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I

Strategies for Multigraph Edge Coloring

Jeffrey M. Gilbert

n mathematical graph theory, coloring problems are ubiquitous. Dating back to the 
famous four-color map problem, both the theory and applications associated with graph 
coloring have a rich history. A standard problem in graph theory is to color a graph’s 
vertices with the fewest number of colors such that no two adjacent vertices have the same 
color. This article examines a complementary problem with important applications in 
communications and scheduling. In particular, it considers the problem of optimally color-
ing a multigraph’s edges (where multiple edges are permitted between vertices) such that 
no edges incident at a given vertex share the same color. The article explores the theory 
surrounding the problem and surveys some algorithms that give nearly optimal solutions. 
Although powerful, these algorithms have important theoretical limitations. These limita-
tions are discussed and recent conceptual and algorithmic techniques that appear to be 
promising candidates for circumventing the difficulties are reviewed. 

INTRODUCTION
A multigraph is an abstract structure consisting of a 

finite set of vertices together with a finite set of edges 
connecting pairs of those vertices. Generally a multi-
graph permits multiple edges between the same pair of 
vertices. (Multigraphs also generally permit both end-
point vertices of an edge to be the same, forming what 
is known as a “self-loop” and connecting a vertex to 
itself. However, self-loops are not relevant to the prob-
lem at hand and are not considered here.) A mul-
tigraph with at most one edge between any pair of  
vertices is called a simple graph. This article discusses a 
problem concerning multigraphs that is of both theo-
retical and practical interest in the field of algorithmic 
graph theory. In particular, it examines the question  
of how to color the edges of a multigraph using the 
minimum number of colors such that no two edges 

incident at the same vertex share the same color. Such 
a coloring is said to be proper. The minimum number of 
colors required to properly color a multigraph is called 
its chromatic index.

Multigraph edge coloring was first discussed in 1949 
in a paper by Claude Shannon,1 the father of modern 
communication theory. In it, Shannon also presented 
an algorithm for approximately solving the problem and 
demonstrated an upper bound on the chromatic index. 
In 1964, V. G. Vizing2 devised a powerful edge-color-
ing algorithm that improved on Shannon’s bound. In 
fact, for simple graphs he showed that it would always 
produce a coloring within one of the chromatic index. 
On the other hand, his bound for general multigraphs 
was much weaker and left open the question of whether 
better approximation algorithms might exist.
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Holyer3 showed that the problem of determining 
a multigraph’s chromatic index is NP-complete, even 
when restricted to simple graphs, so an efficient algo-
rithm for computing an optimal edge coloring is unlikely 
to exist. Nevertheless, as Vizing had shown, there are 
excellent approximation algorithms for certain classes 
of multigraphs and similar algorithms may exist for the 
general case. Indeed, Seymour4 conjectured a bound 
on the chromatic index for general multigraphs that is 
analogous to Vizing’s bound for simple graphs. The con-
jectured bound suggests that, just like simple graphs, it 
may be possible to create an efficient algorithm for col-
oring an arbitrary multigraph to within one of its 
chromatic index. Several approximation algorithms 
have been published with quantitative bounds that 
asymptotically approach Seymour’s conjectured bound. 
These include the algorithms of Goldberg5,6; Andersen7; 
Hochbaum, Nishizeki, and Shmoys8; and Nishizeki and  
Kashiwagi.9 Unfortunately, as their bounds improve, so 
does the complexity of these algorithms as well as the 
difficulty in implementing them. Thus the sequence 
does not appear to lead to an efficient algorithm that 
would achieve the conjectured bound.

The remainder of the introduction presents the 
reader with a simple example that is revisited through-
out the text. After discussing a number of practical 
applications, the article develops some of the theoret-
ical background and terminology surrounding multi-
graph edge coloring. Next it turns to a discussion of algo-
rithms for solving the problem. It examines implications 
of the problem’s NP-completeness. A general algorith-
mic framework is then proposed for multigraph edge col-
oring, within which specific approximation algorithms 
can be compared. Vizing’s algorithm and bound are 
discussed in detail within this framework. Conjectured 
bounds of Seymour and Goldberg are introduced and 
are related to an edge-coloring structure called a “chro-
matic capsule.” The article then discusses the sequence 
of approximation algorithms that approaches Seymour’s 
bound. It points out the difficulties with these algo-
rithms and introduces a concept referred to as “Declare 
Before Using,” which appears to hold promise for cir-
cumventing those difficulties.

An Example
Consider the problem of scheduling baseball games 

among a group of teams over the course of a season. 
Any pair of teams will be required to play each other 
a number of times (possibly zero). Each team is to play 
at most one game per day, with no special requirements 
or preferences regarding the days on which they play. 
Given the number of games to be played between each 
pair of teams, what is the minimum number of days 
needed to schedule all of the games? Table 1 gives an 
example showing the required games to be scheduled 

among a league of nine teams. For example, Team 4 is 
to play Team 3 twice, whereas it is to have three games 
each with Teams 1, 5, and 6 and no games with any 
other teams.

One can represent this game table as a multigraph. 
In particular, let each vertex represent a team and each 
edge between a pair of vertices represent one game that 
is to be played. Translating the games specified in Table 
1 in this way, Fig. 1 identifies all games to be scheduled 
in the form of a multigraph, which will be denoted G1. 
The goal is to find the shortest schedule that assigns a 
date for each game.

Now consider any feasible schedule for the games 
and imagine color-coding it by assigning a distinct color 
to each game day. Further imagine painting each edge of 
the multigraph with the color for the day on which the 
corresponding game takes place. Up to a permutation of 
the game days, this represents the schedule as a multi-
graph edge coloring. Notice that since a team plays at 
most once per day, each of its games (and thus all edges 
incident at its vertex) must be assigned a distinct color, 
i.e., no two edges incident at the same vertex share the 
same color. As mentioned earlier, this is called a proper 
edge coloring. Conversely, for any proper edge coloring, 
one can construct a game schedule by associating each 
color with a game day. Minimizing the length of the 
schedule clearly corresponds to finding a proper edge 
coloring of G1 with the fewest colors.

An example of a proper edge coloring of G1 is shown 
in Fig. 2. This coloring will be referred to as 1. Note 
that in addition to examining the colors of the edges 
themselves, it is often useful to consider the colors that 
are absent at a given vertex. In this article the absence of 
a given color at a particular vertex is referred to as a hole. 
In other words, if no edge of a given color is incident at 
a vertex, it is said to have a hole of that color. The holes 
under coloring 1 are also illustrated in Fig. 2.

Table 1.  Games to be scheduled.

Team	 1	 2	 3	 4	 5	 6	 7	 8	 9	 Total

	 1	 –	 3		  3				    3	 3	 12

	 2	 3	 –	 3				    3	 3		  12

	 3		  3	 –	 2	 3	 3				    11

	 4	 3		  2	 –	 3	 3				    11

	 5			   3	 3	 –	 2			   3	 11

	 6			   3	 3	 2	 –	 3			   11

	 7		  3				    3	 –	 3	 3	 12

	 8	 3	 3					     3	 –	 3	 12

	 9	 3				    3		  3	 3	 –	 12

		  12	 12	 11	 11	 11	 11	 12	 12	 12	 104
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One can immediately translate coloring 1 into a 
game schedule for the entire season. For example, under 
this schedule, Teams 2 and 3 would play each other on 
game days h, j, and k. One can readily verify that every 
color appears on some edge, so that the total number 
of game days required by this schedule is 16. The ques-
tion remains as to whether 1 represents the shortest 
possible schedule. The answer is deferred until later in 
the article, but in the meantime, the reader is invited to 
try creating a proper edge coloring of the multigraph in  
Fig. 1 using fewer than 16 colors, or else to prove that no 
such improvement is possible.

