
JOHNS HOPKINS APL TECHNICAL DIGEST, VOLUME 23, NUMBERS 2 and 3 (2002)	 187

STRATEGIES FOR MULTIGRAPH EDGE COLORING

I

Strategies for Multigraph Edge Coloring

Jeffrey M. Gilbert

n mathematical graph theory, coloring problems are ubiquitous. Dating back to the
famous four-color map problem, both the theory and applications associated with graph
coloring have a rich history. A standard problem in graph theory is to color a graph’s
vertices with the fewest number of colors such that no two adjacent vertices have the same
color. This article examines a complementary problem with important applications in
communications and scheduling. In particular, it considers the problem of optimally color-
ing a multigraph’s edges (where multiple edges are permitted between vertices) such that
no edges incident at a given vertex share the same color. The article explores the theory
surrounding the problem and surveys some algorithms that give nearly optimal solutions.
Although powerful, these algorithms have important theoretical limitations. These limita-
tions are discussed and recent conceptual and algorithmic techniques that appear to be
promising candidates for circumventing the difficulties are reviewed.

INTRODUCTION
A multigraph is an abstract structure consisting of a

finite set of vertices together with a finite set of edges
connecting pairs of those vertices. Generally a multi-
graph permits multiple edges between the same pair of
vertices. (Multigraphs also generally permit both end-
point vertices of an edge to be the same, forming what
is known as a “self-loop” and connecting a vertex to
itself. However, self-loops are not relevant to the prob-
lem at hand and are not considered here.) A mul-
tigraph with at most one edge between any pair of
vertices is called a simple graph. This article discusses a
problem concerning multigraphs that is of both theo-
retical and practical interest in the field of algorithmic
graph theory. In particular, it examines the question
of how to color the edges of a multigraph using the
minimum number of colors such that no two edges

incident at the same vertex share the same color. Such
a coloring is said to be proper. The minimum number of
colors required to properly color a multigraph is called
its chromatic index.

Multigraph edge coloring was first discussed in 1949
in a paper by Claude Shannon,1 the father of modern
communication theory. In it, Shannon also presented
an algorithm for approximately solving the problem and
demonstrated an upper bound on the chromatic index.
In 1964, V. G. Vizing2 devised a powerful edge-color-
ing algorithm that improved on Shannon’s bound. In
fact, for simple graphs he showed that it would always
produce a coloring within one of the chromatic index.
On the other hand, his bound for general multigraphs
was much weaker and left open the question of whether
better approximation algorithms might exist.

188	 JOHNS HOPKINS APL TECHNICAL DIGEST, VOLUME 23, NUMBERS 2 and 3 (2002)

J.  M.  GILBERT 

Holyer3 showed that the problem of determining
a multigraph’s chromatic index is NP-complete, even
when restricted to simple graphs, so an efficient algo-
rithm for computing an optimal edge coloring is unlikely
to exist. Nevertheless, as Vizing had shown, there are
excellent approximation algorithms for certain classes
of multigraphs and similar algorithms may exist for the
general case. Indeed, Seymour4 conjectured a bound
on the chromatic index for general multigraphs that is
analogous to Vizing’s bound for simple graphs. The con-
jectured bound suggests that, just like simple graphs, it
may be possible to create an efficient algorithm for col-
oring an arbitrary multigraph to within one of its
chromatic index. Several approximation algorithms
have been published with quantitative bounds that
asymptotically approach Seymour’s conjectured bound.
These include the algorithms of Goldberg5,6; Andersen7;
Hochbaum, Nishizeki, and Shmoys8; and Nishizeki and
Kashiwagi.9 Unfortunately, as their bounds improve, so
does the complexity of these algorithms as well as the
difficulty in implementing them. Thus the sequence
does not appear to lead to an efficient algorithm that
would achieve the conjectured bound.

The remainder of the introduction presents the
reader with a simple example that is revisited through-
out the text. After discussing a number of practical
applications, the article develops some of the theoret-
ical background and terminology surrounding multi-
graph edge coloring. Next it turns to a discussion of algo-
rithms for solving the problem. It examines implications
of the problem’s NP-completeness. A general algorith-
mic framework is then proposed for multigraph edge col-
oring, within which specific approximation algorithms
can be compared. Vizing’s algorithm and bound are
discussed in detail within this framework. Conjectured
bounds of Seymour and Goldberg are introduced and
are related to an edge-coloring structure called a “chro-
matic capsule.” The article then discusses the sequence
of approximation algorithms that approaches Seymour’s
bound. It points out the difficulties with these algo-
rithms and introduces a concept referred to as “Declare
Before Using,” which appears to hold promise for cir-
cumventing those difficulties.

An Example
Consider the problem of scheduling baseball games

among a group of teams over the course of a season.
Any pair of teams will be required to play each other
a number of times (possibly zero). Each team is to play
at most one game per day, with no special requirements
or preferences regarding the days on which they play.
Given the number of games to be played between each
pair of teams, what is the minimum number of days
needed to schedule all of the games? Table 1 gives an
example showing the required games to be scheduled

among a league of nine teams. For example, Team 4 is
to play Team 3 twice, whereas it is to have three games
each with Teams 1, 5, and 6 and no games with any
other teams.

One can represent this game table as a multigraph.
In particular, let each vertex represent a team and each
edge between a pair of vertices represent one game that
is to be played. Translating the games specified in Table
1 in this way, Fig. 1 identifies all games to be scheduled
in the form of a multigraph, which will be denoted G1.
The goal is to find the shortest schedule that assigns a
date for each game.

Now consider any feasible schedule for the games
and imagine color-coding it by assigning a distinct color
to each game day. Further imagine painting each edge of
the multigraph with the color for the day on which the
corresponding game takes place. Up to a permutation of
the game days, this represents the schedule as a multi-
graph edge coloring. Notice that since a team plays at
most once per day, each of its games (and thus all edges
incident at its vertex) must be assigned a distinct color,
i.e., no two edges incident at the same vertex share the
same color. As mentioned earlier, this is called a proper
edge coloring. Conversely, for any proper edge coloring,
one can construct a game schedule by associating each
color with a game day. Minimizing the length of the
schedule clearly corresponds to finding a proper edge
coloring of G1 with the fewest colors.

An example of a proper edge coloring of G1 is shown
in Fig. 2. This coloring will be referred to as 1. Note
that in addition to examining the colors of the edges
themselves, it is often useful to consider the colors that
are absent at a given vertex. In this article the absence of
a given color at a particular vertex is referred to as a hole.
In other words, if no edge of a given color is incident at
a vertex, it is said to have a hole of that color. The holes
under coloring 1 are also illustrated in Fig. 2.

Table 1.  Games to be scheduled.

Team	 1	 2	 3	 4	 5	 6	 7	 8	 9	 Total

	 1	 –	 3		 3				 3	 3	 12

	 2	 3	 –	 3				 3	 3		 12

	 3		 3	 –	 2	 3	 3				 11

	 4	 3		 2	 –	 3	 3				 11

	 5			 3	 3	 –	 2			 3	 11

	 6			 3	 3	 2	 –	 3			 11

	 7		 3				 3	 –	 3	 3	 12

	 8	 3	 3					 3	 –	 3	 12

	 9	 3				 3		 3	 3	 –	 12

		 12	 12	 11	 11	 11	 11	 12	 12	 12	 104

JOHNS HOPKINS APL TECHNICAL DIGEST, VOLUME 23, NUMBERS 2 and 3 (2002)	 189

STRATEGIES FOR MULTIGRAPH EDGE COLORING

One can immediately translate coloring 1 into a
game schedule for the entire season. For example, under
this schedule, Teams 2 and 3 would play each other on
game days h, j, and k. One can readily verify that every
color appears on some edge, so that the total number
of game days required by this schedule is 16. The ques-
tion remains as to whether 1 represents the shortest
possible schedule. The answer is deferred until later in
the article, but in the meantime, the reader is invited to
try creating a proper edge coloring of the multigraph in
Fig. 1 using fewer than 16 colors, or else to prove that no
such improvement is possible.

Applications
There are numerous important applications for the

multigraph edge-coloring problem. Shannon’s seminal
paper1 dealt with the wiring of electrical networks. In
particular, he considered a number of electrical compo-
nents that needed to be interconnected in some way.
Between any two components there could be a number
of wires, each of whose ends was to be attached at some Figure 1.  Scheduling multigraph G1.

