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ABSTRACT
Quantifying the resilience of an engineered system is a risk proposition. Definitions of resilience 
encompass notions of loss of capability and the time required to restore it. The loss and restoration 
of capability are responses to off-nominal conditions (be they random events or actions initiated 
by an adversary), and these conditions are probabilistic in nature. The Johns Hopkins University 
Applied Physics Laboratory (APL) developed a framework that quantifies system resilience as a risk 
profile by identifying the set of threats and analyzing the potential system responses. Although the 
framework was applied to space architectures, it is agnostic to the specific domain and therefore 
can be implemented in other areas where resilience is needed at the enterprise level. The analysis of 
space architecture resilience led to understanding threats (kinetic, RF, cyber, or random failures) to 
the systems. Mitigations to these threats were prioritized using quantitative resilience metrics that 
evaluate the potential performance impacts and time to recover and overcome these impacts.

An implicit assumption in the space domain was that 
strategic deterrence would prevent space systems from 
being attacked during conventional conflicts.

The 1991 Gulf War marked a substantial shift in the 
way the U.S. military uses space systems. This conflict 
demonstrated the value of fusing space-based capabili-
ties, such as precision navigation and timing and satel-
lite communications, with conventional weapon systems. 
Potential adversaries are not as reliant on space-based 
capabilities and do not have symmetric vulnerabilities, 
making traditional deterrence in space a difficult proposi-
tion. Moreover, the U.S. military’s critical dependence on 
space-based capabilities for global power projection means 
that counter-space capabilities may figure prominently in 
an adversary’s anti-access/area denial operations.

INTRODUCTION
As we invest in next generation space capabilities and fill 
gaps in current capabilities, we will include resilience as a 
key criterion in evaluating alternative architectures.

—National Security Space Strategy (2011)

For much of the Cold War, U.S. space systems focused 
primarily on supporting the strategic missions, including 
missile warning, technical intelligence, and nuclear com-
mand and control, which enabled the strategic détente 
between the United States and the Soviet Union. Since 
the end of the Cold War, the space domain has become 
increasingly crowded and contested. More than 60 
nations now own or operate satellites, and virtually all 
nations depend on space-based capabilities for civilian 
applications such as weather forecasting and navigation. 
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The community’s response has been to attempt 
to address the resilience of the entire system. Indeed, 
as stated in the 2011 National Security Space Strategy 
“Our military  .  .  . must be prepared to ‘fight through’ 
a degraded environment and defeat attacks targeted at 
our space systems and supporting infrastructure.” Gen-
eral C. Robert Kehler, as commander of U.S. Strategic 
Command, more specifically stated, “Beyond awareness 
in space we need robust, resilient architectures—both 
space-based constellations and terrestrial assets—to 
ensure today’s essential space-based services are avail-
able to accomplish the mission.”1 General William L. 
Shelton, Commander of Air Force Space Command 
from 2011 to 2014, said “resilience in the face of . . . grow-
ing space threats is an imperative. If space assets come 
under attack, either as a precursor to conflict or as an 
integral part of terrestrial hostilities, our architectures 
must be resilient enough to assure mission accomplish-
ment.”2 Understanding and improving the resilience of 
our nation’s space assets is a military priority.

Space has changed from a relatively safe operational 
domain to one that is increasingly congested with space 
debris, increasingly contested by a growing range of for-
eign counter-space capabilities, and increasingly com-
petitive as more entities operate in it. U.S. national 
strategy relies on maintaining and enhancing our space-
derived advantages while confronting the challenges of 
an evolving space environment. Improving resilience is 
one of the ways to address this challenge. Indeed, the 
2012 Space Policy Directive (DoDD 3100.10) states that 
“reliability, protection, and resilience of required space 
capabilities, including information systems and net-
works and other infrastructure required to support sus-
tained operations, will be considered in all architecture 
planning and evaluation.”3

Currently, there is no agreed-upon quantitative 
method for measuring resilience. As such, most discus-
sions revolve around methods to improve resilience in 
the abstract through disaggregation, hosted payloads, 
hardening, or avoidance. In reality, a combination 
of policy; architecture; orbit; and tactics, techniques, 
and procedures may yield the best results within the 
constraints of declining budgets.4 A quantified metric 
allows for the trade space exploration encompassing all 
these attributes.

