiuous and bounded. These conditions have been established
as mentioned in Section I. The FDSA algorithm sequence will
converge under the following conditions:
Cl: ak, ck > OVkjar — O,cx — Qas k — o0, D 2o ak =
00, ZZZO(%‘;‘LY < oo.

C2: Sup,|lfx]| < oo as.

C3: 0" is an asymptotically stable solution of the differential
equation dz(t)/dt = —g(z).

C4: Let D(6™) = [xo: limy—oo z(t | zo) = 6*] where z(t | o)
denotes the solution to the differential equation of C3 based on
initial conditions zo (i.e., D(8") is the domain of attraction).
There exists a compact S C D(8*) such that §; € S infinitely
often for almost all sample points.

These conditions are the conditions Al and A3-AS5 of [19] which
are also required convergence conditions for SPSA and RDSA. In
addition, SPSA and RDSA require their random sequences to satisfy
certain conditions to assure convergence. SPSA has Ax,V/ acting as
divisors and requires these quantities to satisfy the conditions in C5
(the condition A2 in [19]),

C5: For some ao, o, a2 > 0and Vk, Eeﬁc’b)2 < ag, EL(ék:!:
cxAk)? < ap, and E(Are) 2 < o, for £=1,2,...,p

RDSA has dxV £ acting as multiplier and requires the dx¢ to satisfy
the conditions

C6: For some ao, o1 > 0 and Vk, E(dxdl) =1, E(e®") <
oo, and Ed3,L(6i £ cxdr)? < or, for £=1,2,...,p

B. Asymptotic Normality of ;k

To develop the means of comparing the relative performance of
RDSA, SPSA, and FDSA in Section III, this section will discuss the
asymptotic distribution for RDSA (to augment the known results for
FDSA and SPSA that were mentioned in Section I). The discussion
will focus on the basic RDSA algorithm; it can be expanded to an
averaged RDSA (g > 1) with simple modifications.

If we strengthen Condition C6 to

C6': For some 6, ao, 01, az > 0 and Vk, E(e®™y <
Qo, E(dk[ka + dek))2+6 < ap, and E(dke)4+6 < a2,
for £ = 1,2,...,p,
and let H(-) denote the Hessian matrix for L(#) and ¢ and 7 be
such that E(eit) — €07)? — 62 and Ed}, — 7 (in many practical
settings [e.g., i.i.d. noise], these convergences as k — o0, can be
replaced by equalities for all k). Let 0 < a < 1, v > «/6, 8 =
a=2v,a>0,¢c>0, ar = af/k®, and cx = c¢/k”. Then, the
conditions for the asymptotic normality for RDSA can be stated in
the following proposition:
Proposition 1: Assume that the above condition C6' and condi-
tions C1-C4 hold and 4 > 0. Let P be orthogonal with PH (§)PT =
a~'diag(A1, A2,...,Ap). Then

K26 - 67) 2 NG, PMPT) @.1)

where M = la?c20%diagl(2A1 — B+) 7'y, (225 — B4+) '] with

Br=Bifa=1land 8+ =0Ifa <1, and

{(aH(9 Y= BTI/2)7'T ifvy=af6
0 ifv>af6

the £th element of T is Lac*r[L{7)(6") + 330, it LE(67)].

Proof: Let us define bk(gk) = E[gk(ek) - g(ok) | ;k]. Similar
to the proof of the Proposition 2 in [19}, it is sufficient to establish
the result if conditions (2.2.1), (2.2.2), and (2.2.3) of [5] hold. In the
same situation as in SPSA, there is a 8 on the line segment between

Zk and 6" for large enough k such that
22)

E[-ak(;k) [ ;k] = H(ék)(gk -6 +bk(5k)
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under the condition EdydL = I. In the notation of [5], we can show
that

[}
Or+1 — 0
= (I - k°T%) 6k — 0°) + k= A28, V, 4 k~°~PI2T,
(2.3)

where Ty = aH(8x), Vi = k™"[9x(8x) — E@x(6x) | 8], &% =
—al, and Ty = —ak®/?bi(8x).