Applications
There are numerous important applications for the 

multigraph edge-coloring problem. Shannon’s seminal 
paper1 dealt with the wiring of electrical networks. In 
particular, he considered a number of electrical compo-
nents that needed to be interconnected in some way. 
Between any two components there could be a number 
of wires, each of whose ends was to be attached at some Figure 1.  Scheduling multigraph G1.

Figure 2.  Example of one possible proper edge coloring, 1, for multigraph G1. As indicated in the legend, 
1 uses a total of 16 colors. To help distinguish vertices from colors, the latter are denoted by lower case 
alphabetical characters. Also for clarity in the figure, only eight distinct colors are plotted. “Colors” i through p 
are distinguished from colors a through h by using broken instead of solid lines. Thus, for example, in 1 the 
edges between vertices 2 and 3 have colors h, j, and k. Missing colors, or holes, at a vertex are represented 
by the circular marks adjacent to them. For example, under coloring 1 vertex 1 has four holes with colors 
m, n, o, and p.
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port on a component. Wires were bundled into cables 
and, in order to distinguish between them, one was to 
assign each wire a color such that no two wires arriv-
ing at the same component had the same color. The 
goal was to minimize the number of colors needed to 
so wire the given network. Mapping components into 
vertices and wires into edges, this clearly corresponds 
to multigraph edge coloring.

Multigraph edge coloring can also be applied in many 
practical scheduling problems. For example, consider 
the task of coordinating scans among a set of similar 
active sensors {s1, s2, …, sS} over a set of targets {t1, t2, …, 
tT}. Assume that a sensor can only illuminate one target 
at a time. Also, to avoid mutual interference, assume 
that no two sensors should illuminate the same target 
simultaneously. Now, given a matrix M = [mi,j], where 
mi,j specifies the number of times sensor si is to measure 
target tj over the course of its scan, and assuming that 
each measurement takes time t, what is the minimum 
time needed to complete the scans of all sensors? To for-
mulate the problem graph-theoretically, create a multi-
graph with a vertex for each sensor and one for each 
target. Between any given sensor and target vertices, 
introduce an edge for every measurement that the sensor 
is required to take of the target. Thus for any i and j, 
there should be mi,j edges between the vertices for sensor 
si and target tj. If one assigns a color to each measure-
ment interval, then any schedule for the sensor mea-
surements can be mapped into a corresponding color-
ing of the edges in this multigraph and vice versa. Also, 
since each target should be scanned by only one sensor 
at a time and since sensors illuminate only one target 
at a time, this edge coloring will be proper. Clearly, if 
the minimum number of colors needed in a proper edge 
coloring of the multigraph is , then the minimum time 
needed to complete all sensor scans is t.

As a third example (through which the author 
became interested in the problem), consider a commu-
nications network linking a number of nodes. A node 
generally communicates directly with only a subset of 
the other nodes called its neighbors. Suppose that the 
network operates on a cyclic, time-division multiplexed  
schedule and that each node can communicate with 
only one neighboring node at a time. In any atomic time 
interval, or frame, nodes must thus be paired off with 
each other for communications. Assume that the net-
work has a specified communications load such that for 
any pair of neighboring nodes one is given the number 
of frames in which they are required to communicate 
over the course of the schedule. Since the schedule is 
periodic, in order to maximize throughput, the goal is to 
construct a schedule that includes every required com-
munication while minimizing its period, or length. Let-
ting each node be a vertex and placing an edge between 
two nodes for each communication frame they require, 
one obtains a multigraph. Treating each color as a frame 

in the schedule, an optimal proper edge coloring cor-
responds to a minimum length schedule satisfying the 
communication requirements.

The multigraph edge-coloring problem is applicable 
in many other scheduling problems and has practical 
application in such diverse fields as statistical analysis 
and experimental design, file transfer protocols for com-
puter networks, matrix algebra, and tensor calculus. The 
interested reader is referred to Fiorini and Wilson10 for 
an excellent summary of some of these applications.

THEORETICAL BACKGROUND

Definitions and Nomenclature
Before discussing the theory behind the multigraph 

edge-coloring problem, some definitions and nomen-
clature are needed. The concept of a multigraph, G = 
[V(G), E(G)] with vertex set V(G) and edge set E(G) 
was introduced above. The number of vertices it con-
tains is called its order and is denoted here by n(G). The 
number of edges is denoted by m(G). The number of 
edges incident at a given vertex v is called the degree of 
v and will be denoted by dG(v). A vertex of degree 0 is 
said to be isolated. For any given pair of distinct vertices 
x and y, the number of edges joining them is called the 
edge multiplicity of x and y and is denoted by G(x, y). 
The maximum degree among all the vertices is denoted 
by (G). The maximum edge multiplicity over all pairs 
of vertices is denoted by (G).

A subgraph S of G is any multigraph whose vertex 
and edge sets, V(S) and E(S), are subsets, respectively, 
of V(G) and E(G). This is written S  G. Suppose that 
two vertices, v and u, in G are connected by an alternat-
ing sequence of edges and vertices (v = v0, e1, v1, e2, v2, 
…, eL, vL = u), where vi1 and vi are the endpoints of ei  
(1 ≤ i ≤ L) and where the vertices are all distinct, except 
possibly for u and v. A subgraph composed of these 
vertices and edges is called a simple path if u ≠ v or a 
simple cycle if u = v. Its length is the number of edges L it  
contains.

An edge coloring of G is a mapping  of its edges into 
some set of colors C. It is said to be proper if no two edges 
incident at a common vertex share the same color. The 
minimum number of colors required for a proper edge 
coloring of G is called its chromatic index and is denoted 
by (G). For any color x, the edges assigned that color 
under a given coloring are referred to as x-edges. Also, 
as mentioned above, this article refers to the absence of 
a given color at a particular vertex as a hole. More for-
mally, <v, x> is a hole of G with respect to  if v is a 
vertex in V(G), x is a color in C, and there is no x-edge 
incident at v under . The number of holes at vertex v 
in G under  will be denoted by hG,(v). Notice that for 
any proper coloring  of any G, and for any v  V(G), 
dG(v) + hG,(v) = k, where k is the number of colors in 
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C. A set of vertices with more than one hole of the 
same color is said to have a hole color duplication. (In 
the remainder of this article, note that the argument or 
subscript G appearing on various quantities like those 
defined above will often be omitted for notational con-
venience if it is clear from the context.)