The Johns Hopkins University Applied Physics Lab-
oratory (APL) developed a framework that quantifies 
resilience by establishing essential characteristics and 
identifying a constructive model that can incorporate 
existing analysis and simulation efforts being used within 
the space community. The framework described herein 
is an extension of the work originally started as a study 
to quantify project risks as a multi-attribute problem5 
and later expanded to quantify resilience using poten-
tial threats instead of risk for the Space Security and 
Defense Program (SSDP). As a result, the methodology 

was created for understanding and quantifying resilience 
in a context appropriate to SSDP. It measures resilience 
of on-orbit assets, up-links/down-links/cross-links, and 
ground infrastructure against a series of known and 
emerging threats. Under a contract with the Office of 
the Under Secretary of Defense for Acquisition, Tech-
nology, and Logistics for the Research, Development 
Agency Task Force, the framework was later expanded 
to include cyberattacks. Although the framework was 
applied to space architectures, it is agnostic to the spe-
cific domain and therefore can be implemented in other 
areas where resilience is needed at the enterprise level.

RESILIENCE
The basis of the methodology uses the key ideas 

of resilience as described in the Office of the Secre-
tary of Defense fact sheet entitled Resilience of Space 
Capabilities6:

The purpose of resilience is to assure performance of 
military and related intelligence functions at a level nec-
essary to execute assigned missions within an acceptable 
tolerance for risk. This functional mission assurance must 
account for the full range of anticipated scenarios, condi-
tions, and threats that drive our planning.

The space community has coalesced around four funda-
mental objectives of resilient systems6:

1.	 Avoidance: Reduce the likelihood and consequence 
of adverse conditions or hostile actions.

2.	 Robustness: Resist capability degradation when 
faced by adverse conditions or hostile action.

3.	 Reconstitution: Replenish lost or diminished capa-
bilities to an acceptable level, for a particular pur-
pose, subsequent to an adverse condition or hostile 
action.

4.	 Recovery: Reestablish full operational capability 
subsequent to reconstitution.

Resilience at its core is a risk proposition. Resilience 
is the ability of a system to continue providing required 
capabilities in the face of system failures, environmen-
tal challenges, or adversary action. Risk is the measure 
of future uncertainties in achieving performance goals 
and objectives within defined cost, schedule, and perfor-
mance constraints.7 As such, risk is the measure for resil-
ience once the threats and mission objective are defined.

When assessing risk, four questions are asked: (i) What 
can happen? (ii) How likely is it to happen? (iii) If it does 
happen, what are the consequences? (iv) How confident 
are we in the results? The answers define a set of pos-
sible outcomes, probabilities (with uncertainty), and 
consequences (measures of damage) for each scenario.8 
Probability plays a key role in the quantification of resil-
ience. It is a measure encompassing the concepts of both 
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relative frequency and degree of belief. The latter is the 
degree of support a body of evidence gives to a hypoth-
esis about the occurrence of an event. Resilience needs 
to be assessed in conjunction with architecture trade 
studies to reduce the probability of potentially mission-
ending consequences.

When decisions are complex, information is uncer-
tain, impacts are ambiguous, and consequences have 
multiple attributes, a formal structured systematic assess-
ment is useful for leadership. Certain characteristics of 
state-of-the-art risk assessments are now standard,9–17 
but they are not reflected in current frameworks for 
resilience. The APL-developed framework is built on 
the following characteristics essential to evaluating 
system resilience:

•	 Scenario based: Assessments that are scenario based 
contain model logic tracing events that perturb the 
nominal functioning of a system and examine how 
the system responds. Multiple potential outcomes 
are addressed. These scenarios often include poten-
tial mitigation alternatives that enable evaluation of 
mitigation effectiveness. This characteristic allows 
analysts to “think” through situations before they 
occur so that they can prepare for contingencies, 
and it provides a platform to quantify consequences 
and likelihoods.

•	 Integrated: Analyses address a wide scope of con-
cerns. Integrated frameworks address the entire 
system/architecture/mission, combined effects of 
multiple threats, dependencies among and within 
threat scenarios, and interfaces with other existing 
models. A systematic integrated framework enables 
trade-off studies and sensitivity analyses across mul-
tiple scenarios and constituent system elements.