Using the techniques in the proof of Proposition 2 of [19] one can
show that I'x converges almost surely and that

°) 1 "
k27 bie(8) — =L (6*)Eldre(dx ® di ® di)] = 0 as.
6

E(WViVT | 6x) — ic—202I as. 2.4)

Tke = — %acr‘)r

P

N ( G+ 3 L0+ 100 + 18" >])
1=1,i#£¢

as. £=1,2,...,p,

where ® is the Kronecker vector product. These show that conditions
(2.2.1) and (2.2.2) of [5] hold. The proof of condition (2.2.3) of [5]
is the same as that given for SPSA in [19]. O

The value of 8 is bounded between O and 2/3 in Proposition
1, because it relates to the values of o and v which are limited.
That means the best possible convergence rate for RDSA is kT3,
Likewise, this limitation will apply to SPSA and FDSA for the same
reason.

III. RELATIVE ACCURACY AND EFFICIENCY AMONG SA ALGORITHMS

A. Relative Accuracy

Relative accuracy is measured by the size of mean-square errors
(m.s.e.) computed from the asymptotic distribution for each algo-
rithm, utilizing the same number of measurements for each algorithm.
First, we will generalize (2.1) to include the averaged RDSA gradient
usmg (1.5). The averaging asymptotic distribution for RDSA is

N(u, -lp M PT), where g is the number of averaged gradxents [see
(1.7)]. Under the mild assumption that the m.s.e. for KA/ 2(01: ™)
corresponds to the asymptotic m.s.e. of kP! 2(0 r —8%), we have that
the m.s.e. for RDSA satisfies
T

BBl - 0'|F =, JuPMPT+E B (D)
The comresponding limits for the m.s.e. of FDSA and SPSA
(using the asymptotxc error distributions stated in [19]) are
tePMPT + T ji and ¢~ (¢ PM PT) + 47 i, where N (ji, PMPT)
and N(j,q ' PMPT) are the FDSA and SPSA asymptotic error
distributions.

Two properties found in [6] for FDSA can be easily shown to
extend to RDSA and SPSA. One is that the optimal value for ¢ used
in computing ax (see notation in Section II) in (1.2) is a function
of the second derivatives of L only. The other is that the asymptotic
optimal « is 1 and «y is a known function of the highest order nonzero

derivatives of L. Based on these results, we may compare RDSA,
SPSA, and FDSA using the same value for a and the optimal values

for o and . This also implies that a single value of 3 can be chosen
so as to be optimal for all three algorithms.

The remaining question is to determine what values for ¢ to use
when comparing the three algorithms. As usual, let the symbols c é,
and ¢ represent the values of ¢ used in RDSA SPSA, and FDSA.

Then, (3.1) can be rewritten (factoring ¢~2 out of trPM PT and
7284 out of LT H) as

-8
Ell6x — 6%| ~ (z"q) (; T2y tzé“) (32)

where s = trPMPT and 2 = 772472 (both of which do
not depend on &), n is the number of measurements (n = 2¢kV k),
and “~” means “is asymptotic to as n — 0o.” Similarly, the m.s.e.
formula for SPSA is

-8B
E||ak—e*||"’:(2"—q) (”qs*-ug a) 6y

where p? and £2 are the second and second-inverse moments of the
distribution of the random perturbations of SPSA. let 2=¢" uT i
be the same expression as t3 without the cross terms of the third

partial derivatives of L; then the m.s.e. formulas for FDSA is

~ 2 n -° ~-2
O ] £ It o Y

where k' is the FDSA iteration (n = 2pk’). Then, the accuracy of
RDSA, SPSA, and FDSA can be compared using the m.s.e. either
with ¢ = & = & or with values of 3, ¢, and ¢ that minimize the m.s.e.
in (3.2), (3.3), and (3.4).

If the loss function L is known then we can calculate the optimal
a and the associated s, t;, and t2. Therefore, we can easily find the
values °c, ¢, and ¢ that minimize the m.s.e. in (3.2), (3.3), and (3.4).
Substituting these values back into (3.2), (3.3), and (3.4), we will get
the optimal m.s.e. Then, the asymptotic optimal m.s.e. for RDSA,
SPSA, and FDSA are, respectively,

3023 (rst,), 30"/’ st1), and 3nT (pstz).  (3.5)