Chromatic Components and the Chromatic  
Adjacency Graph

Under a proper edge coloring  of G, let X be any 
subset of the colors and imagine removing edges from 
G, keeping only those whose colors are in X. From a 
given vertex v, consider the set of all vertices and edges 
in the resulting multigraph that can be reached via a 
simple path. The subgraph of G consisting of these ver-
tices and edges is called an X-chromatic component of G 
under . Chromatic components are sometimes called 
Kempe components after A. B. Kempe, who published 
the first attempted proof of the four-color map theo-
rem.11 He made the simple but important observation 
that any permutation of colors within such a chromatic 
component yields another proper coloring. Using these 
chromatic component recolorings, he attempted to show 
that four colors were sufficient to color the regions of 
any map that can be drawn on a planar or spherical 
surface so that no two regions with a common bound-
ary have the same color. Although his proof was flawed, 
Kempe’s chromatic component recolorings form the 
basis of many, if not most, algorithms for both vertex 
and edge-coloring problems.

Chromatic components involving pairs of colors will 
be of special interest in this article. Let x and y be 
any two distinct colors appearing in a proper edge col-
oring of G and consider its {x, y}-chromatic compo-
nents. Since there is at most one x-edge and at most one 
y-edge incident at any vertex, one can readily see that 
each {x, y}-chromatic component is either a simple path, 
a simple cycle, or an isolated vertex. Edges along the 
paths and cycles must alternate between the two colors 
of the component. Notice that a two-colored chro-
matic component has only one recoloring, obtained by 
exchanging its two colors.

For example, Fig. 3 shows the {b, h}-chromatic com-
ponents of G1 induced by colors b and h (solid blue and 
red, respectively) under coloring 1 of Fig. 2. There 
are three such components. One is a simple cycle con-
necting vertices 1, 2, 3, and 4. The second consists of 
the isolated vertex 5. The third is a simple path along 
the sequence of vertices 6, 7, 8, and 9. Recoloring any 
of these components by exchanging b and h among 
its edges yields another proper coloring. (The case of 
recoloring the component consisting of just vertex 5 is 
degenerate, so the coloring does not change.)

Notice that the two {b, h}-chromatic components 
that are not cycles both have a pair of corresponding 

holes colored either b or h. The component along path 
(6, 7, 8, 9) has holes <6, h> and <9, h> , and the isolated 
vertex 5 has holes <5, b> and <5, h>. In fact this is true 
for any acyclic, two-colored, chromatic component: If it 
is a simple path then one of the colors will be missing 
at each endpoint; if it is an isolated vertex then both 
colors are missing at that vertex. (One could also view 
an isolated vertex as a degenerate case of a path with no 
edges, where both endpoints and corresponding holes 
are at the same vertex.) Conversely, given any hole  
<v, x>, and any color y ≠ x, there is an acyclic, {x, 
y}-chromatic component that has <v, x> as one of its 
endpoints. To find it, simply walk along the alternat-
ing x- and y-edges beginning with the y-edge at v (if 
there is one) and continuing until one of the colors is 
missing at a vertex u. That is the other endpoint of the 
component, and it will clearly have a hole, either <u, 
x> or <u, y>. It is easy to see that recoloring an acyclic,  
{x, y}-chromatic component toggles the colors of the 
two holes at its ends between x and y. On the other 
hand, such a recoloring has no effect on any other holes 
in the multigraph.

Keeping these observations in mind, for any multi-
graph G and any proper edge coloring  of G, it will be 
useful to define something called the chromatic adjacency 
graph for the coloring. Vertices and edges of this new 
graph will be called the chromatic vertices and chromatic 
edges of the coloring, respectively. They are defined as 
follows: the chromatic vertices are simply the holes of 
G under . The chromatic edges are all of the acyclic, 
two-colored chromatic components of G under . In 

Figure 3.  {b, h}-chromatic components of G1 under 1.

1 2

3

4

5

6

7

8

9



192	 JOHNS HOPKINS APL TECHNICAL DIGEST, VOLUME 23, NUMBERS 2 and 3 (2002)

J.  M.  GILBERT 

particular, for any distinct pair of colors x and y in the 
coloring, an acyclic, {x, y}-chromatic component will be 
referred to as an {x, y}-chromatic edge. The endpoints of 
a chromatic edge are the two holes associated with that 
chromatic component, which are guaranteed to exist by 
the observations made above. Two holes,  = <v, x> and 
 = <u, y>, are said to be chromatically adjacent if they 
are endpoints of a common chromatic edge. More spe-
cifically, for distinct colors p and q, holes  and  will 
be said to be {p, q}-chromatically adjacent or chromatically 
adjacent via p and q if {x, y}  {p, q} and the two holes 
are the endpoints of the same {p, q}-chromatic edge. As 
pointed out above, recoloring a {p, q}-chromatic edge 
toggles the colors of its endpoint holes, but leaves all 
other holes untouched.

Because of their central importance in the remainder 
of the article, it is worth emphasizing the distinction 
between the vertices and edges in multigraph G and the 
chromatic vertices and chromatic edges in its chromatic 
adjacency graph under a coloring . The vertices of G are 
the nodes of the multigraph, and its edges are the direct 
connections between them. The chromatic vertices, on 
the other hand, are the holes in G under . The chro-
matic edges are not edges of G. Rather, they are simple 
paths or isolated vertices in G that correspond to its acy-
clic, two-colored chromatic components under .

As an example, Fig. 3 shows four chromatic vertices, 
namely the holes <5, b>, <5, h>, <6, h>, and <9, h>. 
It shows two chromatic edges, one being the isolated 
vertex 5 and the other being the {b, h}-chromatic com-
ponent along path (6, 7, 8, 9). The former chromatic 
edge connects the chromatic vertices (holes) <5, b> 
and <5, h>, and the latter connects holes <6, h> and  
<9, h>. Thus <5, b> and <5, h> are chromatically adja-
cent, as are <6, h> and <9, h> (via the colors b and h).

One note on representation is in order before con-
tinuing to explore the theory behind the problem. 
The preceding discussion shows that, although certainly 
vibrant, Figs. 2 and 3 are somewhat cumbersome for 
communicating detailed logical features of a coloring. 
Figure 4 shows a more schematic representation of the 
same coloring as in Fig. 2. This diagram represents 
all of the edges between a given pair of vertices with 
a single line segment. Labels along the segment indi-
cate the colors of the edges between those vertices. 
Color labels with overbars appearing next to the vertices  
indicate their holes (missing colors). Although not as 
colorful, this representation is more convenient for 
exposition of the concepts to be discussed and will be 
used for the remaining examples.

Bounds on the Chromatic Index
To begin developing some intuition for multigraph 

edge coloring, it is instructive to look for some bounds 
on optimal solutions. As defined above, the chromatic 
index  of multigraph G is the minimum number of 

colors needed to color its edges properly. Since each 
edge incident at a given vertex must be colored differ-
ently,  must be at least as big as the degree d(v) of 
any vertex v. Thus a trivial lower bound for  is the 
maximum degree  over all of the vertices. A glance at  
Table 1 shows that for the baseball scheduling example 
 = 12. This leaves room for possible improvement over 
the 16-color solution of Figs. 2 and 4.