Figure 2.  Example of one possible proper edge coloring, 1, for multigraph G1. As indicated in the legend,
1 uses a total of 16 colors. To help distinguish vertices from colors, the latter are denoted by lower case
alphabetical characters. Also for clarity in the figure, only eight distinct colors are plotted. “Colors” i through p
are distinguished from colors a through h by using broken instead of solid lines. Thus, for example, in 1 the
edges between vertices 2 and 3 have colors h, j, and k. Missing colors, or holes, at a vertex are represented
by the circular marks adjacent to them. For example, under coloring 1 vertex 1 has four holes with colors
m, n, o, and p.

1 2

3

4

5

6

7

8

9

1 2

3

4

5

6

7

8

9

edgeholecolor
a
b
c
d
e
f
g
h
i
j
k
l
m
n
o
p

190	 JOHNS HOPKINS APL TECHNICAL DIGEST, VOLUME 23, NUMBERS 2 and 3 (2002)

J.  M.  GILBERT 

port on a component. Wires were bundled into cables
and, in order to distinguish between them, one was to
assign each wire a color such that no two wires arriv-
ing at the same component had the same color. The
goal was to minimize the number of colors needed to
so wire the given network. Mapping components into
vertices and wires into edges, this clearly corresponds
to multigraph edge coloring.

Multigraph edge coloring can also be applied in many
practical scheduling problems. For example, consider
the task of coordinating scans among a set of similar
active sensors {s1, s2, …, sS} over a set of targets {t1, t2, …,
tT}. Assume that a sensor can only illuminate one target
at a time. Also, to avoid mutual interference, assume
that no two sensors should illuminate the same target
simultaneously. Now, given a matrix M = [mi,j], where
mi,j specifies the number of times sensor si is to measure
target tj over the course of its scan, and assuming that
each measurement takes time t, what is the minimum
time needed to complete the scans of all sensors? To for-
mulate the problem graph-theoretically, create a multi-
graph with a vertex for each sensor and one for each
target. Between any given sensor and target vertices,
introduce an edge for every measurement that the sensor
is required to take of the target. Thus for any i and j,
there should be mi,j edges between the vertices for sensor
si and target tj. If one assigns a color to each measure-
ment interval, then any schedule for the sensor mea-
surements can be mapped into a corresponding color-
ing of the edges in this multigraph and vice versa. Also,
since each target should be scanned by only one sensor
at a time and since sensors illuminate only one target
at a time, this edge coloring will be proper. Clearly, if
the minimum number of colors needed in a proper edge
coloring of the multigraph is , then the minimum time
needed to complete all sensor scans is t.

As a third example (through which the author
became interested in the problem), consider a commu-
nications network linking a number of nodes. A node
generally communicates directly with only a subset of
the other nodes called its neighbors. Suppose that the
network operates on a cyclic, time-division multiplexed
schedule and that each node can communicate with
only one neighboring node at a time. In any atomic time
interval, or frame, nodes must thus be paired off with
each other for communications. Assume that the net-
work has a specified communications load such that for
any pair of neighboring nodes one is given the number
of frames in which they are required to communicate
over the course of the schedule. Since the schedule is
periodic, in order to maximize throughput, the goal is to
construct a schedule that includes every required com-
munication while minimizing its period, or length. Let-
ting each node be a vertex and placing an edge between
two nodes for each communication frame they require,
one obtains a multigraph. Treating each color as a frame

in the schedule, an optimal proper edge coloring cor-
responds to a minimum length schedule satisfying the
communication requirements.

The multigraph edge-coloring problem is applicable
in many other scheduling problems and has practical
application in such diverse fields as statistical analysis
and experimental design, file transfer protocols for com-
puter networks, matrix algebra, and tensor calculus. The
interested reader is referred to Fiorini and Wilson10 for
an excellent summary of some of these applications.

THEORETICAL BACKGROUND

Definitions and Nomenclature
Before discussing the theory behind the multigraph

edge-coloring problem, some definitions and nomen-
clature are needed. The concept of a multigraph, G =
[V(G), E(G)] with vertex set V(G) and edge set E(G)
was introduced above. The number of vertices it con-
tains is called its order and is denoted here by n(G). The
number of edges is denoted by m(G). The number of
edges incident at a given vertex v is called the degree of
v and will be denoted by dG(v). A vertex of degree 0 is
said to be isolated. For any given pair of distinct vertices
x and y, the number of edges joining them is called the
edge multiplicity of x and y and is denoted by G(x, y).
The maximum degree among all the vertices is denoted
by (G). The maximum edge multiplicity over all pairs
of vertices is denoted by (G).

A subgraph S of G is any multigraph whose vertex
and edge sets, V(S) and E(S), are subsets, respectively,
of V(G) and E(G). This is written S  G. Suppose that
two vertices, v and u, in G are connected by an alternat-
ing sequence of edges and vertices (v = v0, e1, v1, e2, v2,
…, eL, vL = u), where vi1 and vi are the endpoints of ei
(1 ≤ i ≤ L) and where the vertices are all distinct, except
possibly for u and v. A subgraph composed of these
vertices and edges is called a simple path if u ≠ v or a
simple cycle if u = v. Its length is the number of edges L it
contains.

An edge coloring of G is a mapping  of its edges into
some set of colors C. It is said to be proper if no two edges
incident at a common vertex share the same color. The
minimum number of colors required for a proper edge
coloring of G is called its chromatic index and is denoted
by (G). For any color x, the edges assigned that color
under a given coloring are referred to as x-edges. Also,
as mentioned above, this article refers to the absence of
a given color at a particular vertex as a hole. More for-
mally, <v, x> is a hole of G with respect to  if v is a
vertex in V(G), x is a color in C, and there is no x-edge
incident at v under . The number of holes at vertex v
in G under  will be denoted by hG,(v). Notice that for
any proper coloring  of any G, and for any v  V(G),
dG(v) + hG,(v) = k, where k is the number of colors in

JOHNS HOPKINS APL TECHNICAL DIGEST, VOLUME 23, NUMBERS 2 and 3 (2002)	 191

STRATEGIES FOR MULTIGRAPH EDGE COLORING

C. A set of vertices with more than one hole of the
same color is said to have a hole color duplication. (In
the remainder of this article, note that the argument or
subscript G appearing on various quantities like those
defined above will often be omitted for notational con-
venience if it is clear from the context.)

Chromatic Components and the Chromatic
Adjacency Graph

Under a proper edge coloring  of G, let X be any
subset of the colors and imagine removing edges from
G, keeping only those whose colors are in X. From a
given vertex v, consider the set of all vertices and edges
in the resulting multigraph that can be reached via a
simple path. The subgraph of G consisting of these ver-
tices and edges is called an X-chromatic component of G
under . Chromatic components are sometimes called
Kempe components after A. B. Kempe, who published
the first attempted proof of the four-color map theo-
rem.11 He made the simple but important observation
that any permutation of colors within such a chromatic
component yields another proper coloring. Using these
chromatic component recolorings, he attempted to show
that four colors were sufficient to color the regions of
any map that can be drawn on a planar or spherical
surface so that no two regions with a common bound-
ary have the same color. Although his proof was flawed,
Kempe’s chromatic component recolorings form the
basis of many, if not most, algorithms for both vertex
and edge-coloring problems.

Chromatic components involving pairs of colors will
be of special interest in this article. Let x and y be
any two distinct colors appearing in a proper edge col-
oring of G and consider its {x, y}-chromatic compo-
nents. Since there is at most one x-edge and at most one
y-edge incident at any vertex, one can readily see that
each {x, y}-chromatic component is either a simple path,
a simple cycle, or an isolated vertex. Edges along the
paths and cycles must alternate between the two colors
of the component. Notice that a two-colored chro-
matic component has only one recoloring, obtained by
exchanging its two colors.

For example, Fig. 3 shows the {b, h}-chromatic com-
ponents of G1 induced by colors b and h (solid blue and
red, respectively) under coloring 1 of Fig. 2. There
are three such components. One is a simple cycle con-
necting vertices 1, 2, 3, and 4. The second consists of
the isolated vertex 5. The third is a simple path along
the sequence of vertices 6, 7, 8, and 9. Recoloring any
of these components by exchanging b and h among
its edges yields another proper coloring. (The case of
recoloring the component consisting of just vertex 5 is
degenerate, so the coloring does not change.)

