
296	 JOHNS HOPKINS APL TECHNICAL DIGEST, VOLUME 23, NUMBERS 2 and 3 (2002)

D.  E-P.  COLBERT  and  R.  E.  RALSTON

P

Engineering Visualization

David E-P. Colbert and R. Edward Ralston

hysics-based, high-fidelity modeling and simulation (M&S) tools that the engineering
community develops and employs to analyze the performance of modern weapon systems
are necessarily becoming more complex. As the fidelity of these tools increases, so does the
volume of pertinent information that they generate. To interpret the wealth of resulting
engineering information, APL developed “engineering visualization” as a tool to facilitate
a better understanding of weapon systems and their respective models and simulations.
Engineering visualization allows the engineer to present the results of M&S-based analysis
to the sponsor with unrivaled clarity and efficacy. By providing the highest level of insight
possible to both engineer and sponsor, engineering visualization has established itself as
an essential systems engineering tool. This article describes the history, development,
implementation, and future of engineering visualization in the Laboratory’s Air Defense
Systems Department.

INTRODUCTION
An important role of a weapon system engineer

has been to interpret analytical results and present
those results to the sponsor. Many early engineering
efforts at APL produced tabular engineering informa-
tion printouts, which an engineer pored over, looking
for patterns and trends in the array of numbers. Later,
two-dimensional (2D) plotting tools became readily
available. The engineer now had the ability to study a
single metric versus another metric in a graphical repre-
sentation, looking for trends or anomalies in the graph.
As time progressed, three-dimensional (3D) plotting
applications became available to the weapon systems
engineer that facilitated the ability to study three-
parameter modeling outputs, either as a line or a surface
in 3D space. Adding a fourth dimension, usually time,
to these plots enabled a unique quality of animation

that allowed visualization of four-parameter engineer-
ing information.

The volume and complexity of the engineering infor-
mation resulting from these weapon systems models
grow directly as the complexity of the threat increases.
Also, with recent trends in DoD research focusing more
on using statistical computer models of weapon systems,
the weapon systems engineer has enormous amounts of
information to analyze and interpret. In addition, these
analytical results must be communicated to the sponsor
in a clear and concise manner.

Commercially available engineering analysis tools are
not capable of studying all aspects of a weapon system
or presenting comprehensive analysis results succinctly.
Often, complex analysis can result in a presentation
with hundreds of slides and can require several hours to

JOHNS HOPKINS APL TECHNICAL DIGEST, VOLUME 23, NUMBERS 2 and 3 (2002)	 297

ENGINEERING VISUALIZATION

present to the sponsor. To make this problem manage-
able, APL has developed “engineering visualization” as
a tool to study such voluminous amounts of complex
engineering information and to present findings to the
sponsor efficiently and effectively.

EVOLUTION

Single-Screen Nondistributed Visualization
The first class of engineering visualization, single-

screen nondistributed visualization, has been used to
analyze several weapon systems. This section describes
the genesis of this fundamental visualization tool.

Visualization Entities
The visualization software’s basic purpose is to take

weapon system simulation data and efficiently build a
3D representation of those data within a visualization
scene (Fig. 1). Thus mapping the data of an object (e.g.,
a missile) to a meaningful visual representation of the
object is the fundamental objective. The core C++
object within the visualization software is, therefore, the
entity object, which contains a reference to the graphi-
cal representation of the object within the visualization
scene, a reference to the data source, and the mapping
of the data to the graphical object’s various controls
(such as position, orientation, and articulations). In
the visualization software, anything that has a visual
representation and is driven by data is represented as
an entity object. The visualization software consists
of about 250 C++ classes and contains a visualization
scene; a motif interface; a math library; networking

code, camera, and event scripts; a 3D graphical user
interface; and 2D overlays.

Defending Missile Entity
Air defense systems that use a defensive missile have

detailed physics-based models of that missile, and these
models produce information that must be correctly
depicted. Visualizing the important aspects of the
defending missile begins by creating a 3D representa-
tion. To create such a representation, the engineer must
obtain engineering diagrams, blueprints, photographs,
computer-aided design models, and detailed descrip-
tions of the missile to the highest possible fidelity. Using
all of these resources, he creates via software a polygonal
3D representation (or framework) of the missile to scale.
Next, photographs are used to create computer images,
known as textures, that mimic the surface appearance
of the missile body. With the textures mapped onto
the polygonal 3D representation or “wireframe,” the
engineer can effectively reproduce the size, shape, and
appearance of the defending missile body. Then addi-
tional texture-wrapped polygonal representations of
each stage’s rocket motor flames may be attached to the
tail of each respective missile stage. Finally, each part of
the missile that is to be driven by modeling data (such
as aero-control surfaces) must have an “articulation,”
which describes its location with respect to the center
of gravity of the missile and its range of motion relative
to the missile’s axes (Fig. 2).