Another slightly less obvious bound on  arises from 
the density with which edges appear in G. To see this, 
let  be an optimal, proper coloring and consider an 
arbitrary subgraph S  G. If n(S) is the number of verti-
ces appearing in S, notice that for any color c in the col-
oring, since each c-edge pairs two of its vertices, S can 
have no more than n(S) / 2 c-edges (where x denotes 
the greatest integer not exceeding x). But this is true of 
every color, so the total number of edges, m(S), in the 
subgraph can be no greater than n(S) / 2. Also, since 
 is obviously an integer,
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Figure 4.  Schematic representation of edge coloring.
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then certainly W = W(G) is another lower bound for . 
Unfortunately, since the number of subgraphs of G is 
exponential in n(G), this definition does not provide an 
efficient algorithm for computing W. However, any par-
ticular subgraph or group of subgraphs can be examined 
to determine a lower bound on . In particular, for the 
baseball scheduling example, let S = G1. Again referring 
to Table 1, notice that the sum of all the game counts 
is 104. However, this counts each of the games twice 
(once for each team), so the total number of games to be 
played, and also the number of edges in G1, is m(G1) = 
52. With n(G1) = 9 teams playing, w(G1) = 52/9/2 = 
52/4 = 13. This shows that, even though no vertex in G1 
has more than 12 neighbors, the density of its edges is 
too great to permit a solution with less than 13 colors. 
Of course, whether one can actually find a coloring that 
realizes this bound is another question and will be the 
subject of discussion in subsequent sections.

EDGE-COLORING ALGORITHMS

NP-Completeness
One of the first questions typically asked when inves-

tigating a computational problem is whether it is tracta-
ble. For practical purposes, the time an algorithm takes 
to compute a solution should not grow too rapidly with 
input size. Computer scientists formalize this notion as 
the computational complexity of the algorithm. One 
usually considers an algorithm to be efficient (from the 
theoretical standpoint) if its run time is bounded by 
some polynomial function of an appropriate measure of 
its input size. The class of problems that can be solved 
by algorithms running in polynomial time is called P. 
However, there is a large and important class of prob-
lems, known as NP, for which no polynomial algorithms 
appear to exist. For such problems, it seems very likely 
that any algorithm solving them will require run times 
exceeding any polynomial function of their input size. 
A subclass of the problems in NP has the important 
property that if one were to find a polynomial algorithm 
for solving any one of them, then all other problems in 
NP could also be solved in polynomial time. Thus, in 
a sense, each of these problems, which are called NP-
complete, is just as hard as any other problem in NP.

The standard vertex coloring problem had been chal-
lenging mathematicians and computer scientists long 
before the early 1970s when these concepts were intro-
duced, and not surprisingly was among the first prob-
lems demonstrated to be NP-complete. In particular, 
Karp12 showed that the problem of finding an optimal 
vertex coloring for a graph is NP-complete. The issue 
was not resolved quite so quickly for edge colorings. 
Since edge adjacencies at vertices are more constrained 
than vertex adjacencies across edges, edge colorings 
are more highly structured than vertex colorings. One 

might hope that with some ingenuity a clever algorithm 
could be developed to exploit this additional structure 
so as to find an optimal edge coloring efficiently.

Unfortunately, this is apparently not the case. Ulti-
mately, the problem of finding an optimal edge color-
ing for an arbitrary multigraph G was shown also to be 
NP-complete by Holyer3 in 1981. In fact, his construc-
tion shows that the problem of determining  is NP-
complete even when G is a simple graph and its maxi-
mum degree  is no greater than 3. (One can better 
appreciate the elegance and simplicity of Holyer’s con-
struction for proving the NP-completeness of edge col-
oring by considering the difficulties described in an 
investigation13 of the same issue and published not long 
before his proof.)

At first glance, one might think that a result as strong 
as Holyer’s dashes all hope of finding a good multigraph 
edge-coloring algorithm. However, although it seems 
very unlikely that an efficient algorithm will ever be 
found to compute an optimal solution, one can never-
theless look for approximation algorithms that can effi-
ciently compute solutions that are nearly optimal. For-
tunately, the structure imposed on edge coloring by 
adjacency constraints can be exploited to develop such 
approximation algorithms. Recall that no coloring can 
do better (use fewer) than max{, W} colors. It is of con-
siderable practical and theoretical interest if an approx-
imation algorithm can be shown to do no worse than 
some upper bound. The next several sections will dis-
cuss this issue and provide upper bounds on several algo-
rithms showing that, although not optimal, they pro-
duce very good solutions efficiently.

An Algorithmic Framework for Edge Coloring
Before turning to this analysis, it is useful to provide 

a common framework within which to compare algo-
rithms. Given multigraph G, one natural algorithmic 
framework for decomposing the edge-coloring problem 
is to try to add and color its edges one at a time. 
Such an algorithm, called ColorMultigraph, is shown in  
Fig. 5. Given multigraph G and non-negative integer k, 
the algorithm begins by initializing G to include all of 
G’s vertices but none of its edges. The initially empty  
maintains the coloring of the edges in G. (For analysis, 
it will be useful to imagine preallocating some number 
k ≥ 0 colors to  even before any edges have been col-
ored.) At each step, a new edge is selected. This edge is 
passed along with the current multigraph and coloring 
to a subroutine called ColorEdge, where the real work 
is to be done. Its job is to produce a new coloring of all 
of the previously colored edges, together with the new 
edge e.

Of course, one could always simply introduce a 
new color for e, but the ColorEdge subroutine should 
attempt to avoid this if at all possible. Thus it may well 
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shuffle the colors among the previously processed edges 
to accommodate the new edge within the existing pal-
ette of colors. This same basic algorithmic framework 
is used in all of the edge-coloring algorithms discussed 
in this article. The focus will be on exactly how the 
ColorEdge subroutine accomplishes its task.

To make this more concrete, return once again to 
the baseball scheduling example. Figure 6 shows an 
improved coloring 2 for all but one of the edges 
in G1. The dashed segment between vertices 1 and 
2 indicates that one edge between them remains to 
be colored. Disregarding how 2 was obtained, one 
can imagine it representing an intermediate state of  
ColorMultigraph (the state just before the last iteration 
of the “while” loop). The ColorEdge subroutine is called 
with this coloring of G = G – e, where e is the last edge 
to be added. Notice that in this example, 2 uses only 
13 colors, labeled a through m. As shown earlier, W(G1) 

and thus (G1) are no less than 
13, so at least this many colors are 
needed to add and color e. Whether 
another color is necessary remains 
to be seen. 

Given edge e and coloring  
of subgraph G, ColorEdge can ter-
minate in several ways. It may, of 
course, succeed in coloring e without 
introducing any new colors beyond 
those already used in . In this 
case, it will be said to have termi-
nated in State 1. The subroutine 
may instead fail in this attempt and 
add a new color for the edge e, in 

Figure 5.  Algorithmic framework for edge coloring.

Figure 6.  Improved edge coloring 2 of G = G1  {e}.

which case it will be said to have terminated in State 
2. However, one can imagine two reasons for adding a 
new color. On the one hand, the new edge might actu-
ally require another color for a proper coloring. Suppose, 
for example, that the subroutine discovers at some point 
that adding e will increase one of the lower bounds 
(G) or W(G) beyond the number of colors currently 
available under . Then it can assign e a new color 
and correctly report that this new color was necessary 
for a proper coloring. Such a termination will be called 
State 2A. On the other hand, even if it cannot prove 
that more colors are necessary, ColorEdge may still fail 
to find a proper coloring that includes e with only the 
existing colors. If a color is added for this reason it will 
be called a termination in State 2B.