Notice that the two {b, h}-chromatic components
that are not cycles both have a pair of corresponding

holes colored either b or h. The component along path
(6, 7, 8, 9) has holes <6, h> and <9, h> , and the isolated
vertex 5 has holes <5, b> and <5, h>. In fact this is true
for any acyclic, two-colored, chromatic component: If it
is a simple path then one of the colors will be missing
at each endpoint; if it is an isolated vertex then both
colors are missing at that vertex. (One could also view
an isolated vertex as a degenerate case of a path with no
edges, where both endpoints and corresponding holes
are at the same vertex.) Conversely, given any hole
<v, x>, and any color y ≠ x, there is an acyclic, {x,
y}-chromatic component that has <v, x> as one of its
endpoints. To find it, simply walk along the alternat-
ing x- and y-edges beginning with the y-edge at v (if
there is one) and continuing until one of the colors is
missing at a vertex u. That is the other endpoint of the
component, and it will clearly have a hole, either <u,
x> or <u, y>. It is easy to see that recoloring an acyclic,
{x, y}-chromatic component toggles the colors of the
two holes at its ends between x and y. On the other
hand, such a recoloring has no effect on any other holes
in the multigraph.

Keeping these observations in mind, for any multi-
graph G and any proper edge coloring  of G, it will be
useful to define something called the chromatic adjacency
graph for the coloring. Vertices and edges of this new
graph will be called the chromatic vertices and chromatic
edges of the coloring, respectively. They are defined as
follows: the chromatic vertices are simply the holes of
G under . The chromatic edges are all of the acyclic,
two-colored chromatic components of G under . In

Figure 3.  {b, h}-chromatic components of G1 under 1.

1 2

3

4

5

6

7

8

9

192	 JOHNS HOPKINS APL TECHNICAL DIGEST, VOLUME 23, NUMBERS 2 and 3 (2002)

J.  M.  GILBERT 

particular, for any distinct pair of colors x and y in the
coloring, an acyclic, {x, y}-chromatic component will be
referred to as an {x, y}-chromatic edge. The endpoints of
a chromatic edge are the two holes associated with that
chromatic component, which are guaranteed to exist by
the observations made above. Two holes,  = <v, x> and
 = <u, y>, are said to be chromatically adjacent if they
are endpoints of a common chromatic edge. More spe-
cifically, for distinct colors p and q, holes  and  will
be said to be {p, q}-chromatically adjacent or chromatically
adjacent via p and q if {x, y}  {p, q} and the two holes
are the endpoints of the same {p, q}-chromatic edge. As
pointed out above, recoloring a {p, q}-chromatic edge
toggles the colors of its endpoint holes, but leaves all
other holes untouched.

Because of their central importance in the remainder
of the article, it is worth emphasizing the distinction
between the vertices and edges in multigraph G and the
chromatic vertices and chromatic edges in its chromatic
adjacency graph under a coloring . The vertices of G are
the nodes of the multigraph, and its edges are the direct
connections between them. The chromatic vertices, on
the other hand, are the holes in G under . The chro-
matic edges are not edges of G. Rather, they are simple
paths or isolated vertices in G that correspond to its acy-
clic, two-colored chromatic components under .

As an example, Fig. 3 shows four chromatic vertices,
namely the holes <5, b>, <5, h>, <6, h>, and <9, h>.
It shows two chromatic edges, one being the isolated
vertex 5 and the other being the {b, h}-chromatic com-
ponent along path (6, 7, 8, 9). The former chromatic
edge connects the chromatic vertices (holes) <5, b>
and <5, h>, and the latter connects holes <6, h> and
<9, h>. Thus <5, b> and <5, h> are chromatically adja-
cent, as are <6, h> and <9, h> (via the colors b and h).

One note on representation is in order before con-
tinuing to explore the theory behind the problem.
The preceding discussion shows that, although certainly
vibrant, Figs. 2 and 3 are somewhat cumbersome for
communicating detailed logical features of a coloring.
Figure 4 shows a more schematic representation of the
same coloring as in Fig. 2. This diagram represents
all of the edges between a given pair of vertices with
a single line segment. Labels along the segment indi-
cate the colors of the edges between those vertices.
Color labels with overbars appearing next to the vertices
indicate their holes (missing colors). Although not as
colorful, this representation is more convenient for
exposition of the concepts to be discussed and will be
used for the remaining examples.

Bounds on the Chromatic Index
To begin developing some intuition for multigraph

edge coloring, it is instructive to look for some bounds
on optimal solutions. As defined above, the chromatic
index  of multigraph G is the minimum number of

colors needed to color its edges properly. Since each
edge incident at a given vertex must be colored differ-
ently,  must be at least as big as the degree d(v) of
any vertex v. Thus a trivial lower bound for  is the
maximum degree  over all of the vertices. A glance at
Table 1 shows that for the baseball scheduling example
 = 12. This leaves room for possible improvement over
the 16-color solution of Figs. 2 and 4.

Another slightly less obvious bound on  arises from
the density with which edges appear in G. To see this,
let  be an optimal, proper coloring and consider an
arbitrary subgraph S  G. If n(S) is the number of verti-
ces appearing in S, notice that for any color c in the col-
oring, since each c-edge pairs two of its vertices, S can
have no more than n(S) / 2 c-edges (where x denotes
the greatest integer not exceeding x). But this is true of
every color, so the total number of edges, m(S), in the
subgraph can be no greater than n(S) / 2. Also, since
 is obviously an integer,

	
m S

n S

m S

n S

()
()/

()
()/

,
2 2 

≤
 













≤ ′� 	 (1)

where ⎡x denotes the smallest integer not less than x.
Of course, the subgraph S was arbitrary, so this must
hold for any subgraph S  G. Thus if one defines

	
w S

m S

n S
()

()
()/

=
 2 	 (2)

for any subgraph S and

	
W G w S

S G
() max () ,=  ⊆ 	 (3)

Figure 4.  Schematic representation of edge coloring.

JOHNS HOPKINS APL TECHNICAL DIGEST, VOLUME 23, NUMBERS 2 and 3 (2002)	 193

STRATEGIES FOR MULTIGRAPH EDGE COLORING

then certainly W = W(G) is another lower bound for .
Unfortunately, since the number of subgraphs of G is
exponential in n(G), this definition does not provide an
efficient algorithm for computing W. However, any par-
ticular subgraph or group of subgraphs can be examined
to determine a lower bound on . In particular, for the
baseball scheduling example, let S = G1. Again referring
to Table 1, notice that the sum of all the game counts
is 104. However, this counts each of the games twice
(once for each team), so the total number of games to be
played, and also the number of edges in G1, is m(G1) =
52. With n(G1) = 9 teams playing, w(G1) = 52/9/2 =
52/4 = 13. This shows that, even though no vertex in G1
has more than 12 neighbors, the density of its edges is
too great to permit a solution with less than 13 colors.
Of course, whether one can actually find a coloring that
realizes this bound is another question and will be the
subject of discussion in subsequent sections.

EDGE-COLORING ALGORITHMS

NP-Completeness
One of the first questions typically asked when inves-

tigating a computational problem is whether it is tracta-
ble. For practical purposes, the time an algorithm takes
to compute a solution should not grow too rapidly with
input size. Computer scientists formalize this notion as
the computational complexity of the algorithm. One
usually considers an algorithm to be efficient (from the
theoretical standpoint) if its run time is bounded by
some polynomial function of an appropriate measure of
its input size. The class of problems that can be solved
by algorithms running in polynomial time is called P.
However, there is a large and important class of prob-
lems, known as NP, for which no polynomial algorithms
appear to exist. For such problems, it seems very likely
that any algorithm solving them will require run times
exceeding any polynomial function of their input size.
A subclass of the problems in NP has the important
property that if one were to find a polynomial algorithm
for solving any one of them, then all other problems in
NP could also be solved in polynomial time. Thus, in
a sense, each of these problems, which are called NP-
complete, is just as hard as any other problem in NP.