The resultant texture-wrapped polygonal representa-
tion can, however, be so highly detailed that computer
graphics hardware becomes saturated, especially if

Figure 1.  The weapon system simulation provides data to the entity, which attaches the
data to the graphics object and its articulation in the visualization screen.

numerous such representations
are simultaneously displayed in a
visualization scene. Although the
performance of the visualization
software is greatly enhanced by
object culling (removing “hidden”
objects), most of the graphics
optimization comes from polygon
reduction. APL achieved polygon
reduction by creating several ver-
sions of each graphic object, each
with a different level of detail.
When rendering a scene, the appro-
priate version is chosen based on
the distance of the object from the
viewer: the farther an object is from
the viewer, the simpler the graphic
object can be.

The engineer must next focus on
the need to visualize from the per-
spective of the six-degree-of-free-
dom (6-DOF) model of the defend-
ing missile. The primary parameters
that must be visualized are the data

Entity Graphic
object

Visualization
screen

Entity Graphic
object

Visualization
screen

Articulation

Articulation

Articulation

Articulation

Articulation

Articulation

DataWeapon
system

simulation

•
•
•

298	 JOHNS HOPKINS APL TECHNICAL DIGEST, VOLUME 23, NUMBERS 2 and 3 (2002)

D.  E-P.  COLBERT  and  R.  E.  RALSTON

that describe the actual translation and rotation of the
missile at a fine time-step granularity (i.e., time, posi-

(a) (b)

(c) (d)

Figure 2.  Polygonal (a), surface (b), and textured (c) representations of the missile are shown, as well as a missile graphic object in the
process of being constructed (d).

Missile metrics Target metrics

TGO: 137.31 Time: 362.00

Figure 3.  The missile entity, in this case a Standard Missile-3.

of the missile, the deflections of the missile’s fins, and
any attitude control thrusters on the missile. With these

tion, velocity, attitude, and acceler-
ation). By visualizing these param-
eters, the engineer can clearly see
for each time step where the missile
is, where it is heading, and where it
is pointing (Fig. 3).

Event information also facilitates
the visualization of how the body of
the missile changes size and shape as
the missile continues along its flight
path. Event information includes
the missile launch time, each missile
stage’s rocket motor burnout and
separation times, the ejection time
of minor elements of the missile
body (e.g., nosecone, dome cover,
clasps or nuts, bolts), impact events
(e.g., debris clouds, explosions),
and translucent spheres around the
missile that represent its lethal kill
radius.

Additional parameters that the
engineer must visualize are the
thrust and aero-control surface
data. These include the main thrust

JOHNS HOPKINS APL TECHNICAL DIGEST, VOLUME 23, NUMBERS 2 and 3 (2002)	 299

ENGINEERING VISUALIZATION

parameters added to the missile visualization, the engi-
neer can scale the rocket motor flames in proportion to
the main thrust data; rotate each fin according to its fin
deflection data; and turn on, turn off, and scale the atti-
tude control thruster flames according to the attitude
control thruster data. Having incorporated the thrust
parameters and aero-control surface into the visualiza-
tion, the engineer can visualize the effects of the forces
that affect the flight of the defending missile. To add
realism to the visualization, the engineer may even add
scaled smoke trails to the rocket motor flames to simu-
late plume from the rocket motors.

After obtaining the missile body representation and
corresponding data driving each element of the body,
the engineering information that describes the missile’s
onboard sensor must be added. The onboard sensor usu-
ally comprises a protective cover and the sensor itself.
A translucent cone or beam emanating from the sensor
face is used to represent its field of view. Sensor informa-
tion includes the half-power beamwidth of the sensor,
the range (if appropriate) of the sensor, the azimuth
and elevation of the beam at all times, and the sensor
activation time. Combining the protective cover ejec-
tion time from the stage data with the parameters for
the sensor beam, the engineer can visualize the precise
location, size, shape, and pointing angle of the sensor
beam at all times, as well as any entities which happen
to be contained within its field of view.

Threat Entity
The threat visualization process closely resembles the

process for a defending missile except that intelligence
information is now a critical input. The 3D representa-
tion of the threat is again created from any available
engineering diagrams, blueprints, etc., pertaining to
the threat, either from freely available or, more often,
intelligence sources. Using these resources, the engineer
generates via software a technically accurate wireframe
of the threat and maps textures onto the polygons that
mimic the threat’s appearance. Finally, the engineer
adds flames to the rocket motors and articulations to
any elements of the threat body, both of which are
dynamically driven by data. The threat’s launch vehicle
can also be visualized using the same process.

The flight of the threat for each time step can be
visualized from data on its position, velocity, attitude,
acceleration, main thrust, attitude control thrusters,
and stage events. The engineer follows a visualization
process similar to the one described for the defend-
ing missile to produce the trajectory, forces, and stage
events for the threat. The engineer may now see where
the threat is, where it is going, how it is oriented along
its flight path, whether it is speeding up or slowing
down, what forces are acting upon it, and how its size
and shape change as its flight progresses (Fig. 4).

Ship Entity
The engineer must next add the launch platform for

the defending missile, typically a ship. Using available
Navy ship engineering diagrams, blueprints, etc., a 3D
representation of the launching ship is produced in a
similar manner as the defending missile and the threat.
The trajectory for the ship has been less complicated to
date than for the missile and threat because it can be
described by a single latitude, longitude, and heading
(Fig. 5). Adding roll, pitch, and yaw as well as surge,
sway, and heave is simply a matter of attaching data
from a ship motion model to the ship entity.