Of course, one would like to avoid terminations in 
State 2B if at all possible. Suppose, for example, that k 
colors are preallocated to  in the call to ColorMulti-
graph. If one could show for a given multigraph G that 
ColorEdge never terminates in State 2B, then clearly 
the final coloring will use exactly max{k, } colors so 
that  ≤ k. Using this kind of reasoning, the next sec-
tions of the article discuss several algorithms for mul-
tigraph edge coloring, all using the ColorMultigraph 
framework, but with different variants of the ColorEdge 
subroutine. By analyzing when and whether ColorEdge 
terminates in State 1, 2A, or 2B, one can obtain upper 
bounds on the colorings produced by these algorithms 
and hence on  itself.

Vizing’s Algorithm and Bound
Shannon’s original paper1 on multigraph edge color-

ing included an algorithm for solving the problem and 
demonstrated that it requires at most 3/2 colors. The 
bound is tight in the sense that there are multigraphs 
actually requiring this many colors. For any ∆, one can 
easily construct such a multigraph. First form a triangle 
of three vertices. If ∆ is even, place ∆/2 edges between 
each pair of vertices for a total of 3∆/2 = 3∆/2 edges. 
Since all of the edge colors must be distinct,  = 3/2. 
If  is odd, place ( – 1)/2 edges between each pair of 
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vertices and then add one more edge between any pair. 
Notice that the maximum degree is indeed  and that 
there are 3( – 1)/2 + 1 = 3/2 edges, which again 
must all be distinct, so  = 3/2.

Unfortunately, Shannon’s algorithm does not nat-
urally fit the framework of ColorMultigraph. We will 
return to his bound momentarily, but, instead of look-
ing at his algorithm, we will focus on a method devised 
15 years later by Vizing.2 Vizing’s algorithm has the 
form of ColorMultigraph. His simple but important 
technique for the ColorEdge subroutine is perhaps  
the greatest single algorithmic contribution to edge- 
coloring problems. To see how it works, consider any 
call, ColorEdge(e, G, ), with proper coloring  of 
subgraph G and with new edge e to be added. Let v0 
and v1 be the endpoints of the uncolored edge e. Start-
ing with edge e = e1, let F = (e1, e2, …, er) be a sequence 
of edges in E(G)  {e}, each of which is incident at 
v0, but whose opposite endpoints are distinct. For all i,  
2 ≤ i ≤ r, let vi denote the opposite endpoint of ei, and let 
ci denote the color of ei under , i.e., ci = (ei). Now, 
suppose that there is at least one hole <v0, c> at v0 and 
that for each edge ei, 2 ≤ i ≤ r, there is a hole <vi–1, ci> 
at the endpoint of the previous edge having the same 
color, ci, as edge ei. Then F is called a Vizing fan sequence. 
Figure 7a shows such a fan sequence.

In this particular fan sequence, notice that there 
happen to be holes of the same color c at v0 and vr. Viz-
ing’s remarkable observation was that if there are any 
hole color duplications among the vertices in F (in 
other words, among VF = {v0, v1, …, vr}), then through 
a suitable recoloring of , the new edge e can be col-
ored without introducing any new colors to the palette. 
Vizing provided a ColorEdge subroutine to accomplish 
this. In the terminology developed above, if VF contains 
any hole color duplications, then his ColorEdge routine 
terminates in State 1. To follow the algorithm, let  
and  be two distinct holes in VF with the same color c. 
Since  ≠ , they must obviously be at different vertices.

Consider the possible pairs of vertices where  and 
 can appear. First, suppose that one of the holes, say 

, is at v0. By reducing r (truncating the fan sequence) 
if necessary, one can assume, without loss of generality, 
that  appears at vr, the endpoint of the last edge. This 
is the situation illustrated in Fig. 7a, where  = <v0, c> 
and  = <vr, c>. In the simplest case, suppose that r = 1 
so that color c is absent at both endpoints v0 and v1  
of e. Then ColorEdge assigns edge e the color c and ter-
minates in State 1. On the other hand, suppose that  
r  > 1. Referring to Fig. 7a, notice that color c2 is missing 
at v1. ColorEdge removes it from edge e2 and shifts it to 
edge e1, leaving e2 uncolored. But color c3 is absent at 
v2, and ColorEdge in turn shifts it from edge e3 to color 
e2. Continuing in this way, a new coloring is obtained in 
which er is the uncolored edge. But now, since c is miss-
ing at both v0 and vr, ColorEdge uses it to color er and 
again terminates in State 1. The new coloring , which 
includes the new edge, appears in Fig. 7b. This tech-
nique is called a Vizing fan shift, for obvious reasons.

One can alternately view the fan shift starting with 
the last edge. Since a duplication of hole color c initially 
appears between the endpoints of edge er, the subrou-
tine can recolor it with this color. Doing so produces 
holes of color cr appearing at v0 and vr. But now a dupli-
cation of hole color cr arises between v0 and vr1, which 
ColorEdge uses to recolor edge er1. As seen from this 
standpoint, the Vizing fan shift is a process for migrating 
a hole color duplication that appears somewhere along 
the fan sequence back to the initial vertex pair v0 and 
v1, where it can be used to color the new edge e.

Using the Vizing fan shift shows that if the hole color 
duplication in VF involves any hole at v0, then Color-
Edge terminates in State 1. A corollary to this observa-
tion is that if any hole at v0 is not chromatically 
adjacent to every hole among the vertices VF – {v0}, 
then ColorEdge can again reach State 1. To see this, 
suppose that vi is the first vertex along the sequence 
for which there are two holes <v0, c> and <vi, ci> 
that are not chromatically adjacent. By recoloring the  
{c, ci}-chromatic edge beginning at <vi, ci>, ColorEdge 
obtains a new coloring with hole <vi, c>, while  
not otherwise affecting hole or edge colors along  

Figure 7.  Vizing fan sequence (a) and shift (b).

F = (e1, e2, …, ei). Then F is a 
Vizing fan sequence with a hole 
color duplication between vertices 
v0 and vi, and the subroutine uses 
the fan shift described above to 
color e and terminate in State 1.

The possibility remains that the 
hole color duplication does not 
involve any holes at v0. Then there 
are two distinct vertices vi and vj, 1 ≤ 
i < j ≤ r with holes of the same color, 
say  = <vi, ci> and  = <vj, cj>, 
where ci = cj = c*. Now consider the 
hole  = <v0, c>. Clearly c ≠ c* since 
no hole color at v0 is duplicated in 
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VF. Notice that  cannot be chromatically adjacent to 
both  and , since the {c*, c}-chromatic edge beginning 
at  has only one other endpoint. Since there is a hole in  
VF – {v0} that is not chromatically adjacent to , the 
above corollary applies, and once again ColorEdge ter-
minates in State 1.

Notice the overall strategy employed by Vizing’s 
ColorEdge algorithm. It explores a structure (the fan 
sequence F) and searches for holes appearing at the ver-
tices VF of that structure. If a hole color duplication 
is found among those vertices, a procedure is provided 
(the Vizing fan shift with possible chromatic edge recol-
orings) to migrate the duplication back to vertices v0 
and v1 where it can be exploited to color the new edge e. 
Abstracting this strategy provides a powerful paradigm 
for edge coloring. Many algorithms can be viewed as 
variants of the ColorEdge subroutine using this same 
underlying paradigm, but with different structures and 
procedures for migrating hole color duplications.