The standard vertex coloring problem had been chal-
lenging mathematicians and computer scientists long
before the early 1970s when these concepts were intro-
duced, and not surprisingly was among the first prob-
lems demonstrated to be NP-complete. In particular,
Karp12 showed that the problem of finding an optimal
vertex coloring for a graph is NP-complete. The issue
was not resolved quite so quickly for edge colorings.
Since edge adjacencies at vertices are more constrained
than vertex adjacencies across edges, edge colorings
are more highly structured than vertex colorings. One

might hope that with some ingenuity a clever algorithm
could be developed to exploit this additional structure
so as to find an optimal edge coloring efficiently.

Unfortunately, this is apparently not the case. Ulti-
mately, the problem of finding an optimal edge color-
ing for an arbitrary multigraph G was shown also to be
NP-complete by Holyer3 in 1981. In fact, his construc-
tion shows that the problem of determining  is NP-
complete even when G is a simple graph and its maxi-
mum degree  is no greater than 3. (One can better
appreciate the elegance and simplicity of Holyer’s con-
struction for proving the NP-completeness of edge col-
oring by considering the difficulties described in an
investigation13 of the same issue and published not long
before his proof.)

At first glance, one might think that a result as strong
as Holyer’s dashes all hope of finding a good multigraph
edge-coloring algorithm. However, although it seems
very unlikely that an efficient algorithm will ever be
found to compute an optimal solution, one can never-
theless look for approximation algorithms that can effi-
ciently compute solutions that are nearly optimal. For-
tunately, the structure imposed on edge coloring by
adjacency constraints can be exploited to develop such
approximation algorithms. Recall that no coloring can
do better (use fewer) than max{, W} colors. It is of con-
siderable practical and theoretical interest if an approx-
imation algorithm can be shown to do no worse than
some upper bound. The next several sections will dis-
cuss this issue and provide upper bounds on several algo-
rithms showing that, although not optimal, they pro-
duce very good solutions efficiently.

An Algorithmic Framework for Edge Coloring
Before turning to this analysis, it is useful to provide

a common framework within which to compare algo-
rithms. Given multigraph G, one natural algorithmic
framework for decomposing the edge-coloring problem
is to try to add and color its edges one at a time.
Such an algorithm, called ColorMultigraph, is shown in
Fig. 5. Given multigraph G and non-negative integer k,
the algorithm begins by initializing G to include all of
G’s vertices but none of its edges. The initially empty 
maintains the coloring of the edges in G. (For analysis,
it will be useful to imagine preallocating some number
k ≥ 0 colors to  even before any edges have been col-
ored.) At each step, a new edge is selected. This edge is
passed along with the current multigraph and coloring
to a subroutine called ColorEdge, where the real work
is to be done. Its job is to produce a new coloring of all
of the previously colored edges, together with the new
edge e.

Of course, one could always simply introduce a
new color for e, but the ColorEdge subroutine should
attempt to avoid this if at all possible. Thus it may well

194	 JOHNS HOPKINS APL TECHNICAL DIGEST, VOLUME 23, NUMBERS 2 and 3 (2002)

J.  M.  GILBERT 

shuffle the colors among the previously processed edges
to accommodate the new edge within the existing pal-
ette of colors. This same basic algorithmic framework
is used in all of the edge-coloring algorithms discussed
in this article. The focus will be on exactly how the
ColorEdge subroutine accomplishes its task.

To make this more concrete, return once again to
the baseball scheduling example. Figure 6 shows an
improved coloring 2 for all but one of the edges
in G1. The dashed segment between vertices 1 and
2 indicates that one edge between them remains to
be colored. Disregarding how 2 was obtained, one
can imagine it representing an intermediate state of
ColorMultigraph (the state just before the last iteration
of the “while” loop). The ColorEdge subroutine is called
with this coloring of G = G – e, where e is the last edge
to be added. Notice that in this example, 2 uses only
13 colors, labeled a through m. As shown earlier, W(G1)

and thus (G1) are no less than
13, so at least this many colors are
needed to add and color e. Whether
another color is necessary remains
to be seen.

Given edge e and coloring 
of subgraph G, ColorEdge can ter-
minate in several ways. It may, of
course, succeed in coloring e without
introducing any new colors beyond
those already used in . In this
case, it will be said to have termi-
nated in State 1. The subroutine
may instead fail in this attempt and
add a new color for the edge e, in

Figure 5.  Algorithmic framework for edge coloring.

Figure 6.  Improved edge coloring 2 of G = G1  {e}.

which case it will be said to have terminated in State
2. However, one can imagine two reasons for adding a
new color. On the one hand, the new edge might actu-
ally require another color for a proper coloring. Suppose,
for example, that the subroutine discovers at some point
that adding e will increase one of the lower bounds
(G) or W(G) beyond the number of colors currently
available under . Then it can assign e a new color
and correctly report that this new color was necessary
for a proper coloring. Such a termination will be called
State 2A. On the other hand, even if it cannot prove
that more colors are necessary, ColorEdge may still fail
to find a proper coloring that includes e with only the
existing colors. If a color is added for this reason it will
be called a termination in State 2B.

Of course, one would like to avoid terminations in
State 2B if at all possible. Suppose, for example, that k
colors are preallocated to  in the call to ColorMulti-
graph. If one could show for a given multigraph G that
ColorEdge never terminates in State 2B, then clearly
the final coloring will use exactly max{k, } colors so
that  ≤ k. Using this kind of reasoning, the next sec-
tions of the article discuss several algorithms for mul-
tigraph edge coloring, all using the ColorMultigraph
framework, but with different variants of the ColorEdge
subroutine. By analyzing when and whether ColorEdge
terminates in State 1, 2A, or 2B, one can obtain upper
bounds on the colorings produced by these algorithms
and hence on  itself.

Vizing’s Algorithm and Bound
Shannon’s original paper1 on multigraph edge color-

ing included an algorithm for solving the problem and
demonstrated that it requires at most 3/2 colors. The
bound is tight in the sense that there are multigraphs
actually requiring this many colors. For any ∆, one can
easily construct such a multigraph. First form a triangle
of three vertices. If ∆ is even, place ∆/2 edges between
each pair of vertices for a total of 3∆/2 = 3∆/2 edges.
Since all of the edge colors must be distinct,  = 3/2.
If  is odd, place ( – 1)/2 edges between each pair of

JOHNS HOPKINS APL TECHNICAL DIGEST, VOLUME 23, NUMBERS 2 and 3 (2002)	 195

STRATEGIES FOR MULTIGRAPH EDGE COLORING

vertices and then add one more edge between any pair.
Notice that the maximum degree is indeed  and that
there are 3( – 1)/2 + 1 = 3/2 edges, which again
must all be distinct, so  = 3/2.

Unfortunately, Shannon’s algorithm does not nat-
urally fit the framework of ColorMultigraph. We will
return to his bound momentarily, but, instead of look-
ing at his algorithm, we will focus on a method devised
15 years later by Vizing.2 Vizing’s algorithm has the
form of ColorMultigraph. His simple but important
technique for the ColorEdge subroutine is perhaps
the greatest single algorithmic contribution to edge-
coloring problems. To see how it works, consider any
call, ColorEdge(e, G, ), with proper coloring  of
subgraph G and with new edge e to be added. Let v0
and v1 be the endpoints of the uncolored edge e. Start-
ing with edge e = e1, let F = (e1, e2, …, er) be a sequence
of edges in E(G)  {e}, each of which is incident at
v0, but whose opposite endpoints are distinct. For all i,
2 ≤ i ≤ r, let vi denote the opposite endpoint of ei, and let
ci denote the color of ei under , i.e., ci = (ei). Now,
suppose that there is at least one hole <v0, c> at v0 and
that for each edge ei, 2 ≤ i ≤ r, there is a hole <vi–1, ci>
at the endpoint of the previous edge having the same
color, ci, as edge ei. Then F is called a Vizing fan sequence.
Figure 7a shows such a fan sequence.

In this particular fan sequence, notice that there
happen to be holes of the same color c at v0 and vr. Viz-
ing’s remarkable observation was that if there are any
hole color duplications among the vertices in F (in
other words, among VF = {v0, v1, …, vr}), then through
a suitable recoloring of , the new edge e can be col-
ored without introducing any new colors to the palette.
Vizing provided a ColorEdge subroutine to accomplish
this. In the terminology developed above, if VF contains
any hole color duplications, then his ColorEdge routine
terminates in State 1. To follow the algorithm, let 
and  be two distinct holes in VF with the same color c.
Since  ≠ , they must obviously be at different vertices.