Radar Entity
Housed on the ship entity, the radar entity (typi-

cally a phased array SPY face) must now be added to
the visualization to show search and track parameters.
The metrics for the radar include the azimuth, eleva-
tion, and instrumented range extent of the volume in
which the radar searches for the threat, as well as the

Figure 4.  The threat entity, shown here as a target test vehicle.

300	 JOHNS HOPKINS APL TECHNICAL DIGEST, VOLUME 23, NUMBERS 2 and 3 (2002)

D.  E-P.  COLBERT  and  R.  E.  RALSTON

half-power beamwidth, instrumented range extent, and
dynamic pointing angles of the beam(s) with which the
radar searches the volume. With this information, the
engineer may construct 3D representations of the radar
beams and search volume. These 3D representations are
created by constructing polygonal representations of the
beams and volume, adding color and translucency so
that the visualization simulates peering into the beams
and volume to determine what entities (such as threats)
are present.

The engineer must attach the beams and volume to
the appropriate SPY radar face on the representation
of the ship using information from the detached radar
model (typically the SPY FirmTrack model) to describe
their motion. The search volume frame time determines
how long it takes the radar beam to scan the entire
search volume. Radar beam azimuth and elevation
describe exactly where each beam is pointed at each
moment in the visualization. The radar model (Fig. 6)

also collects the state, type, group, cluster, object, and
correlation information pertaining to the tracks for all
threats that the radar is tracking.

Fire Control Entity
Also attached to the ship entity is the fire control

entity, or in some cases the illuminator(s). This entity
is represented as a set of beams and volumes similar to
the radar beams and volumes. The illuminator beams
typically have different dimensions than those for the
radar entity. Illuminator beams are attached to the illu-
minator dishes on the ship, and the beams are pointed
according to the desired pointing angle of the dish.
The illuminator dishes on the ship must also be rotated
toward the threat because they are mechanically aimed
(Fig. 7).

Aircraft Entity
All 3D representations of both friendly and threat

aircraft that the engineer visualizes are created in the
same way as a defending missile or threat is created. The
position and attitude of the aircraft at a fine time-step
are needed to visualize its flight. The visualization now
shows where the aircraft is at each point in time, as well
as how it is oriented at that time. For aircraft with an
onboard sensor, the 3D representations for the sensor
typically include the sensor itself, the sensor’s search
volumes, and the sensor’s search beams. The beams and
volumes for the sensor are similar to those of the radar
and illuminator, except that they have different sizes
and shapes (Fig. 8).

Figure 5.  The ship entity, an Aegis cruiser in this visualization.

Figure 6.  The outer search volume, the inner search beam, and the threat can be seen in this image of a radar entity.

JOHNS HOPKINS APL TECHNICAL DIGEST, VOLUME 23, NUMBERS 2 and 3 (2002)	 301

ENGINEERING VISUALIZATION

Terrain Entity
The engineer must also create

the terrain over which all other
entities are located. The terrain
entity is either a 3D representation
of the entire Earth or a small patch
of it. Terrain entities may be gener-
ated in several different ways and
to several different fidelity levels,
depending on the specific require-
ments of the visualization.

Several geographic datasets are
used to create a terrain visualiza-
tion. One source is digital terrain
elevation data (DTED) from the
National Imagery and Mapping
Agency (NIMA). DTED datasets
contain information for most of the
Earth on ground-level elevation
above mean sea level. This infor-
mation is obtained via satellite.
Another source is digital eleva-
tion map data from NIMA, which
includes similar elevation infor-
mation in a different file format
and for different resolutions than
DTED information. In addition,

Figure 7.  The two beams emanating from the ship toward the threats on the horizon are
the illuminators of the fire control entity.

Figure 8.  The aircraft entity, in this case an E-2C.

Celestial Entity
If the defending missile guides to the threat with a

seeker that may be affected by stars entering its field
of view, then celestial entities are important. Celestial
entities are represented as emissive points on a celestial
sphere that is at a great distance from the Earth. The
instantaneous star and planet locations on the celestial
sphere are calculated from their right ascension and
declination according to the U.S. Naval Observatory’s
Multiyear Interactive Computer Almanac for the specific
launch date and time. Using this information, the
engineer constructs a geocentric celestial sphere at a
distance of 10 RE from the Earth.

digital feature analysis datasets contain cultural features
for most of the Earth, e.g., buildings, roads, canals, rail-
roads, airports, etc. The engineer uses several software
packages to generate terrains and integrates the data
from several such geographical datasets to create any of
three terrain classes.

The first class is low-fidelity terrain, which is typically
used for visualization of Anti-Air Warfare analysis where
scenarios usually occur over a small area and are gener-
ally not near major land masses. Several steps are neces-
sary to generate this type of terrain. First, the appropriate
DTED data for the area of the world to be visualized are
loaded into polygon reduction software to construct the
initial flat-Earth 3D polygonal representation of the
location. Next, the engineer creates a low-fidelity image
texture from the DTED or digital elevation map dataset
using any of several software packages and then maps
the texture onto the polygons. The engineer must now
convert the terrain from its flat-Earth representation into
a non–flat-Earth model which is usually the 1984 World
Geodetic System’s ellipsoid Earth. In this manner, the
engineer creates a terrain that contains elevation infor-
mation, not only in the polygons that determine the
shape of the terrain but also in the texture that is mapped
onto the polygons (Fig. 9).