Using his ColorEdge subroutine as described, and apply-
ing a clever pigeonhole argument, Vizing was able to dem-
onstrate an upper bound on the chromatic index  for a 
multigraph G. In particular, for any v  V(G), define

	 d v d v v xG
*

G
x V G

G( ) ( ) max ( , )
( )

= +
⊆

� 	
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Vizing proved that for any G, his algorithm colors  
G with no more than Vizing(G) colors, and hence  
(G) ≤ Vizing(G). This result is known as Vizing’s 
theorem. For any multigraph, the bound is clearly no 
greater than the sum of the maximum degree and max-
imum multiplicity,  + . In the case of a simple graph, 
since  ≤ 1, this gives the extremely strong result that 
 ≤  ≤  + 1. Surprisingly, even though the question 
of computing  is NP-complete, Vizing’s simple algo-
rithm described above produces a coloring within one 
of the optimal number of colors.

Shannon’s triangles described earlier show that the 
situation is not so fortunate for multigraphs. Indeed, for 
these triangles,  = 3/2 colors. On the other hand, 
it is not difficult to show (see, for example Fiorini and 
Wilson14) that Vizing’s theorem implies that no multi-
graph requires more than this many colors.

Conjectures of Seymour and Goldberg
Not all multigraphs need as many colors as Shan-

non’s bound allows. Consider again the coloring 2 
shown in Fig. 6, which uses 13 colors. Even if one adds 
a new color to finish coloring G1, this is still less than 
the Shannon bound of 3(G1)/2 = 3 · 12/2 = 18.  
(For that matter, the original coloring shown in Figs. 

2 and 4 used 16 colors, which was already less than 
Shannon’s bound.) Vizing’s algorithm also turns out to 
be of no assistance in trying to add the last edge in  
Fig. 6. Inspection of that illustration reveals that no hole 
color duplication appears on any fan sequence beginning 
with edge e. One might therefore ask whether improved 
recoloring algorithms and upper bounds on the chro-
matic index can be found for this and other multigraphs.

In pursuing this question, researchers have been  
led to explore the reasons for which the chromatic 
index of a multigraph G would become elevated beyond 
the lower bounds  or W. To discuss this, Goldberg6 
refers to a multigraph for which  = W as elementary. 
Over time, various infinite classes of nonelementary 
multigraphs have been found for which  =  + 1.  
On the other hand, every known multigraph for  
which  >  + 1 is elementary. This observation led 
Seymour4 to conjecture that for any multigraph,  ≤ 
max{ + 1, W}. Goldberg6 strengthened this to con-
jecture that (a) if  >  + 1, then  = W and (b) if 
 > W + 1, then  = . [Part (a) is equivalent to Sey-
mour’s conjecture.]

Suppose for the moment that Seymour’s conjecture is 
true. Then in analogy with Vizing’s theorem for simple 
graphs, any multigraph has a chromatic index within 
one color of the lower bound max{, W}. Furthermore, 
even if P ≠ NP, the NP-completeness of multigraph 
edge coloring does not preclude the possibility of find-
ing an efficient approximation algorithm that uses at 
most max{ + 1, W} colors. For multigraphs in which 
W <  + 1, even if the conjecture were true, the ques-
tion of whether  =  or  =  + 1 would remain NP- 
complete and an efficient algorithmic answer seems 
unlikely. On the other hand, for multigraphs in which 
W ≥  + 1, the conjecture predicts that  = W. One 
could conceivably find an efficient algorithm that would 
produce an optimal coloring for such multigraphs. For 
this reason, Seymour’s conjecture in the case of W ≥ 
 + 1 has been the main focus of the author’s research 
into multigraph edge coloring and will be the central 
topic in the remainder of the article. (The reader less 
interested in the theoretical details may wish to skip 
the next two subsections and proceed directly to the 
discussion of “Specific Algorithms with Quantitative 
Edge-Coloring Bounds.”)

Chromatic Capsules
Proceeding with the assumption that W ≥  + 1 and 

thinking again in terms of the edge-by-edge coloring 
strategy used in ColorMultigraph, suppose the algorithm 
is at an intermediate stage and has an optimal coloring 
 of some G for which (G) = W(G) = k colors. It 
is useful to consider the situation in which adding the 
next edge e to G increases W and thus . By study-
ing this “straw” and how it breaks the camel’s back, one 
can begin to design a ColorEdge subroutine that is more 
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likely to terminate in the desirable States 1 and 2A and 
to avoid State 2B. If the new edge increases W, then 
certainly G must have a subgraph S* containing both 
endpoints of e and for which ⎡w(S*) = k, but where  
⎡w(S*  e) = k + 1. [Here, S*  e means the multigraph 
with vertices V(S*) and edges E(S*)  {e}.] But then,
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which can only be true if

m(S*) = k n(S*)/2 = (G) n(S*)/2 . 

In this article, if (G) ≥ (G) + 1, a subgraph S*  G 
for which m(S*) = (G) n(S*)/2 is called a chromatic 
capsule of G.

Chromatic capsules have some interesting features. 
While it is beyond the scope of this article to elaborate 
on all their properties, one important structural charac-
teristic deserves mention. If S* is a chromatic capsule of 
G, it is not hard to show that under any optimal col-
oring, among the holes within S* and the edges that 
leave S*, each color appears exactly once. To see this, 
consider any optimal coloring of G and notice that 
since (G) ≥ (G) + 1, there is at least one hole at 
each vertex. Suppose that S* has an even number of 
vertices. Then for each color c there are n(S*)/2 c-edges 
appearing in S* and pairing its vertices. This is impos-
sible, since it would mean that each color is present at 
every vertex. Thus n(S*) must be odd. In this case, for 
each color c, there are n(S*)/2 c-edges in S* that pair 
all but one of its vertices. For that one unpaired vertex, 
the color c is either absent or there is a c-edge leaving 
S*; i.e., for any color c, S* contains exactly one c-hole 
or one c-edge leaving S*.

Since this is true of every optimal coloring of G, if 
both endpoints of e are in S*, then the ColorEdge sub-
routine has no hope of introducing a hole color duplica-
tion between those endpoints unless it adds a new color 
to the palette. In other words, having both endpoints 
of e in the same chromatic capsule of G is a sufficient 
condition to imply (G) < (G  e). If Seymour’s 
conjecture is true and if (G) ≥ (G) + 1, then it is 
also a necessary condition. The sufficiency just noted 
is equivalent to the simple observation that led to the 
definition of W(G). However, it is useful to think of the 
property in terms of constraints on hole colors, since 
this maps naturally into the generic paradigm for the 
ColorEdge subroutine mentioned earlier.