Consider the possible pairs of vertices where  and
 can appear. First, suppose that one of the holes, say

, is at v0. By reducing r (truncating the fan sequence)
if necessary, one can assume, without loss of generality,
that  appears at vr, the endpoint of the last edge. This
is the situation illustrated in Fig. 7a, where  = <v0, c>
and  = <vr, c>. In the simplest case, suppose that r = 1
so that color c is absent at both endpoints v0 and v1
of e. Then ColorEdge assigns edge e the color c and ter-
minates in State 1. On the other hand, suppose that
r  > 1. Referring to Fig. 7a, notice that color c2 is missing
at v1. ColorEdge removes it from edge e2 and shifts it to
edge e1, leaving e2 uncolored. But color c3 is absent at
v2, and ColorEdge in turn shifts it from edge e3 to color
e2. Continuing in this way, a new coloring is obtained in
which er is the uncolored edge. But now, since c is miss-
ing at both v0 and vr, ColorEdge uses it to color er and
again terminates in State 1. The new coloring , which
includes the new edge, appears in Fig. 7b. This tech-
nique is called a Vizing fan shift, for obvious reasons.

One can alternately view the fan shift starting with
the last edge. Since a duplication of hole color c initially
appears between the endpoints of edge er, the subrou-
tine can recolor it with this color. Doing so produces
holes of color cr appearing at v0 and vr. But now a dupli-
cation of hole color cr arises between v0 and vr1, which
ColorEdge uses to recolor edge er1. As seen from this
standpoint, the Vizing fan shift is a process for migrating
a hole color duplication that appears somewhere along
the fan sequence back to the initial vertex pair v0 and
v1, where it can be used to color the new edge e.

Using the Vizing fan shift shows that if the hole color
duplication in VF involves any hole at v0, then Color-
Edge terminates in State 1. A corollary to this observa-
tion is that if any hole at v0 is not chromatically
adjacent to every hole among the vertices VF – {v0},
then ColorEdge can again reach State 1. To see this,
suppose that vi is the first vertex along the sequence
for which there are two holes <v0, c> and <vi, ci>
that are not chromatically adjacent. By recoloring the
{c, ci}-chromatic edge beginning at <vi, ci>, ColorEdge
obtains a new coloring with hole <vi, c>, while
not otherwise affecting hole or edge colors along

Figure 7.  Vizing fan sequence (a) and shift (b).

F = (e1, e2, …, ei). Then F is a
Vizing fan sequence with a hole
color duplication between vertices
v0 and vi, and the subroutine uses
the fan shift described above to
color e and terminate in State 1.

The possibility remains that the
hole color duplication does not
involve any holes at v0. Then there
are two distinct vertices vi and vj, 1 ≤
i < j ≤ r with holes of the same color,
say  = <vi, ci> and  = <vj, cj>,
where ci = cj = c*. Now consider the
hole  = <v0, c>. Clearly c ≠ c* since
no hole color at v0 is duplicated in

196	 JOHNS HOPKINS APL TECHNICAL DIGEST, VOLUME 23, NUMBERS 2 and 3 (2002)

J.  M.  GILBERT 

VF. Notice that  cannot be chromatically adjacent to
both  and , since the {c*, c}-chromatic edge beginning
at  has only one other endpoint. Since there is a hole in
VF – {v0} that is not chromatically adjacent to , the
above corollary applies, and once again ColorEdge ter-
minates in State 1.

Notice the overall strategy employed by Vizing’s
ColorEdge algorithm. It explores a structure (the fan
sequence F) and searches for holes appearing at the ver-
tices VF of that structure. If a hole color duplication
is found among those vertices, a procedure is provided
(the Vizing fan shift with possible chromatic edge recol-
orings) to migrate the duplication back to vertices v0
and v1 where it can be exploited to color the new edge e.
Abstracting this strategy provides a powerful paradigm
for edge coloring. Many algorithms can be viewed as
variants of the ColorEdge subroutine using this same
underlying paradigm, but with different structures and
procedures for migrating hole color duplications.

Using his ColorEdge subroutine as described, and apply-
ing a clever pigeonhole argument, Vizing was able to dem-
onstrate an upper bound on the chromatic index  for a
multigraph G. In particular, for any v  V(G), define

	 d v d v v xG
*

G
x V G

G() () max (,)
()

= +
⊆

� 	

and let

	 Vizing G d v
v V(G)

G
*() max ().=

⊆ 	

Vizing proved that for any G, his algorithm colors
G with no more than Vizing(G) colors, and hence
(G) ≤ Vizing(G). This result is known as Vizing’s
theorem. For any multigraph, the bound is clearly no
greater than the sum of the maximum degree and max-
imum multiplicity,  + . In the case of a simple graph,
since  ≤ 1, this gives the extremely strong result that
 ≤  ≤  + 1. Surprisingly, even though the question
of computing  is NP-complete, Vizing’s simple algo-
rithm described above produces a coloring within one
of the optimal number of colors.

Shannon’s triangles described earlier show that the
situation is not so fortunate for multigraphs. Indeed, for
these triangles,  = 3/2 colors. On the other hand,
it is not difficult to show (see, for example Fiorini and
Wilson14) that Vizing’s theorem implies that no multi-
graph requires more than this many colors.

Conjectures of Seymour and Goldberg
Not all multigraphs need as many colors as Shan-

non’s bound allows. Consider again the coloring 2
shown in Fig. 6, which uses 13 colors. Even if one adds
a new color to finish coloring G1, this is still less than
the Shannon bound of 3(G1)/2 = 3 · 12/2 = 18.
(For that matter, the original coloring shown in Figs.

2 and 4 used 16 colors, which was already less than
Shannon’s bound.) Vizing’s algorithm also turns out to
be of no assistance in trying to add the last edge in
Fig. 6. Inspection of that illustration reveals that no hole
color duplication appears on any fan sequence beginning
with edge e. One might therefore ask whether improved
recoloring algorithms and upper bounds on the chro-
matic index can be found for this and other multigraphs.

In pursuing this question, researchers have been
led to explore the reasons for which the chromatic
index of a multigraph G would become elevated beyond
the lower bounds  or W. To discuss this, Goldberg6
refers to a multigraph for which  = W as elementary.
Over time, various infinite classes of nonelementary
multigraphs have been found for which  =  + 1.
On the other hand, every known multigraph for
which  >  + 1 is elementary. This observation led
Seymour4 to conjecture that for any multigraph,  ≤
max{ + 1, W}. Goldberg6 strengthened this to con-
jecture that (a) if  >  + 1, then  = W and (b) if
 > W + 1, then  = . [Part (a) is equivalent to Sey-
mour’s conjecture.]

Suppose for the moment that Seymour’s conjecture is
true. Then in analogy with Vizing’s theorem for simple
graphs, any multigraph has a chromatic index within
one color of the lower bound max{, W}. Furthermore,
even if P ≠ NP, the NP-completeness of multigraph
edge coloring does not preclude the possibility of find-
ing an efficient approximation algorithm that uses at
most max{ + 1, W} colors. For multigraphs in which
W <  + 1, even if the conjecture were true, the ques-
tion of whether  =  or  =  + 1 would remain NP-
complete and an efficient algorithmic answer seems
unlikely. On the other hand, for multigraphs in which
W ≥  + 1, the conjecture predicts that  = W. One
could conceivably find an efficient algorithm that would
produce an optimal coloring for such multigraphs. For
this reason, Seymour’s conjecture in the case of W ≥
 + 1 has been the main focus of the author’s research
into multigraph edge coloring and will be the central
topic in the remainder of the article. (The reader less
interested in the theoretical details may wish to skip
the next two subsections and proceed directly to the
discussion of “Specific Algorithms with Quantitative
Edge-Coloring Bounds.”)