The second class, medium-fidelity terrain, has a rela-
tively low-fidelity polygonal representation but a rela-
tively high-fidelity texture mapped onto these polygons.
This terrain class has been used mainly for Theater

302	 JOHNS HOPKINS APL TECHNICAL DIGEST, VOLUME 23, NUMBERS 2 and 3 (2002)

D.  E-P.  COLBERT  and  R.  E.  RALSTON

Ballistic Missile Defense (TBMD) analysis, which takes
place far above the Earth and thus does not require a
high-fidelity polygonal representation of the Earth’s
surface. However, visualization cameras are often in
the exo-atmosphere looking down on the Earth, which
requires a large and relatively high-fidelity texture to
cover the camera’s field of view. To generate a terrain
of medium fidelity, the engineer has to follow steps that
are slightly modified from those for the low-fidelity 	
terrain. First he loads the appropriate DTED data for

the pertinent area of the world into
polygon reduction software. He may
need to load several datasets into
the software and concatenate them
into one large flat-Earth terrain to
cover the entire area. Following
this, either DTED or digital eleva-
tion map datasets are loaded into
the software, which reads the data-
sets and converts them into images.
In this way, the engineer creates a
relatively high-resolution texture
wrap for the terrain. Finally, the ter-
rain is converted from its flat-Earth
representation into the particular
coordinate system and Earth model.
The result is a terrain similar to
the low-fidelity terrain, except that 	
the medium-fidelity terrain covers
a much larger area of the Earth 	
(Fig. 10).

The third class of terrain, and by
far the most complicated to gener-
ate, is the high-fidelity terrain. This

Figure 9.  The terrain in this image is a low-fidelity graphic representation of Hawaii, which
was created for an Anti-Air Warfare reconstruction visualization. Kauai may be seen just
behind the ship.

Figure 10.  This middle-fidelity terrain of the Persian Gulf was created for a single-screen nondistributed TBMD visualization.

terrain has a high-fidelity polygonal representation and
a high-fidelity texture. It is used only when it is neces-
sary to have all of the characteristics of the medium-
fidelity terrain plus the highest geometrical accuracy
and precision possible at the surface of the Earth. These
terrains have been generated for joint mission analysis
of Overland Cruise Missile Defense (OCMD) and
TBMD, which involve defending against exo-atmo-
spheric theater ballistic missiles and terrain-hugging
overland cruise missiles, respectively.

JOHNS HOPKINS APL TECHNICAL DIGEST, VOLUME 23, NUMBERS 2 and 3 (2002)	 303

ENGINEERING VISUALIZATION

To build a terrain of this class, the engineer must
first determine what computer resources are available
on the visualization platform, including main memory
and geometry as well as the texture limits of the graph-
ics card. The terrain is designed based on these hard-
ware constraints. To generate a high-fidelity terrain
the engineer must first follow the steps for building a
medium-fidelity terrain, then begin again with the same
DTED datasets and batch-process the terrain as a set
of rectangular tiles with far more polygonal detail. The
terrain is divided into this set of rectangular tiles so that
hardware resources are conserved by only having the
hardware render high-fidelity tiles which are closest to
the viewpoint. Similar to the level of detail optimiza-
tion used for entities such as the missile and target, sim-
pler versions of the terrain tiles are used as the distance
from the viewer increases.

Even with this terrain optimization, the engineer
still must perform more optimizations to ensure that the
capabilities of the target platform’s graphics hardware
are not exceeded. Therefore, a critical step in generat-
ing a high-fidelity terrain is selecting an appropriate
polygon reduction method and reduction parameters for
the chosen method, customized to the specific capabili-
ties of the computer platform. The engineer then maps
the highest-fidelity texture onto the tiles. If cultural
features for the terrain are required, then the digital fea-
ture analysis data dataset overlays cultural features onto
the terrain as a polygonal representation of the selected
features (Fig. 11).

2D Overlays
Since not all data of interest can be meaningfully

shown as a 3D object, the engineer needs to also sup-
port other forms of data display. This is accomplished
by overlaying 2D graphic representations of the data
such as 2D plots, rotary dials, scales, compasses, and
attitude indicators onto the 3D scene, thereby allowing
visual correlation. In addition to displaying the 2D data
as graphical overlays, the data can also be displayed as
text. Although this is not the optimal display choice
for most data items, it is essential to be able to display
text for such information as titles, time of flight, miss
distance, and missile stage. It is also useful to have text
displays in the 3D visualization environment such as
annotations for track numbers attached to threats and
labels attached to stars in the visualization. The text
is rendered using a texture-mapped font for efficiency
and to give the engineer the flexibility of editing the
pixmap-based fonts.