A Family of Approximation Algorithms
Consider again the subroutine call ColorEdge(e, G, 

). Suppose that  uses k colors and that G contains 
a subgraph S with e’s endpoints and no hole color dupli-
cations. Then one can show that
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In this case, if ColorEdge terminates in State 2B and 
adds a new color to the palette, the resulting coloring of 
G  e uses k = k + 1 colors, where

			 
		  (6)

Furthermore, since k is an integer, 
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One can exploit this observation to design a family 
of ColorEdge algorithms and bound the number of 
colors they use on arbitrary multigraphs. The algo-
rithms in this family follow a paradigm abstracted 
from the strategy used by Vizing. Under this paradigm, 
given a colored multigraph G and new edge e, a par-
ticular ColorEdge algorithm has an associated explo-
ration family  = (e, G, ) of subgraphs of G  e, 
together with a ranking function, , over .  and  
satisfy several properties: Let Se denote the subgraph 
consisting of edge e and its endpoints. Then Se   
and it is the unique minimum of the ranking function, 
i.e., (Se) < (S) for all S   – {Se}. Also, for all S  , 
V(Se)  V(S), and if V(Se)  V(S*) for some chromatic 
capsule S*, then V(S)  V(S*). Beginning with Se = S0, 
ColorEdge attempts to find a sequence of subgraphs  
S0, S1, S2, …, in , such that the number of vertices is 
strictly increasing.

Suppose one of these subgraphs, say Si, has a hole 
color duplication. Then it certifies that e’s endpoints 
are not contained in any chromatic capsule S* [since 
otherwise V(Si)  V(S*), which is impossible because 
of the duplication]. In this case, ColorEdge calls a  
reduction procedure, Reduce, which (possibly) recolors 
G to produce another subgraph in the exploration 
family. The new subgraph, Reduce(Si), also contains 
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a duplication, but [Reduce(Si)] < (Si). ColorEdge 
repeats this reduction procedure until ultimately the 
duplication appears on Se, namely at the endpoints of 
e. Using the duplication to color e, it thereby colors 
G  e with no new colors, and terminates in State 1.

Suppose instead that ColorEdge discovers a subgraph 
Si in the sequence having the same vertices as some 
chromatic capsule S*. In this case Si is said to cover S*. 
Since V(Se)  V(Si) = V(S*), the endpoints of e are in 
the same chromatic capsule, which certifies that G  e 
requires an additional color. The algorithm uses a new 
color for edge e and terminates in State 2A.

If ColorEdge could always continue the sequence of 
subgraphs, Si, until either a hole color duplication or a 
chromatic capsule were found, then it would never ter-
minate in State 2B. As pointed out earlier, starting with 
k = (G) + 1 colors, ColorMultigraph(G, k) would then 
use at most max{(G) + 1, W(G)} colors, hence prov-
ing Seymour’s conjecture. Unfortunately, no such algo-
rithm is known. As the number of vertices increases, it 
becomes progressively more difficult to guarantee that 
the sequence can be extended. However, suppose that 
if no hole color duplication or chromatic capsule is 
encountered, a ColorEdge algorithm is guaranteed to 
extend the sequence as long as the number of vertices is 
less than some failure threshold, say . Then it will only 
terminate in State 2B if it finds a subgraph containing 
the endpoints of e with no hole color duplications and 
having at least  vertices. But then by the observation 
made at the beginning of the section, after adding the 
new color, the resulting coloring uses no more than
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colors. Thus, again starting with k = (G) + 1 colors, 
ColorMultigraph(G, k) will color an arbitrary multi-
graph G with at most 
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colors. Furthermore, if it uses more than 
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colors then the last time a new color is added,  
ColorEdge must terminate in State 2A, so that the col-
oring is optimal with exactly (G) = W(G) colors.

For example, in Vizing’s ColorEdge algorithm,  
(e, G, ) is the family of fan sequences in G begin-
ning with edge e under coloring . Unless e’s endpoints 

already have a hole color duplication, the fan sequence 
must obviously have at least two edges (and thus three 
vertices), so the failure threshold  for this algorithm is at 
least 3. On the other hand, in Fig. 6, letting v0 = 2 gives 
an example in which no fan sequence has more than 
three vertices, has a hole color duplication, or covers a 
chromatic capsule. Thus the failure threshold for Viz-
ing’s algorithm is exactly 3, so it is guaranteed to color 
an arbitrary multigraph with at most B3(G) = 3(G)/2 
colors, which is precisely Shannon’s bound, as men-
tioned earlier.

If Vizing’s algorithm encounters a maximal fan 
sequence at the failure threshold that does not cover 
a chromatic capsule and has no color duplications, it 
simply terminates in State 2B. However, one could 
imagine that by some searching or recoloring of G it 
might be possible to construct a fan sequence having 
more vertices. This procedure is called expansion and 
allows the sequence of subgraphs Si to continue. A 
series of algorithms has been devised that use expansion 
to increase the failure threshold , and thus improve  
the coloring bound B(G). However, most of these  
algorithms do not explore fan sequences. For these  
algorithms, the exploration family (e, G, ) is the 
collection of chromatic edges between pairs of holes at 
either endpoint of e. Unless e’s endpoints already have a 
hole color duplication, these chromatic edges must have  
an odd number of vertices, so that the failure threshold 
 is odd.

Specific Algorithms with Quantitative  
Edge-Coloring Bounds

To review, suppose one can demonstrate that under 
any inputs, a ColorEdge algorithm terminates in State 
2B only if it finds a set of at least  vertices having 
no hole color duplications. Then the previous section 
shows that ColorMultigraph will produce a coloring of 
the entire multigraph using no more than 
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colors. As just mentioned, for Vizing’s algorithm this 
failure threshold  is 3, and B is equivalent to Shannon’s 
bound. By giving expansion procedures for the chromatic 
edges between the holes at e’s endpoints, in 1973 Gold-
berg5 demonstrated an algorithm with failure thresh-
old  = 5 to achieve coloring bound B5 = (5 + 2)/4. 
In 1975, Andersen7 gave an algorithm with  = 7 and 
achieving bound B7 = (7 + 4)/6. This was improved 
by Goldberg6 (1984) and by Hochbaum, Nishizeki, and 
Shmoys8 (1986), who reached  = 9 and thus bound 
B9 = (9 + 6)/8. Nishizeki and Kashiwagi9 later (1990) 
extended the techniques used in the 1986 paper to  
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guarantee a failure threshold of  = 11, thus giving an 
algorithm that colors an arbitrary multigraph with at 
most B11 = (11 + 8)/10 colors. (Referring again to 
Fig. 6, notice that even bound B11 cannot guarantee 
that this algorithm will correctly decide whether a 14th 
color is necessary for G1.)

Bounds on the algorithms just mentioned are quite 
strong and show how an arbitrary multigraph can be col-
ored nearly optimally. However, their techniques suffer 
important limitations.  The expansion procedures these 
algorithms use to guarantee increasing failure thresholds 
rely on case-by-case analysis of all possible configura-
tions of chromatic edges in  (between holes at the 
endpoints of e) and having fewer than  vertices. For 
each of these configurations, the analysis must show 
that unless the chromatic edge covers a chromatic cap-
sule or has a hole color duplication, there is a recolor-
ing of G having a strictly longer chromatic edge in . 
As  increases, the number of cases that must be consid-
ered increases rapidly. Thus, for example, Nishizeki and 
Kashiwagi examine at least 21 subcases, not to mention 
a number of supporting lemmas, to prove B11. At the 
least, this is very tedious. More seriously, the procedures 
used to accomplish expansion in the various cases tend 
to be ad hoc, specialized to the cases in which they are 
applied, and without any apparent pattern or strategy 
that unifies them. They are therefore of little assistance 
in designing algorithms with larger failure thresholds. 
With enough patience, these methods may succeed in 
increasing the failure threshold a step or two at a time, 
but it is questionable whether they will lead to a proof 
of Seymour’s conjecture.