Chromatic Capsules
Proceeding with the assumption that W ≥  + 1 and

thinking again in terms of the edge-by-edge coloring
strategy used in ColorMultigraph, suppose the algorithm
is at an intermediate stage and has an optimal coloring
 of some G for which (G) = W(G) = k colors. It
is useful to consider the situation in which adding the
next edge e to G increases W and thus . By study-
ing this “straw” and how it breaks the camel’s back, one
can begin to design a ColorEdge subroutine that is more

JOHNS HOPKINS APL TECHNICAL DIGEST, VOLUME 23, NUMBERS 2 and 3 (2002)	 197

STRATEGIES FOR MULTIGRAPH EDGE COLORING

likely to terminate in the desirable States 1 and 2A and
to avoid State 2B. If the new edge increases W, then
certainly G must have a subgraph S* containing both
endpoints of e and for which ⎡w(S*) = k, but where
⎡w(S*  e) = k + 1. [Here, S*  e means the multigraph
with vertices V(S*) and edges E(S*)  {e}.] But then,

	

m S

n S
k

m S e

n S e

m S

n S

(*)
(*) /

(*)
(*) /

(*)
(*) /

,

2
1 1

2

1
2

 












+ = + = ∪
∪ 













= +

 












	 (4)

which can only be true if

m(S*) = k n(S*)/2 = (G) n(S*)/2 .

In this article, if (G) ≥ (G) + 1, a subgraph S*  G
for which m(S*) = (G) n(S*)/2 is called a chromatic
capsule of G.

Chromatic capsules have some interesting features.
While it is beyond the scope of this article to elaborate
on all their properties, one important structural charac-
teristic deserves mention. If S* is a chromatic capsule of
G, it is not hard to show that under any optimal col-
oring, among the holes within S* and the edges that
leave S*, each color appears exactly once. To see this,
consider any optimal coloring of G and notice that
since (G) ≥ (G) + 1, there is at least one hole at
each vertex. Suppose that S* has an even number of
vertices. Then for each color c there are n(S*)/2 c-edges
appearing in S* and pairing its vertices. This is impos-
sible, since it would mean that each color is present at
every vertex. Thus n(S*) must be odd. In this case, for
each color c, there are n(S*)/2 c-edges in S* that pair
all but one of its vertices. For that one unpaired vertex,
the color c is either absent or there is a c-edge leaving
S*; i.e., for any color c, S* contains exactly one c-hole
or one c-edge leaving S*.

Since this is true of every optimal coloring of G, if
both endpoints of e are in S*, then the ColorEdge sub-
routine has no hope of introducing a hole color duplica-
tion between those endpoints unless it adds a new color
to the palette. In other words, having both endpoints
of e in the same chromatic capsule of G is a sufficient
condition to imply (G) < (G  e). If Seymour’s
conjecture is true and if (G) ≥ (G) + 1, then it is
also a necessary condition. The sufficiency just noted
is equivalent to the simple observation that led to the
definition of W(G). However, it is useful to think of the
property in terms of constraints on hole colors, since
this maps naturally into the generic paradigm for the
ColorEdge subroutine mentioned earlier.

A Family of Approximation Algorithms
Consider again the subroutine call ColorEdge(e, G,

). Suppose that  uses k colors and that G contains
a subgraph S with e’s endpoints and no hole color dupli-
cations. Then one can show that

	 ′ ′ ∪ ≥ ′ ∪ ≥ ′ − +
() ()

(())
()

.G e G e
k n S

n S
1 2

	 (5)

In this case, if ColorEdge terminates in State 2B and
adds a new color to the palette, the resulting coloring of
G  e uses k = k + 1 colors, where

			
		 (6)

Furthermore, since k is an integer,

	
k

n S
n S

G e
n S
n S

n S
n S

G e
n S
n S

≤
−

′ ∪ + −
−











≤
−

′ ′ ∪ + −
−











()
()

()
()
()

()
()

()
()
()

.

1
3
1

1
3
1

	

One can exploit this observation to design a family
of ColorEdge algorithms and bound the number of
colors they use on arbitrary multigraphs. The algo-
rithms in this family follow a paradigm abstracted
from the strategy used by Vizing. Under this paradigm,
given a colored multigraph G and new edge e, a par-
ticular ColorEdge algorithm has an associated explo-
ration family  = (e, G, ) of subgraphs of G  e,
together with a ranking function, , over .  and 
satisfy several properties: Let Se denote the subgraph
consisting of edge e and its endpoints. Then Se  
and it is the unique minimum of the ranking function,
i.e., (Se) < (S) for all S   – {Se}. Also, for all S  ,
V(Se)  V(S), and if V(Se)  V(S*) for some chromatic
capsule S*, then V(S)  V(S*). Beginning with Se = S0,
ColorEdge attempts to find a sequence of subgraphs
S0, S1, S2, …, in , such that the number of vertices is
strictly increasing.

Suppose one of these subgraphs, say Si, has a hole
color duplication. Then it certifies that e’s endpoints
are not contained in any chromatic capsule S* [since
otherwise V(Si)  V(S*), which is impossible because
of the duplication]. In this case, ColorEdge calls a
reduction procedure, Reduce, which (possibly) recolors
G to produce another subgraph in the exploration
family. The new subgraph, Reduce(Si), also contains

k = k +
n S G e

n S
n S G e n S

n S
n S G e n S

n S

′ ≤ ′ ∪ −
−

+

= ′ ∪ + −
−

≤ ′ ′ ∪ + −
−

1
2

1
1

3
1

3
1

() ()
()

() () ()
()

() () ()
()

.

198	 JOHNS HOPKINS APL TECHNICAL DIGEST, VOLUME 23, NUMBERS 2 and 3 (2002)

J.  M.  GILBERT 

a duplication, but [Reduce(Si)] < (Si). ColorEdge
repeats this reduction procedure until ultimately the
duplication appears on Se, namely at the endpoints of
e. Using the duplication to color e, it thereby colors
G  e with no new colors, and terminates in State 1.

Suppose instead that ColorEdge discovers a subgraph
Si in the sequence having the same vertices as some
chromatic capsule S*. In this case Si is said to cover S*.
Since V(Se)  V(Si) = V(S*), the endpoints of e are in
the same chromatic capsule, which certifies that G  e
requires an additional color. The algorithm uses a new
color for edge e and terminates in State 2A.

If ColorEdge could always continue the sequence of
subgraphs, Si, until either a hole color duplication or a
chromatic capsule were found, then it would never ter-
minate in State 2B. As pointed out earlier, starting with
k = (G) + 1 colors, ColorMultigraph(G, k) would then
use at most max{(G) + 1, W(G)} colors, hence prov-
ing Seymour’s conjecture. Unfortunately, no such algo-
rithm is known. As the number of vertices increases, it
becomes progressively more difficult to guarantee that
the sequence can be extended. However, suppose that
if no hole color duplication or chromatic capsule is
encountered, a ColorEdge algorithm is guaranteed to
extend the sequence as long as the number of vertices is
less than some failure threshold, say . Then it will only
terminate in State 2B if it finds a subgraph containing
the endpoints of e with no hole color duplications and
having at least  vertices. But then by the observation
made at the beginning of the section, after adding the
new color, the resulting coloring uses no more than

	
−

′ ∪ + −
−









 ≤

−
′ ′ ∪ + −

−








1

3
1 1

3
1

() ()G e G e 	

colors. Thus, again starting with k = (G) + 1 colors,
ColorMultigraph(G, k) will color an arbitrary multi-
graph G with at most

	 B G G() ()=
−

′ + −
−









1

3
1

	

colors. Furthermore, if it uses more than

	
−

+ −
−









1

3
1

()G 	

colors then the last time a new color is added,
ColorEdge must terminate in State 2A, so that the col-
oring is optimal with exactly (G) = W(G) colors.

For example, in Vizing’s ColorEdge algorithm,
(e, G, ) is the family of fan sequences in G begin-
ning with edge e under coloring . Unless e’s endpoints

already have a hole color duplication, the fan sequence
must obviously have at least two edges (and thus three
vertices), so the failure threshold  for this algorithm is at
least 3. On the other hand, in Fig. 6, letting v0 = 2 gives
an example in which no fan sequence has more than
three vertices, has a hole color duplication, or covers a
chromatic capsule. Thus the failure threshold for Viz-
ing’s algorithm is exactly 3, so it is guaranteed to color
an arbitrary multigraph with at most B3(G) = 3(G)/2
colors, which is precisely Shannon’s bound, as men-
tioned earlier.