Configuration Files
As the visualization software matured and APL

amassed a large library of terrains and graphic models,
users began to realize that most of the subsequent work

in visualizing new input data sets would entail manipu-
lating the input data rather than developing new fea-
tures or graphic models. The input data come from a
multitude of sources and are usually given to APL in
a format that needs to be manipulated, resampled, or
combined before they can be used by the visualization
software. APL improved the process of visualizing new
datasets somewhat by integrating a library of classes
that provided useful mathematical operations (e.g.,
unit conversions, coordinate transformations, and
quaternion-based spherical interpolations). However,
the availability of certain data would sometimes neces-
sitate the modification of the C++ visualization code.
For example, if APL received data that included an
articulation that had not been previously visualized,
then the software would have to modified so that these
data could drive the articulation control points of the
graphic representation.

The solution was to develop a configuration file that
would fully describe the data and the control points of
the graphic representation. This configuration file would
also specify how the data were to be mapped to the cor-
responding graphic representation. Developing a visual-
ization was then a matter of modifying the configuration
file instead of modifying the visualization code.

APL also wanted the configuration file to be flexible
enough to allow it to read each data file in its native
format. Rather than writing a static configuration file
format, the Laboratory decided to embed a scripting
language into the visualization software. This would
allow the flexibility to perform arbitrary data manipula-
tions, define the control points, and specify the data-
to-graphic mapping within a single configuration file.
Perl was chosen as the scripting language because it is
optimized for scanning arbitrary text files such as APL’s
visualization data files, has object-oriented support,
can be embedded into existing applications with rela-
tive ease, and has an established community that has
developed a voluminous software code base from which
APL draws.

Visualization Products
Because visualizations allow for user interaction,

they are most useful when viewed from a display while
it is being rendered directly from the computer. Being
able to interact with the visualization (e.g., viewing a
scene from varying angles, changing the playback speed,
enlarging screens on a subdivided display) enables the
engineer or sponsor to focus on any aspect of the visual-
ization desired.

Since the host platform for the visualization software
is too large to permit ease of physical portability, APL
has used several methods of capturing the visualization
onto analog or digital media to create portable versions
for distribution. The simplest but least preferred method
is an analog VHS video capture of the visualization. To

304	 JOHNS HOPKINS APL TECHNICAL DIGEST, VOLUME 23, NUMBERS 2 and 3 (2002)

D.  E-P.  COLBERT  and  R.  E.  RALSTON

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 11.  These eight images display the level of precision to which a high-fidelity terrain must be generated while still covering a large
area. In (a) and (b), the relatively small distance between the missile and the mountain ridge over which it has just flown may be seen. In
(c)–(e), the red profile of the cruise missile is seen weaving through valleys (light green) in the terrain. The scenario as seen from space
is depicted in (f)–(h). This high-fidelity terrain was generated for a mixed-mission TBMD and OCMD multiscreen distributed visualization,
another class of visualization which is discussed later in this article.

JOHNS HOPKINS APL TECHNICAL DIGEST, VOLUME 23, NUMBERS 2 and 3 (2002)	 305

ENGINEERING VISUALIZATION

create the VHS videotape, a video camera is mounted
directly facing the computer monitor of a running 	
visualization.

An alternative and preferred method of capturing to
VHS videotape is to first create a digital video capture
and then create the videotape from the digital version.
To make a digital capture of the visualization, APL
added code to step through the visualization (usually
at 30 frames per second), capturing each individual
frame to disk. After the visualization has saved all of
the frames to disk, movie-editing software is used to
assemble the frames and compress them into a single
quicktime movie. Once the quicktime movie has been
generated, it may be postprocessed to include titles,
sound, labels, transitions, and other effects which
improve the quality of the movie. The final movie is
then written to videotape.

To produce an even higher-quality visualization
product, the quicktime movie may be written to a DVD-
R disk for playback on a television with a DVD player.
For the highest-quality portable visualization product,
the engineer writes the quicktime movie to a compact
disk for playback on a desktop or laptop computer.

The digital capture process can be lengthy because,
although the visualization software can display the ren-
dered images at high frame rates, the capture software
is limited by the speed at which it can write the images
to disk. APL accelerated this process by purchasing spe-
cialized computer hardware that could save the images
to disk as fast as they could be rendered. The addition of
this hardware allows a visualization that had previously
required days to be captured to now be captured in a
matter of minutes.

To allow digital capture of visualizations, it was also
necessary to have scripted interactions (e.g., camera
angle changes, screen zooms, pauses, playback speed
changes) so that the digital capture could be performed
without user interaction. To facilitate this, the visual-
ization software was written with a generic event inter-
face that allowed all actions to be driven either by a user
interactively invoking events through the keyboard and
mouse or by inserting fixed events into the configura-
tion script.

Reconstruction Visualization
The second class of engineering visualization—

reconstruction visualization—is built on the same
visualization framework as single-screen nondistributed
visualization. Reconstruction visualization allows the
weapon system engineer to simultaneously compare the
actual performance of real-world weapon systems to the
performance predictions of M&S tools. The sources of
the engineering information for this visualization class
include data from actual weapon systems and telemeters
from weapon systems participating in an at-sea or land-
based test firing. Reconstruction visualization allows

the engineer to validate the M&S tools and present the
findings to the sponsor.