The Declare-Before-Using Concept
It appears that to move closer to this goal, algorithms 

with richer exploration families  need to be devised 
that can better explore subgraphs of G for chromatic 
capsules. One can use the characteristics of chromatic 
capsules to help construct exploration families with the 
necessary properties. The challenge then is to devise cor-
responding ranking functions and reduction and expan-
sion procedures to work with these families. In this vein 
the author coined a term for a concept that provides 
a powerful mechanism for exploring chromatic cap-
sules. Borrowing a metaphor from computer program-
ming languages, the concept is called Declare Before 
Using (DBU). Beginning with the endpoints of e, imag-
ine constructing a subgraph of G by edge accretion so 
that each edge added has an endpoint in common with 
a previously added edge. (Of course, when an edge is 
accreted, any new endpoint will also be added to the 
vertex set.) During the accretion process, define the first 
hole encountered of a given color to be the declaration 
of that color. Accreting an edge with a given color to 
the structure constitutes a use of that color. Suppose 

one requires that in building the structure, a color must 
always be declared before it is used. That is, an edge can 
be accreted only if there is already a hole in the struc-
ture with the same color. Such a structure is said to have 
the DBU property. Obviously a DBU structure contains 
the endpoints of e. The key observation is that in an 
optimal coloring of G, if these endpoints are contained 
in a chromatic capsule, then so are all vertices in the 
DBU structure. To see this, suppose that e’s endpoints 
are both in a chromatic capsule S* and that the DBU 
structure departs from the vertices of S*. Let e* be 
its first edge (in the accretion process) that leaves S*. 
Because it is an optimally colored chromatic capsule, 
no hole within S* has the same color as e*. But this is 
impossible because of the DBU property. Thus a DBU 
structure never leaves an optimally colored chromatic 
capsule containing e’s endpoints.

Notice that Vizing fan sequences have the DBU 
property. As another example, consider the collection 
of simple paths in G  e, beginning at e and having the 
DBU property. By the observation just made, this col-
lection of subgraphs has the properties needed to be 
an exploration family (e, G, ) and will be called 
the simple DBU paths. Kierstead,15 who refers to them 
as -acceptable paths, devised a reduction procedure 
(rediscovered by the author) for any such path contain-
ing a hole color duplication. It works by showing that 
a strictly shorter DBU path can always be constructed 
with a duplication. Suppose that (v0, v1, v2, …, vL) is the 
sequence of vertices along a simple DBU path having 
a hole color duplication, where v0 and v1 are the end-
points of e and L is the length of the path. Truncating 
the path, if necessary, one may assume, without loss of 
generality, that it has exactly one hole color duplication 
and that the second hole in the duplication appears at 
vL. Then let  = <vi, c> and  = <vL, c> be holes with 
duplicate color c. Suppose, as show in Fig. 8 (top), that  
i < L  1 and let vj be any vertex on the path, strictly 
between vi and vL and prior to any c-edge of the path. 
Since c is absent from vi and no c-edges appear before 
vi, there must be some such vertex. Let  = <vj, p> be 
any hole at vj, and suppose that  and  are not chro-
matically adjacent (via c and p). Then recoloring the  
{c, p}-chromatic edge starting at  changes the color of 
 to c while leaving ’s color unchanged. Since no c- or 
p-edges appeared prior to vj, truncating the path there 
yields a strictly shorter DBU path with a duplication.

Suppose instead that  is chromatically adjacent to 
. Then recoloring the {c, p}-chromatic edge between 
them exchanges their hole colors. In particular, the dec-
laration of color c moves from  at vi to  at vj. On the 
other hand, since the recoloring affects no other holes, 
the color of  is still c. Moreover, the only edges on 
the DBU path that could have changed colors are c- 
or p-edges. Moving along the path in the new coloring, 
both of these colors will have been declared by the 
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time one reaches vertex vj, and since no c- or p-edges 
[shown in bold in Fig. 8 (top)] appear before that point, 
the entire path still has the DBU property. Hence one 
obtains a new DBU path in which the holes of the dupli-
cation are strictly closer. One iterates this process until 
either the DBU path is truncated (shortening the path) 
or the duplicated hole color, say c, appears at the last 
two vertices vL1 and vL. In the latter case, shown in  
Fig. 8 (bottom), let eL be the edge connecting them on 
the DBU path and suppose its current color is q. One can 
replace this color with c, so that vL1 and vL now both 
have holes colored q. But by the DBU property, color q 
must have been declared earlier on the path, say at vk. 
Hence truncating eL from the path, one obtains a strictly 
shorter DBU path that still has a hole color duplication. 
One continues this procedure, migrating the duplication 
to shorter and shorter DBU paths until eventually it 
appears on e where it is used to color that edge.

As an example, Fig. 9 illustrates a simple DBU path 
within the coloring of Fig. 6. The holes and edges that 
are declared or used are highlighted in bold. Notice 
that the path has a duplication of holes with color 
e (at vertices 9 and 4). Following the procedure just 
described yields the following sequence of chromatic 
edge recolorings:

	 {e, i}-chromatic edge along path (5, 6, 4)
	 {e, m}-chromatic edge along path (9, 5)
	 {l, m}-chromatic edge along path (7, 6, 4, 3, 5)
	 {d, m}-chromatic edge along path (8, 7)
	 {c, d}-chromatic edge along path (2, 8),

at which point the final edge between vertices 1 and 2 
can be colored c. The resulting (optimal) coloring of the 
baseball scheduling multigraph G1 uses only 13 colors 
and is shown in Fig. 10.

CONCLUSION
Like Vizing fan sequences and chromatic edges 

between the endpoints of a new edge, the exploration 
family of simple DBU paths is not sufficiently rich to dis-
cover all chromatic capsules. One can create exploration 

Figure 8.  Recoloring a simple DBU path with a hole color duplication between holes 
 = <vi , c> and  = <vL, c>, where i < L  1 (top) or i = L  1 (bottom).

Figure 9.  “Declare before using” (DBU) path.

Figure 10.  Optimal edge coloring  of G1.
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families that are guaranteed to find any chromatic cap-
sule. However, no reduction procedure is known for 
any of these families that can be guaranteed to migrate 
an arbitrary hole color duplication back to the uncol-
ored edge.

In 1989, Wu16 devised an exploration family using 
the DBU property to construct an algorithm having a 
failure threshold of  = 13 and thus reaching bound B13 = 
(13 + 10)/12. Most recently (1998), Caprara and 
Rizzi17  showed a technique that can augment any of the 
algorithms in this family to lower the constant term in 
the numerator of the bound equation by 1. Although 
they were apparently unaware of Wu’s result, their tech-
nique would appear to work with his algorithm, thus 
giving a slightly improved bound of B13 = (13 + 9)/12. 
This bound is the best known to the author for multi-
graph edge coloring. Although a proof of Seymour’s or 
Goldberg’s conjecture remains elusive, the best hope 
for moving in this direction or for finding better bounds 
appears to be through the use of the DBU property or 
similar concepts that exploit the unique structural char-
acteristics of chromatic capsules.
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