These optimal m.s.e. formulas are functions of the total number of
measurements, the moments of the random perturbations and the
elements of the third partial derivatives. The different numbers of
averaging at each iteration will make no differences on the asymptotic
m.s.e., while the total number of measurements used is same for all
three algorithms. [6] made the same conclusion for FDSA (these
results do not hold, however, when L is not known; see Section IlI-
©). In (3.5), 7, p, and £ are defined by the types of perturbation used
in RDSA or SPSA and the ratio of ¢ to t2 is determined by the loss
function. Among the three algorithms, FDSA is the only one having
the dimensional factor p. Unless ¢; is p times larger than t;, RDSA
and SPSA have a smaller m.s.e. than FDSA has. The fourth moment,
7, for the distribution of the random perturbations of RDSA influences
the accuracy of RDSA (the large fourth moment is the reason that
using the uniform distribution on a sphere with radius of p is less
accurate than using N (0, 1), which, in turn, is less accurate than using
Bernoulli (X1). In SPSA, p® and €2 may offset each other and yield
the smallest optimal m.s.e. among the algorithms. For example, in
a dimension 15 problem, if we are using Bernoulli (£1) for SPSA
and N(O, 1) for RDSA, the ratios for the optimal m.s.e. of SPSA,

[P ——
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TABLE 1
MEAN VALUE OF 100 REPLICATIONS OF ||6; — 6*|[%/]|60 — 6*}|*> witH p = 15
NOISY MEASUREMENTS NOISE-FREE MEASUREMENTS
n =900 n = 3000 n = 900 n = 3000
FDSA 1.20 0.77 0.072 0.042
SPSA 0.41 0.14 0.075 0.014
RDSA 1.02 0.33 0.325 0.162

RDSA, and FDSA are 1.0 : 2.1 : 6.1 (assuming ¢; = ¢, for the loss
function used).”

B. Relative Efficiency

Another way of looking at the results is to consider the efficiency
of the algorithms, expressed in terms of the amount of data needed
to obtain a given accuracy. In Section III-A, if we use 7°L, 7, and 7 to
represent the number of measurements needed of RDSA, SPSA, and
FDSA to achieve the same level of accuracy, then the optimal m.s.e.
for the algorithms are 3701_2/3(7'st1)2/3, 3a72/3(p2¢%5t,)?/3, and
37~2/3(pst2)?/3. Assuming these optimal m.s.e. are equal to each
other, we can solve for the ratio of the number of measurements for
these algorithms. For example, if Bernoulli (1) and N(0, 1) are
used for the distributions of the random perturbations of SPSA and
RDSA, then 2 : m: 7 = 1.0 : 3.0 : p (assuming ¢; = t2).

C. Practical Considerations

In-general, the details of the loss function L are not known and
the optimal values for a and ¢ have to be empirically determined. In
practice, we will compare RDSA, SPSA, and FDSA assuming they
are using the same values for ¢ and c. In this case, [19] concluded
that SPSA generally is more accurate than FDSA, especially for
large dimension problems. This conclusion can be extended to the
comparison between RDSA, SPSA, and FDSA, except that RDSA
may require a larger dimension than the one SPSA requires to perform
better than FDSA. The comparison between RDSA and SPSA will
use (3.2) and (3.3) directly. The first terms of (3.2) and (3.3) are
different by the second moment of SPSA random perturbations which
may allow us to choose a distribution of the random perturbations for
SPSA to have a smaller m.s.e. using the given a and c. In addition, the
averaged gradient for both SPSA and RDSA may reduce the m.s.e.
for some loss functions using the selected a and c.

IV. NUMERICAL STUDIES

This section presents the results of studies that compare all three
types of algorithms. Related studies have been reported in other
papers. The asymptotic error distributions of the SPSA estimates
were demonstrated in [4]. The comparison of the m.s.e. of SPSA
and FDSA using fixed values of a and ¢ in [4] and [19] have shown
that SPSA has a smaller m.s.e. value, as predicted in Section III. The
RDSA using a uniform distribution on a unit p-dimensional sphere
is studied in [4] and has very large m.s.e. in all of the cases studied
(recall from Section I that, although this distribution is considered in
[10] it does not satisfy convergence conditions).

2The m.s.e. ratios of SPSA (or RDSA) to FDSA will change when t; # t5.
The change direction depends on the loss function, in particular on the third
partials of L.

The studies in this section will focus on an empirical comparison
of the m.s.e. for RDSA, SPSA, and FDSA at the optimal asymptotic
condition for each algorithm. The loss function used in these studies
is based on the commonly used squared norm, plus an exponential
penalty function that penalizes large positive components of §. Such a
penalty may be suitable for many problems, such as 1) optimization of
traffic flow in an urban network while strongly penalizing excessive
congestion on any one thoroughfare and 2) controlling the opera-
tional cost in a electronic system using superconductivity, because it
becomes extremely inefficient above a certain temperature. The loss
function is as follows

P
L(o) = |l6]* + > _ "0 @1
241

where 6(£) denotes the £th component of 8. This loss function has
nonzero direct third-partials of L, has zero values in the cross third-
partial terms (implying that t; = ¢2) and allows us to compare the
theoretical results between SPSA, RDSA, and FDSA.