If Vizing’s algorithm encounters a maximal fan
sequence at the failure threshold that does not cover
a chromatic capsule and has no color duplications, it
simply terminates in State 2B. However, one could
imagine that by some searching or recoloring of G it
might be possible to construct a fan sequence having
more vertices. This procedure is called expansion and
allows the sequence of subgraphs Si to continue. A
series of algorithms has been devised that use expansion
to increase the failure threshold , and thus improve
the coloring bound B(G). However, most of these
algorithms do not explore fan sequences. For these
algorithms, the exploration family (e, G, ) is the
collection of chromatic edges between pairs of holes at
either endpoint of e. Unless e’s endpoints already have a
hole color duplication, these chromatic edges must have
an odd number of vertices, so that the failure threshold
 is odd.

Specific Algorithms with Quantitative
Edge-Coloring Bounds

To review, suppose one can demonstrate that under
any inputs, a ColorEdge algorithm terminates in State
2B only if it finds a set of at least  vertices having
no hole color duplications. Then the previous section
shows that ColorMultigraph will produce a coloring of
the entire multigraph using no more than

	 B G G() ()=
−

′ + −
−









1

3
1

	

colors. As just mentioned, for Vizing’s algorithm this
failure threshold  is 3, and B is equivalent to Shannon’s
bound. By giving expansion procedures for the chromatic
edges between the holes at e’s endpoints, in 1973 Gold-
berg5 demonstrated an algorithm with failure thresh-
old  = 5 to achieve coloring bound B5 = (5 + 2)/4.
In 1975, Andersen7 gave an algorithm with  = 7 and
achieving bound B7 = (7 + 4)/6. This was improved
by Goldberg6 (1984) and by Hochbaum, Nishizeki, and
Shmoys8 (1986), who reached  = 9 and thus bound
B9 = (9 + 6)/8. Nishizeki and Kashiwagi9 later (1990)
extended the techniques used in the 1986 paper to

JOHNS HOPKINS APL TECHNICAL DIGEST, VOLUME 23, NUMBERS 2 and 3 (2002)	 199

STRATEGIES FOR MULTIGRAPH EDGE COLORING

guarantee a failure threshold of  = 11, thus giving an
algorithm that colors an arbitrary multigraph with at
most B11 = (11 + 8)/10 colors. (Referring again to
Fig. 6, notice that even bound B11 cannot guarantee
that this algorithm will correctly decide whether a 14th
color is necessary for G1.)

Bounds on the algorithms just mentioned are quite
strong and show how an arbitrary multigraph can be col-
ored nearly optimally. However, their techniques suffer
important limitations. The expansion procedures these
algorithms use to guarantee increasing failure thresholds
rely on case-by-case analysis of all possible configura-
tions of chromatic edges in  (between holes at the
endpoints of e) and having fewer than  vertices. For
each of these configurations, the analysis must show
that unless the chromatic edge covers a chromatic cap-
sule or has a hole color duplication, there is a recolor-
ing of G having a strictly longer chromatic edge in .
As  increases, the number of cases that must be consid-
ered increases rapidly. Thus, for example, Nishizeki and
Kashiwagi examine at least 21 subcases, not to mention
a number of supporting lemmas, to prove B11. At the
least, this is very tedious. More seriously, the procedures
used to accomplish expansion in the various cases tend
to be ad hoc, specialized to the cases in which they are
applied, and without any apparent pattern or strategy
that unifies them. They are therefore of little assistance
in designing algorithms with larger failure thresholds.
With enough patience, these methods may succeed in
increasing the failure threshold a step or two at a time,
but it is questionable whether they will lead to a proof
of Seymour’s conjecture.

The Declare-Before-Using Concept
It appears that to move closer to this goal, algorithms

with richer exploration families  need to be devised
that can better explore subgraphs of G for chromatic
capsules. One can use the characteristics of chromatic
capsules to help construct exploration families with the
necessary properties. The challenge then is to devise cor-
responding ranking functions and reduction and expan-
sion procedures to work with these families. In this vein
the author coined a term for a concept that provides
a powerful mechanism for exploring chromatic cap-
sules. Borrowing a metaphor from computer program-
ming languages, the concept is called Declare Before
Using (DBU). Beginning with the endpoints of e, imag-
ine constructing a subgraph of G by edge accretion so
that each edge added has an endpoint in common with
a previously added edge. (Of course, when an edge is
accreted, any new endpoint will also be added to the
vertex set.) During the accretion process, define the first
hole encountered of a given color to be the declaration
of that color. Accreting an edge with a given color to
the structure constitutes a use of that color. Suppose

one requires that in building the structure, a color must
always be declared before it is used. That is, an edge can
be accreted only if there is already a hole in the struc-
ture with the same color. Such a structure is said to have
the DBU property. Obviously a DBU structure contains
the endpoints of e. The key observation is that in an
optimal coloring of G, if these endpoints are contained
in a chromatic capsule, then so are all vertices in the
DBU structure. To see this, suppose that e’s endpoints
are both in a chromatic capsule S* and that the DBU
structure departs from the vertices of S*. Let e* be
its first edge (in the accretion process) that leaves S*.
Because it is an optimally colored chromatic capsule,
no hole within S* has the same color as e*. But this is
impossible because of the DBU property. Thus a DBU
structure never leaves an optimally colored chromatic
capsule containing e’s endpoints.

Notice that Vizing fan sequences have the DBU
property. As another example, consider the collection
of simple paths in G  e, beginning at e and having the
DBU property. By the observation just made, this col-
lection of subgraphs has the properties needed to be
an exploration family (e, G, ) and will be called
the simple DBU paths. Kierstead,15 who refers to them
as -acceptable paths, devised a reduction procedure
(rediscovered by the author) for any such path contain-
ing a hole color duplication. It works by showing that
a strictly shorter DBU path can always be constructed
with a duplication. Suppose that (v0, v1, v2, …, vL) is the
sequence of vertices along a simple DBU path having
a hole color duplication, where v0 and v1 are the end-
points of e and L is the length of the path. Truncating
the path, if necessary, one may assume, without loss of
generality, that it has exactly one hole color duplication
and that the second hole in the duplication appears at
vL. Then let  = <vi, c> and  = <vL, c> be holes with
duplicate color c. Suppose, as show in Fig. 8 (top), that
i < L  1 and let vj be any vertex on the path, strictly
between vi and vL and prior to any c-edge of the path.
Since c is absent from vi and no c-edges appear before
vi, there must be some such vertex. Let  = <vj, p> be
any hole at vj, and suppose that  and  are not chro-
matically adjacent (via c and p). Then recoloring the
{c, p}-chromatic edge starting at  changes the color of
 to c while leaving ’s color unchanged. Since no c- or
p-edges appeared prior to vj, truncating the path there
yields a strictly shorter DBU path with a duplication.

Suppose instead that  is chromatically adjacent to
. Then recoloring the {c, p}-chromatic edge between
them exchanges their hole colors. In particular, the dec-
laration of color c moves from  at vi to  at vj. On the
other hand, since the recoloring affects no other holes,
the color of  is still c. Moreover, the only edges on
the DBU path that could have changed colors are c-
or p-edges. Moving along the path in the new coloring,
both of these colors will have been declared by the

200	 JOHNS HOPKINS APL TECHNICAL DIGEST, VOLUME 23, NUMBERS 2 and 3 (2002)

J.  M.  GILBERT 

time one reaches vertex vj, and since no c- or p-edges
[shown in bold in Fig. 8 (top)] appear before that point,
the entire path still has the DBU property. Hence one
obtains a new DBU path in which the holes of the dupli-
cation are strictly closer. One iterates this process until
either the DBU path is truncated (shortening the path)
or the duplicated hole color, say c, appears at the last
two vertices vL1 and vL. In the latter case, shown in
Fig. 8 (bottom), let eL be the edge connecting them on
the DBU path and suppose its current color is q. One can
replace this color with c, so that vL1 and vL now both
have holes colored q. But by the DBU property, color q
must have been declared earlier on the path, say at vk.
Hence truncating eL from the path, one obtains a strictly
shorter DBU path that still has a hole color duplication.
One continues this procedure, migrating the duplication
to shorter and shorter DBU paths until eventually it
appears on e where it is used to color that edge.