The visualization entities in a reconstruction visual-
ization are the same as those for the single-screen non-
distributed class of visualization. The data, however,
are collected from several of the participating weapon
systems in the test. The data germane to the ship and
shipboard weapon systems—ship location, ship head-
ing, raw radar track from the SPY radar, filtered radar
track from the weapon control system (WCS), and illu-
minator information from the fire control system—are
all collected by the ship systems and sent to APL via a
secure link to the Aegis performance assessment net-
work. Engineering information germane to the defend-
ing missile system—the missile state bilevels, position,
attitude, velocity, acceleration, and gimbal angles from
the seeker—are collected from telemeters onboard the
defending missile and transferred to APL via a secure
network link with the Naval Warfare Assessment
Station. The engineer must use several data fusion
techniques to overcome the disparities in the data and
integrate all of the engineering information into a single
visualization.

Telemetry data for the reconstruction is collected
from separate physical telemeters, all of which have
unique clock and coordinate systems. To integrate
these data sources, the engineer must align all tele-
meter clocks to a standard clock (usually Greenwich
Mean Time) and resample all of the variable fre-
quency data to a single, fixed sampling rate. Then he
must align the coordinate systems. The coordinate
system of the data collected from the missile telemeter
is usually missile body frame, whereas the coordinate
system of the data collected from the ship is usually
either downrange-crossrange-up or east-north-up. To
import these data into the visualization, the engineer
must transform the data from their native coordinate
systems into the coordinate system of the visualization
and then merge the processed data from the various
telemeter files into separate data files for each visual-
ization entity.

The next step is for the engineer to collect the data
from actual sensors in real-world weapon systems. These
data will inherently contain noise and singularities due
to the physical characteristics of the sensor, so the
engineer must remove the singularities from the data
or replace them with an average of surrounding points.
Noise from the data must be removed with filtering
techniques appropriate to the type of trajectory that
is being reconstructed. Low-resolution, high-altitude,
radially inbound threat tracks require different noise fil-
ters than high-resolution, low-altitude, weaving threats.
The engineer determines the proper filter based on the
quality of the track, the dynamics of the track, and any
known peculiarities specific to the particular tracking
sensors and telemeters recording the data.

306	 JOHNS HOPKINS APL TECHNICAL DIGEST, VOLUME 23, NUMBERS 2 and 3 (2002)

D.  E-P.  COLBERT  and  R.  E.  RALSTON

To produce a best estimate of the actual filtered
trajectories, the engineer works with several quantities
and weighs them based on confidence in the data. For
example, if there is high confidence in the actual inter-
cept point of the threat and missile, the engineer may
choose to fix the final point in both trajectories to the
actual intercept point and filter the position data from
either the missile telemeter or the SPY radar track data
back to the trajectories’ respective origins. However,
if there is no confidence in the actual intercept point
but instead confidence in the launch position and the
velocities of the two trajectories, the engineer may fix
the launch locations and determine
the position of the two entities
using the velocity from either the
SPY radar track data or the missile
telemeter data.

It is obvious from these two
examples alone that the process of
converting raw real-world data col-
lected from sensors and telemeters
into a filtered best estimate of the
actual trajectory is a delicate and
sensitive one in which data integ-
rity must be maintained yet known
anomalies filtered out. Through
optimization and automation tech-
niques, the time required to process
these data from the time that they
arrive at APL has been shortened
from several weeks to about a day.

The visualizations of this real-
world engineering information are
used to analyze the actual perfor-
mance of the SPY radar, illumina-
tors, defending missile, and threat
weapon systems participating in an
actual at-sea test. Reconstruction
visualization may be compared to
M&S predictions for the at-sea
test performed before and after
the actual test. By overlaying all of
this engineering information into
a single visualization, the engineer
can simultaneously observe APL’s
pretest modeled performance pre-
diction, the actual performance of
the actual weapon system from the
at-sea test, and the posttest mod-
eled performance prediction (Figs.
12 and 13).

Quicktime Visualization
The third class of visualization,

quicktime visualization, is inherently
distinct from the other classes. It is

Figure 12.  To the left is a reconstruction from the threat perspective. The beams are from
the ship’s illuminators. To the right is the same reconstruction from the missile’s perspec-
tive. The green cone emanating from the missile is its seeker.

Figure 13.  A reconstruction of the successful Standard Missile-2 engagement of a Lance
target over the White Sands Missile Range in 1997. The SM-2 telemetry data were ana-
lyzed to determine the relative range, velocity, and attitude of the missile and target at end-
game and were then used as input to the visualization. The visualization screen is divided
into two parts: the first screen shows a scene of the endgame from a virtual camera
oriented according to the SM-2’s infrared (IR) camera gimbal angles, and the second
screen shows the seeker IR images captured from the actual flight test. By setting the field
of view of the virtual camera and orienting the camera according to the actual IR seeker’s
orientation, as reported in the telemetered data, APL was able to visually confirm that the
visualized geometry was correct. The visualization was then used to extrapolate past the
last available telemetry data point to not only conclude that the engagement was a “direct
hit” but also pinpoint where on the target the missile collided.

by nature a 2D visualization and may be created offline by
virtually any third-party software package that is used to
analyze engineering information. APL developed quick-
time visualizations to meet a requirement for integrating
2D engineering information into 3D visualizations and
synchronizing the playback of the information to the exe-
cuting quicktime. Examples of such 2D image sequences
are returns from onboard sensors, results of finite element
analysis of intercepts, results of discrimination and han-
dover algorithm analysis, quad charts displaying engineer-
ing information exported from third-party applications,
and slide show presentations (Fig. 14).