Table I was generated using Bernoulli (£ 1) for SPSA and N(0,1)
for RDSA, and using the optimal values for a(= 1), (= 1/6), a(=
0.5), and c. Where noisy measurement are obtained, we use o> = 7.5.
The optimal values of ¢, computed from (3.2), (3.3), and (3.4) are
& =¢= 2522 and ¢ = 17.49. These same values of the c’s
are used for the noise-free case, since the optimal values for c are
not defined in that case. In the table, the initial value, 6o, is set to
—0.01 in every component (—0.033 259 for every component is the
true minimizing parameter, ), and the estimates of  are generated
using both 900 and 3000 measurements. Each tabulated value is the
average over 100 replications of the algorithm, each replication using
the number of measurements as indicated by n = 900 and » = 3000.
The averaging technique discussed in (1.7) was not used, because it
does not affect the optimal asymptotic results.

Table I shows that SPSA has the smallest relative m.s.e. among the
three SA algorithms; the relative m.s.e. value for RDSA is smaller
than that of FDSA for the noisy-measurement case, and it is just the
opposite for the noise-free case. In the noisy-measurement case, all
three algorithms diverge from the truth in early iterations because
of imprecise gradient approximations (noise in every measurement);
asymptotically they all converge to #* without much of a problem.
Among the three algorithms, SPSA is the fastest one to come back
into the initial circle (the p-dimensional circle with center at true 6™
and radius ||fo — 8*{|). At 900 measurements, the m.s.e. of SPSA has
already been reduced to 41% of its initial value, while RDSA and
FDSA are still on the boundary or outside of the initial circle.

In Table I at n = 3000, the ratios for the m.s.e. of SPSA, RDSA,
and FDSA are 1.0 : 2.4 : 5.6 for the noisy-measurement case and 1.0
: 11.5 : 3.0 for the noise-free case. The predicted m.s.e. ratios are 1.0
: 2.1 : 6.1 (see Section III). The reason for the inexact matching
appears to be that the estimates at 3000 measurements have not
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reached asymptotic for all of the algorithms, especially for RDSA
in the noise-free case. For the noise-free case, the ratios among the
algorithms are 1.0 : 2.1 : 4.8 using 9000 measurements with only
ten replications. Given the variability of the ratios, 100 replications
is a fairly small sample. Nevertheless, the results of Table I tend to
_confirm the theoretical considerations discussed above.

In another study where the initial values of § were chosen farther
away from 6*, the results favor FDSA over SPSA or RDSA in small
sample cases (this is not generally true; see [4] and [19]). Using the
same setup for the runs tabulated in Table I except that the initial
values are set to a value of 1 for every component of §, at 3000
measurements the ratios for the m.s.e. of SPSA, RDSA, and FDSA
are 1.0 : 1.2 : 0.5. But, at 30000 measurements for ten replications
the ratios are 1.0 : 2.0 : 4.0, approaching the ratios predicted in
Section III.

V. CONCLUSION

Among the three SA algorithms considered for the gradient-free
stochastic optimization (i.e., Kiefer—-Wolfowitz type of problem), we
have shown that SPSA is generally the best one to use. RDSA and
SPSA may have smaller mean-square errors than FDSA has in'large
dimensional problems (see Section III). Theoretically, there are no
differences in performance between RDSA and SPSA when they both
use the Bemnoulli (1) distribution for their random perturbations
(although such a distribution had never previously been reported for
RDSA). For fixed a and c, the RDSA m.s.e. is bounded (below) by
a variance term [from (3.2)] for all choices of random perturbations,
but the SPSA m.s.e. is not.

The numerical studies in Section IV and in other papers men-
tioned in that section reinforce the theoretical results. These studies
compared RDSA, SPSA, and FDSA using various loss functions
(squared norm with penaity function in (4.1) here, log-likelihood
(in [4] and [19]), Euclidean norm square (in [4]), and others), and
using perturbations which have the distributions NV (0, 1), uniform on
a sphere, and Cauchy for RDSA and Bemoulli (£1) for SPSA. In
all of the studies, SPSA had the smallest observed m.s.c. Also, the
observed ratios of the m.s.e. are usually close to the predicted ones
when the sample sizes are reasonably large. In summary, therefore,
we have found that SPSA is the preferable algorithm to use in both
theory and practice.
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