•	 Quantitative: Model-based assessments compute 
measures representing risk and resilience. Emphasis 
is on expressing the likelihood of observable perfor-
mance measures or events. Probabilities are assigned 
based on systematic proven processes for data analy-
sis and probability calculus.

•	 Probabilistic: Any model involves assumptions, sim-
plifications, and data variability. It is essential that 
decision-makers receive information about all three 
in the form of uncertainties. Both aleatory (random-
ness due to inherent variability in the system) and 
epistemic (imprecision due to lack of knowledge and 
information on the system of models) uncertainties 
are included as integral parts of the assessments.

•	 Multi-attribute: Decision-makers struggle with 
multiple measures of effectiveness that must be uni-
fied. They rarely make decisions on single values 
alone, but rather on an integrated view of the world. 

Assessments account for decision-makers’ risk aver-
sion levels and preferences for those attributes.

•	 Actionable: The framework’s scope and level of 
detail must be coincident with decision-makers’ abil-
ity to take action. This focuses on actions that can 
be implemented in the design, operations, or acqui-
sition cycles.

•	 Probative: The ability to rank order important driv-
ers and perform sensitivity analysis enables insights 
about current situations and future alternatives. 
Importance measures provide a quantitative view of 
model elements.

In addition, this resilience framework needs to incor-
porate the many dimensions of resilience when assessing 
various architectures:

•	 Anticipated ability of adversary

•	 Functional capability goals necessary to support the 
mission

•	 Probability that these goals may not be met at a 
given level of adversity

•	 Severity of the functional shortfall to the mission

•	 Period of time for which the shortfall can be toler-
ated by the mission

•	 Uncertainty about various parameters in the model

The temporal component is particularly important, 
since time primarily quantifies the reconstitution com-
ponent of resilience.

Pedagogical literature shows a number of differ-
ent attempts to develop and quantify metrics for resil-
ience.18–21 The cybersecurity community is actively 
using this concept and language as it implements resil-
ience into networks and other interdependent systems 
and systems of systems.22 A body of literature discusses 
the benefits of these techniques in many industries.

RESILIENCE QUANTIFICATION FRAMEWORK
Measuring the efficacy of a system’s resilience can be 

achieved, for example, through the unique functional-
ity of that system and its responses (outputs) to specific 
inputs. Given that such inputs are probabilistic, so are the 
outputs, meaning that the system’s resilience—because 
it is measured in terms of responses to the inputs—can 
be measured (quantified) in probabilistic terms and for 
specific inputs. We can thus adduce the following prem-
ises for scoring resilience: (i) The probabilistic nature of 
threats and thus their associated outputs necessitates a 
holistic, multidimensional probabilistic scoring system of 
resilience. Furthermore, the myriad plausible threat sce-
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narios, each with associated magnitudes and durations, 
necessarily limit any such scoring system of resilience 
to specific classes of input threats. (ii) Resilience, as a 
vector of the states of all physical and natural systems, is 
time variant; given the inherent characteristics of such 
systems, their resilience will deteriorate over time. Thus, 
even an input-limited scope of any scoring will be fur-
ther constrained by the inherent time variant resilience 
of the system.

To properly understand and improve the resil-
ience of a  system, it must be measured, which means 
a metric must be developed. Resilience is tied to the 
various changes to measures of interest (MoXs, which 
is shorthand for measures of operation, measures of 
performance, or measures of effectiveness dependent 
on the scope and level of detail for the analysis) and 
the time it takes to bring them back to required levels. 
From a modeling perspective (see Fig.  1), an adverse 
action elicits a response from the system. The model 
then collects and combines the responses to develop an 
impact on the system as a whole in order to determine 
the overall resilience. For simplicity in describing our 
basic concept, the discussion is initially limited to a 
single MoX.

Adverse Actions
A list of threats to the system is developed using intel-

ligence sources and systematic methods from reliability 
engineering to identify the vulnerabilities and how they 
can be exploited. For each adverse action, be it a kinetic 
attack or a cyberattack, a naturally occurring change in 
the environment, or a random failure, the system will 
respond in a variety of ways.