JOHNS HOPKINS APL TECHNICAL DIGEST, VOLUME 23, NUMBERS 2 and 3 (2002)	 307

ENGINEERING VISUALIZATION

Figure 14.  Three examples of quicktime visualizations: the left image is a visualization of the handover and discrimination process, the
center image is a visualization of the finite element analysis of intercept, and the right image is a quad chart of some metrics relevant to
the radar entity.

To generate the quicktime visualization, the frames
of the quicktime movie are produced using third-party
software applications. Next the images and times for
each respective frame of the visualization are collected
and the images are compressed into a quicktime movie.
The engineer must associate a time to each of the
frames in the quicktime movie. Then he begins play-
back of the quicktime visualization and synchronizes
the current frame time of the running quicktime movie
to the current time in the running master visualization.
Quicktime visualizations may either be viewed as a
stand-alone visualization or as a node in a multiscreen
distributed visualization, which is described in the fol-
lowing section.

Multiscreen Distributed Visualization
The fourth class of visualization that APL has

developed is a multiscreen visualization that is distrib-
uted across several computers. The Laboratory had a
requirement to simultaneously visualize several weapon
systems in great detail. This could not be accomplished
with a single screen, so the visualization was designed
to span multiple screens. Instead of attempting to
render the visualization onto multiple screens using a
single computer, multiple computers were used, with
each computer rendered to an individual display. This
allowed APL to take advantage of the resources of
several midrange visualization computers for the mul-
tiscreen visualization that would otherwise require a
single high-end visualization computer.

Multiscreen distributed visualization is accomplished
by building a visualization for each midrange computer
that displays a subset of the visualization windows and
then running the visualizations simultaneously on each
computer. The visualization software contains network
software that enables APL to keep the visualizations
synchronized, creating the appearance of a single,
coherent visualization (Fig. 15).

The synchronization software used for the multi-
screen visualizations also enables synchronization of
other software with the visualization. Most notably, it

Figure 15.  A multiscreen distributed visualization of the per-
formance evaluation of the same scenario with three sepa-
rate coordination algorithms. By visualizing all three algorithms
simultaneously, APL was able to clearly see how each algorithm
affected the overall performance.

308	 JOHNS HOPKINS APL TECHNICAL DIGEST, VOLUME 23, NUMBERS 2 and 3 (2002)

D.  E-P.  COLBERT  and  R.  E.  RALSTON

allows for the integration of the quicktime visualization
captured from other sources.

ARTEMIS Three-Screen, Nine-Window
Visualization

APL developed the most recent visualization
class—the APL Area/Theater Engagement Missile/Ship
Simulation (ARTEMIS)1 three-screen, nine-window
visualization class—to realize specific visualization goals 	
for a new type of M&S effort in the Navy Theater 	
Wide TBMD program. ARTEMIS is a high-level-archi-
tecture federation of engineering models that integrates
existing high-fidelity weapon system models into a
distributed architecture. These distributed models, or
federates, exchange engineering information among
themselves as they execute, thus creating a closed-loop,
end-to-end simulation.

The ARTEMIS simulation consists of several sepa-
rate federates, each requiring a unique window in the
visualization. To simultaneously visualize all of these
federates, APL designed the ARTEMIS visualization
for viewing in the System Concept Development Labo-
ratory as a three-screen display in which the left and
right screens are subdivided into quadrants. The center
screen is a 3D window that shows a wide-area view of
the entire scenario; each of the quarter-screen windows
on the left and right shows information pertaining to
a single federate. Taking advantage of new high-end
computers with advanced graphics capabilities, APL
has developed a single visualization for ARTEMIS
that simultaneously displays each federate, allowing
engineers and sponsors to view the enormous amount of
engineering information from an ARTEMIS simulation
run (Fig. 16).

To best represent each individual federate, APL
decided that several federates would be shown as 2D
plots or as text readouts instead of the 3D-rendered
images for which the visualization software was geared.
The solution was to write these non-3D federate 	

windows using the Motif widget set and combine the
widgets with the 3D software. The Motif-based feder-
ate windows were written into a library separate from
the core 3D visualization software so that these feder-
ates could run in a separate process, taking advantage
of APL’s multiprocessor system and minimizing the
impact on the 3D rendering software. Shared memory
was used for communication between the Motif and
the 3D processes and for integrating the two processes
onto a single display by reparenting the 3D windows
into the Motif screen.

Even with three 1280  1024 pixel screens, the
display real estate is at a premium when trying to simul-
taneously visualize all of the federates; therefore, any
of the quarter screens can be interactively selected and
enlarged to take up one, two, or all three screens. When
a federate window is enlarged, the engineer populates
the remaining window area with additional metrics
and other engineering information pertinent to the
window’s federate. To conserve screen space, displayed
data are dynamically changed through the use of Motif
selection lists, dynamic and logarithmic scales, scrol-
lable text lists, and context-sensitive popups that can
display extended data.