As an example, Fig. 9 illustrates a simple DBU path
within the coloring of Fig. 6. The holes and edges that
are declared or used are highlighted in bold. Notice
that the path has a duplication of holes with color
e (at vertices 9 and 4). Following the procedure just
described yields the following sequence of chromatic
edge recolorings:

	 {e, i}-chromatic edge along path (5, 6, 4)
	 {e, m}-chromatic edge along path (9, 5)
	 {l, m}-chromatic edge along path (7, 6, 4, 3, 5)
	 {d, m}-chromatic edge along path (8, 7)
	 {c, d}-chromatic edge along path (2, 8),

at which point the final edge between vertices 1 and 2
can be colored c. The resulting (optimal) coloring of the
baseball scheduling multigraph G1 uses only 13 colors
and is shown in Fig. 10.

CONCLUSION
Like Vizing fan sequences and chromatic edges

between the endpoints of a new edge, the exploration
family of simple DBU paths is not sufficiently rich to dis-
cover all chromatic capsules. One can create exploration

Figure 8.  Recoloring a simple DBU path with a hole color duplication between holes
 = <vi , c> and  = <vL, c>, where i < L  1 (top) or i = L  1 (bottom).

Figure 9.  “Declare before using” (DBU) path.

Figure 10.  Optimal edge coloring  of G1.

v0 v1 vi vj vL

� ��

c cp c c p p c

v0 v1 vk vi vL

c cq q

eL

JOHNS HOPKINS APL TECHNICAL DIGEST, VOLUME 23, NUMBERS 2 and 3 (2002)	 201

STRATEGIES FOR MULTIGRAPH EDGE COLORING

families that are guaranteed to find any chromatic cap-
sule. However, no reduction procedure is known for
any of these families that can be guaranteed to migrate
an arbitrary hole color duplication back to the uncol-
ored edge.

In 1989, Wu16 devised an exploration family using
the DBU property to construct an algorithm having a
failure threshold of  = 13 and thus reaching bound B13 =
(13 + 10)/12. Most recently (1998), Caprara and
Rizzi17  showed a technique that can augment any of the
algorithms in this family to lower the constant term in
the numerator of the bound equation by 1. Although
they were apparently unaware of Wu’s result, their tech-
nique would appear to work with his algorithm, thus
giving a slightly improved bound of B13 = (13 + 9)/12.
This bound is the best known to the author for multi-
graph edge coloring. Although a proof of Seymour’s or
Goldberg’s conjecture remains elusive, the best hope
for moving in this direction or for finding better bounds
appears to be through the use of the DBU property or
similar concepts that exploit the unique structural char-
acteristics of chromatic capsules.

REFERENCES
  1Shannon, C. E., “A Theorem on Coloring the Lines of a Network,”

J. Math. Phys. 28, 148–151 (1949).
  2Vizing, V. G., “On an Estimate of the Chromatic Class of a p-Graph,”

Diskret. Analiz. 3, 25–30 (1964) (in Russian).
  3Holyer, I., “The NP-Completeness of Edge-Coloring,” SIAM J.

Comput. 10(4), 718–720 (Nov 1981).
  4Seymour, P. D., “On Multi-Colourings of Cubic Graphs, and Con-

jectures of Fulkerson and Tutte,” Proc. London Math. Soc. 38(3),
423–460 (1979).

  5	Goldberg, M. K., “On Multigraphs of Almost Maximal Chromatic
Class,” Diskret. Analiz. 23, 3–7 (1973) (in Russian).

  6	Goldberg, M. K., “Edge-Coloring of Multigraphs: Recoloring Tech-
nique,” J. Graph Theory 8, 123–137 (1984).

  7	Andersen, L. D., Edge-Coloring of Simple and Non-Simple Graphs,
Aarhus University, Denmark (1975).

  8	Hochbaum, D. S., Nishizeki, T., and Shmoys, D. S., “A Better Than
‘Best Possible’ Algorithm to Edge Color Multigraphs,” J. Algorithms 7,
79–104 (1986).

  9	Nishizeki, T., and Kashiwagi, K., “On the 1.1 Edge-Coloring of Mul-
tigraphs,” SIAM J. Discrete Math. 3, 391–410 (1990).

10	Fiorini, S., and Wilson, R. J., Edge-Colourings of Graphs, Fearon-
Pitman Publishers, San Francisco, CA, pp. 57–64 (1977).

11	Kempe, A. B., “On the Geographical Problems of the Four Colours,”
Am. J. Math. 2, 193–200 (1879).

12	Karp, R. M., “Reducibility Among Combinatorial Problems,” in Com-
plexity of Computer Computations, Miller and Thatcher (eds.), Plenum
Press, New York, pp. 85–103 (1972).

13	Crane, T. B., An Investigation into the Complexity of Determining the
Edge Chromatic Number of a Graph, M.S.E.E. Thesis, Northwestern
University, Evanston, IL (Aug 1980).

14	Fiorini, S., and Wilson, R. J., “Edge-Colorings of Graphs,” Chap. 5, in
Selected Topics in Graph Theory, L. W. Beineke and R. J. Wilson (eds.),
Academic Press, New York, pp. 103–126 (1978).

15	Kierstead, H. A., “On the Chromatic Index of Multigraphs Without
Large Triangles,” J. Comb. Theory Ser. B 36, 156–160 (1984).

16	Wu, M., Algorithms for Spanning Trees with Many Leaves and for Edge
Colorings of Multigraph, Ph.D. Dissertation, University of South Caro-
lina (1989).

17	Caprara, A., and Rizzi, R., “Improving a Family of Approximation
Algorithms to Edge Color Multigraphs,” Inf. Proc. Lett. 68, 11–15
(1998).

ACKNOWLEDGMENTS: Parts of this work were funded by the Navy to sup-
port development of the Cooperative Engagement Capability Data Distribution
System (DDS). The author would like to thank Elinor Fong and Suzette Som-
merer for their encouragement and support of investigating this problem and its
applications. He also gratefully acknowledges the members of the DDS Network
Control Working Group at APL, especially Bill Antosek and Eric Farmer for their
time, comments, and suggestions and for the many invaluable discussions we have
had regarding multigraph edge coloring.

THE AUTHOR

JEFFREY M. GILBERT graduated summa cum laude from Penn State University
in 1983 with B.S. degrees in mathematics and electrical engineering. He earned
an M.S. in computer science, summa cum laude, from the JHU Whiting School of
Engineering in 1987. In 1984 Mr. Gilbert joined APL’s Fleet Systems Department
in the Surface and Strike Warfare Systems Engineering Group, then transferred to
ADSD’s Sensor Signal and Data Processing Group in 1997. He became a member
of the Principal Professional Staff in 2000. Mr. Gilbert has developed requirements
and simulated and analyzed network control algorithms for the Data Distribution
System of the Navy’s Cooperative Engagement Capability. He is currently head of
the APL Network Control Working Group and Supervisor of the Modeling and
Analysis Section. His e-mail address is jeffrey.gilbert@jhuapl.edu.

	Strategies for Multigraph Edge Coloring
	Jeffrey M. Gilbert
	INTRODUCTION
	An Example
	Applications

	THEORETICAL BACKGROUND
	Definitions and Nomenclature
	Chromatic Components and the Chromatic Adjacency Graph
	Bounds on the Chromatic Index

	EDGE-COLORING ALGORITHMS
	NP-Completeness
	An Algorithmic Framework for Edge Coloring
	Vizing’s Algorithm and Bound
	Conjectures of Seymour and Goldberg
	Chromatic Capsules
	A Family of Approximation Algorithms
	Specific Algorithms with Quantitative Edge-Coloring Bounds
	The Declare-Before-Using Concept

	CONCLUSION
	REFERENCES
	THE AUTHOR
	FIGURES and TABLES
	Figure 1. Scheduling multigraph.
	Figure 2. Example of one possible proper edge coloring.
	Figure 3. {b, h}-chromatic components.
	Figure 4. Schematic representation of edge coloring.
	Figure 5. Algorithmic framework for edge coloring.
	Figure 6. Improved edge coloring.
	Figure 7. Vizing fan sequence (a) and shift (b).
	Figure 8. Recoloring a simple DBU path with a hole color duplication between holes.
	Figure 9. “Declare before using” (DBU) path.
	Figure 10. Optimal edge coloring.
	Table 1. Games to be scheduled.