System Response
To model the system response, scenarios are devel-

oped. Scenarios are stories about postulated series of 
events constructed to focus attention on causal processes 
and decision points. Scenarios are coherent descriptions 
of alternative images of the future, created from mental 
maps reflecting various perspectives on past, present, 
and future developments. They are used within resil-
ience assessments to broaden views and raise questions 
about conventional success-oriented thinking.

Modeling scenarios begins 
with a description of the suc-
cess sequence. This represents a 
sequence of events executed by 
the system. At each point in this 
sequence, we can ask what can 
go wrong. The answer to that 
question is termed an adverse 
action. Given its occurrence, 
and, depending on what hap-
pens next, a set of paths emerges 

and terminates at an end state. Many engineering sys-
tems include safety or backup systems meant to be acti-
vated in response to the various events. If backups work 
as intended, consequences are typically insignificant. 
However, if the event occurs and corresponding backup 
systems fail, there could be serious consequences. Prob-
abilities are assigned to every event in the scenarios, 
allowing for a rollup of probability to be computed at 
the end states.

Scenarios are useful tools in articulating key con-
siderations, assumptions, and constraints. They pro-
vide a platform to blend qualitative and quantitative 
knowledge of systems and their interactions. Analysts 
still need to be cautious to avoid common traps such as 
narrowly examining a situation, applying assumptions 
inconsistently, or not fully documenting assumptions, 
thereby reducing transparency or overly constraining 
the problem space. One thing to note about scenarios in 
this context is that they are meant to describe a class of 
situations that can occur. They are not meant to explic-
itly describe every possible permutation of events, an 
infinite set of permutations.

MoX Models
At the end state of each scenario, the MoX versus 

time is modeled. Consider a system operating in a nomi-
nal state (M0) as shown in Fig. 2. Here, the performance 
(measured by some MoX) is at the required value. Suppose 

MoX1
model

MoX2
model

Combine 
consequences

Determine
total

resilience

MoXn
model

System
response

Adverse
action

Figure 1.  Adverse action propagated through system models. System responses to adverse 
actions are represented by multiple MoXs to determine resilience.
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M
o
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Figure 2.  Basic resilience schematic of a scenario. Resilience 
quantifies to change in system impact over time.
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as a surrogate for the total set. The system responses will 
vary based on the nature of the attack, and therefore an 
understanding of the threat space is also needed.

The framework relies on assigning probabilities to the 
events in the scenario. Evidence on which to base these 
probability assignments will come from one or more of 
the following:

•	 Observations

•	 Intelligence assessments

•	 Experience

•	 Results of modeling and simulation tools

•	 Special investigations/studies

•	 Subject-matter expert opinion

The scope, level of detail, and level of decomposition 
determines the level of credibility (uncertainty) in the 
results. While this sounds like an obvious statement, it 
carries a powerful feature of the probabilistic nature of 
the framework; since the uncertainty is quantified and 
shown to the decision-maker, the resources needed to 
perform an analysis are directly related to the level of 
acceptable risk. Lower-fidelity input knowledge can still 
be executed through the framework with a correspond-
ing reduction in output fidelity.

Consequence Analysis
As discussed earlier, the consequences are the result 

of analyzing a sequence (path through the scenario) to 

that at time t0 an adverse event brings down the system 
to state (M1), providing no capability, and then at some 
later time, t1, the system is restored to full capability. The 
total impact to the system is characterized by the shaded 
area, Impact =  MoX ×  time.

The construct agrees in principle with those dis-
cussed in Refs. 20 and 23–27. Resilience is now defined 
as the inverse of the impact × the probability of encoun-
tering the state:

	
%1Consequence Impact

Capability
Time to recover= = .

This expression correctly relates capability to resilience 
(the higher the capability retained, the more resilient the 
system). Likewise, resilience is higher when the recovery 
time is shorter. As this concept expands, the probabilis-
tic nature is reflected in the uncertainties related to the 
probability of being in the state, the nondeterministic 
degradation in capability due to the attack, and the vari-
ability of the recovery time. The make-up of impact can 
also look different for various scenarios. For example, 
Fig. 3 shows a two-step recovery process on the left. The 
situation on the right is more complicated. First, the sys-
tem’s full capability is greater than the required level, 
changing the impact computation with respect to Mreq. 
Next, the depth of capability lost is not total, indicating 
some level of degraded operation (whether that degraded 
capability has value is a question later addressed with 
utility functions). Also, this schematic shows an initial 
reduction in capability that is still more than required 
and therefore does not have an impact.

Resilience metrics defined this way require knowl-
edge of several aspects of the scenario and system/
architecture/mission. First, an understanding of how 
the system functions in nominal operations is needed 
so that a baseline can be determined. Once this under-
standing is established, the system responses to various 
adverse conditions can be understood as deviations from 
nominal operations as measured by the many MoXs. 
Because of the potentially large number of MoXs, a 
small subset, preferably one or two, needs to be identified 
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Figure 3.  More complex view of resilience. Change in impact varies depending of the event and recovery scenario.
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Figure 4.  Consequence outputs from scenarios. System conse-
quence is a function the scenario and its probability of occurrence.
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below, and therefore the utility 
function would reflect this binary 
view of the consequence.

One point to note is that utility 
is independent of probability and 
belongs to an individual decision-
maker or analysts. Changing the 
decision-maker or his/her per-
spective (i.e., the utility function) 

can change results significantly. The practical implica-
tion here is that we can change the framework based on 
who is using it (project manager, acquisition authority, 
mission commander), but not the underlying data.

Resilience Quantification
Once quantified, scenarios provide probability and 

analysis of consequences for a given adverse action. A 
figure of merit is needed to distill all this information 
for use as a basis of comparison. With such a metric, it is 
possible to gain insights for a variety of aspects of project 
risk, including whether a mitigation is likely to increase 
resilience and by how much, or to derive a list of ele-
ments affecting resilience the most. Much like Kaplan 
and Garrick8 championed the use of Farmer curves (con-
sequence versus frequency), we create resilience profiles 
in the form of exceedance probability curves as a way to 
describe the resilience. An exceedance probability curve 
specifies the probabilities that a certain level of loss will 
be exceeded. In our case, loss is utility. These curves are 
referred to as resilience profiles.

Profiles are created starting with a set of ordered 
pairs of probability and utility values from a scenario. 
Once the consequences for each path through a sce-
nario are computed, they are sorted in increasing order 
and plotted against the cumulative probability associ-
ated with each state. This construct is called a comple-
mentary cumulative distribution function or survival 
function and is useful to study how often the MoX is 
above a particular level. Figure 6 illustrates this profile. 
The resilience is now defined as the expectation () of 

determine the impact. Figure 4 shows the set of prob-
abilities and sequences as inputs with the consequence 
value, ci, as the output. Analysts must work closely with 
those in other disciplines to fully populate the resilience 
model. This is an intentional feature in that it forces 
communication and understanding of potential end-
state contexts.

End states map the consequences from the impact 
graphs. Each MoX will have its own graph and nuance. 
They identify attribute data, so that when one of the 
attributes or utility functions changes, a new value can 
be recomputed. Current techniques often force analysts 
to choose to focus on only the worst-case attribute. With 
this implementation, all attribute information is kept 
and analyzed. Should the leadership’s utility function 
focus on a particular attribute, so be it, but it is a trace-
able and defendable aspect of the entire model.

After computing the consequences, end states are 
“gathered,” meaning that probabilities for identical end 
states are combined. Since the paths within a scenario 
are mutually exclusive, the probabilities are summed.

Using only raw consequence values as the basis for 
a resilience metric would be convenient and straight-
forward. However, it would be equivalent to computing 
an average consequence. This can lead to intuitively 
unpalatable decision recommendations because it does 
not account for the decision-maker’s tolerance for risk 
or imbedded preferences. Decision analysts solve this 
problem by using expected utility theory. The appli-
cation of this concept is succinctly characterized in 
Ref.  28: “If an appropriate utility is assigned to each 
possible consequence and the expected utility of each 
alternative is calculated, then the best course of action 
is the alternative with the highest expected utility.” The 
next step in the end-state evaluation process incorpo-
rates utility functions. Since scenario models conform 
to the assumptions and constraints specified within the 
field of decision analysis, utility theory can be used as a 
driving analytic technique for examining decisions with 
uncertainty.28–33

Utility functions translate consequences (percent 
degradation and recovery time) to a unit-less number 
typically scaled so that the least preferred level equates 
to 0 and the most preferred is 1. It is this value that we 
use to quantify end states (see Fig. 5) so that profiles and 
metrics can be computed. For instance, there may be 
utility only if the MoX is above a threshold with none 

Model 2 

Consequence
model 

ci{si, pi}
 

Utility 
function

u(ci) End state
  

Figure 5.  Utility value output from scenarios and decisions. End state consequence is a func-
tion of the decision-maker’s risk preference.
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Figure 6.  Resilience profile curve characterization. The resilience 
profile provides more information than a point estimate.
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unavoidable component affecting the behavior of sys-
tems and more so with respect to their limits of opera-
tion.34 Despite how much dedicated effort is put into 
improving the understanding of systems, components, 
and processes through the collection of representative 
data, the appropriate characterization, representation, 
propagation, and interpretation of uncertainty remains 
a fundamental element of the risk analysis of any system. 
Following this view, uncertainty analysis is consid-
ered an integral part of resilience assessment, although 
it can also exist independently in the evaluation of 
unknown quantities.

Resilience metrics are estimates and subject to the 
uncertainties discussed above, and therefore analysts 
must tell the decision-maker what uncertainties exist 
and how they affect the results. Probability distributions 
are the mathematically correct way to communicate to 
the decision-maker the assumptions and approximations 
and to give a sense of how reliable the numbers are. It 
is also easier to justify central tendency to reach con-
sensus on a range and distribution than it is on a point 
value. Take, for example, the four probability distribu-
tion curves in Fig. 8 signifying the resilience of separate 
alternative architectures. Each has the same mean value. 
If only the point estimate were provided to a decision-
maker, all four options would be identical. However, the 
uncertainty about them tells a different story both in the 
amount of spread and shape.

FRAMEWORK BENEFITS
This framework provides metrics for resilience consis-

tent with current definitions and constructs within the 
space community and addresses the challenges laid out 
in policy documents. The framework is a cost-effective 
assessment tool in that it enables an analytical level of 
effort that is commensurate with the acceptable level of 
uncertainty and leverages existing modeling and simu-
lation tools. The scenario models provide an intuitive 
communication vehicle and the flexibility to incorpo-
rate space-based, ground, and cyber threats. Since the 
scenario model and documentation are the same, lead-
ership does not have to accept modeling completely on 
faith. Adding to the improved communication is that 
uncertainty is explicitly addressed, providing a level of 
credibility in the results and making uncertainty part of 
the overall architecture trade space. Analyses are scal-
able to spacecraft, architecture, or mission level using 
the same framework, taxonomy, and processes. Finally, 
the framework improves traceability and transpar-
ency of subject-matter expert evaluations and inputs. 
The ability to quantify resilience in context with mis-
sion allows planners and designers insight into system- 
and enterprise-level trades that heretofore could not 
be accomplished.

the resilience profile. There will be a resilience profile 
and  for each threat or adverse action. Since there 
can be a multitude of attack types, there will be many 
 values.

Additionally the area above the curve can be com-
puted. A reference is needed for this value to have any 
meaning. One such reference could be to find the area 
above the curve and below a reliability curve or the 
theoretical limit, as shown by the blue line in Fig. 7. A 
better choice is to reference the area to the profile curve 
of the system reliability. Note that this line (green) is the 
best achievable due to random occurrences of failures 
and environmental variability. In other words, it is the 
how the system behaves in its nominal condition with-
out the presence of an attack.

The end result, given all the threats, scenarios, and 
end states, is a vector of  values, one for each threat. 
This is consistent with the notion that resilience is only 
meaningful with respect to a specific perturbation to the 
system’s nominal operations.

Quantitative analyses of the phenomena occurring in 
many engineering applications are based on mathemati-
cal models that are then turned into operative computer 
codes for simulation. A model provides a representation 
of a real system dependent on several hypotheses and 
parameters. The model can be deterministic or stochas-
tic. In practice, the system under analysis cannot be 
characterized exactly. This leads to uncertainty in both 
the values of the model parameters and the hypoth-
eses supporting the model structure. Uncertainty is an 
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Figure 7.  Resilience metric with respect to a reliability baseline. 
Resilience metric is the difference between reliability and resil-
ience at each level of system consequence.
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