The global window is the center visualization
window for ARTEMIS. It is the only window that
occupies one entire screen and is similar to a single-
screen nondistributed visualization. The global window
visualizes the ARTEMIS run from a fixed view far
above the Earth. It contains the terrain visualization,
the ship from which the defending missile is launched,
the threat and its launcher, and any relevant beams or
volumes from the SPY radar or infrared (IR) seeker
onboard the fourth stage of Standard Missile-3 (SM-3).
It also contains readouts for metrics such as time and
launch position for the missile and threat.

In the upper left-hand quadrant of the left screen,
the engineer visualizes engineering information from
the scenario manager federate. This window also 	
shows the message traffic exchanged among all of the

Figure 16.  The ARTEMIS three-screen, nine-window visualization. From upper left to bottom right: the scenario manager federate
window, systems engineering window, missile guidance federate window, missile signal processor federate window, global window, threat
federate window, SPY radar federate window, command and decision federate window, and WCS federate window.

JOHNS HOPKINS APL TECHNICAL DIGEST, VOLUME 23, NUMBERS 2 and 3 (2002)	 309

ENGINEERING VISUALIZATION

ARTEMIS federates. As the visualization progresses, 	
federate-to-federate message metrics scroll by in the
scenario manager window. The window contains the
sender of the message, the receiver of the message, the
message type, the time at which the message was sent,
and plots of the message traffic rates. Also, if the mes-
sage contents are available, the user can select messages
and display their contents in a pop-up window.

To the right of the scenario manager federate
window is the systems engineering window, which
displays a slide show that is synchronized with the visu-
alization. As the visualization progresses, the slide show
presents critical events, such as launching, staging, and
intercepting, as they occur.

In the lower left quadrant of the left screen is the
missile guidance federate window which displays a 3D
visualization of the missile guidance federate and is
similar to the missile entity single-screen visualizations
for which the software was originally written. Entities
displayed in this window are the terrain, the ship from
which the missile is launched, the defending missile
itself, the beam representing the seeker onboard the
fourth stage of SM-3, and the threat as it enters into
view during endgame.

To the right of the missile guidance federate window
is the missile signal processor federate window which
contains engineering information that is germane to
the missile signal processor, including the azimuth and
elevation of the IR returns from the SM-3’s fourth stage
IR seeker, the current mode of the seeker, and raw and
stabilized animated plots of the reported elevation and
azimuth.

In the upper left quadrant of the right screen is
the threat federate window. Like the missile guidance
federate window, the threat federate window displays
a 3D visualization similar to the original single-screen
visualizations. It contains the terrain entity, the threat
and launcher entity, and the missile entity as it enters
into view during its fourth stage. It also provides menu-
selectable options to enable subwindows, which display
the current IR signature and radar cross-section sig-
nature that the threat is projecting to the defending
weapon systems.

To the right of the threat window is the SPY radar
federate window which contains search and track infor-
mation from the SPY radar federate. Here, a 3D visual-
ization of the SPY-filtered threat track and the ground-
truth threat track provides a visual representation of
the SPY track errors. These errors are also displayed in
three overlay strip charts to better show their scale and
direction.

In the lower left quadrant of the right screen is the
window for the command and decision federate. This
window visualizes the engageability tests performed
by the command and decision federate preceding the 	
missile engage order. The instantaneous results of

engageability tests for engagement quality, altitude
check, screens, and intercept point evaluation are
presented as a table of pass/fail bars. To the immediate
right of the table, any of the individual engageability
parameters may be plotted.

To the right of the command and decision federate
window is the WCS federate window. This window
shows such metrics as prelaunch calculations performed
by the WCS federate; metrics from the midcourse guid-
ance of the missile, which is handled by the WCS; and
metrics from the handover event in which the WCS
“hands over” information to the missile signal processor.
To the immediate right of the tabular data, the user may
view plots for any of the federate’s metrics.

THE FUTURE
APL intends to develop many additional visualiza-

tion capabilities and incorporate them into the current
engineering visualization:

•	 Reconstructions: Include video footage from launch
site as well as footage from airborne and onboard
missile/threat video cameras and engineering infor-
mation from the ground station and satellites in the
visualization.

•	 Communications: When relevant to the visualiza-
tion, add a display of communications as they pass
back and forth among the visualization entities.

•	 IR signatures: Develop a method by which instanta-
neous IR signatures of the threat can be dynamically
mapped onto its skin as it flies.

•	 Finite element: Improve upon the Sphinx hydrocode
tool’s 2D visualizer used at APL to evaluate postint-
ercept lethality of threats through finite element
analysis.

•	 ARTEMIS: Make APL a visualization federate in the
ARTEMIS federation of models, enabling users to
visualize ARTEMIS concurrent to the simulation’s
execution.

•	 Undersea: Develop an undersea visualization capabil-
ity that will allow APL to study undersea-launched
weapon systems.

•	 Multimission: Develop an engineering visualization
for nodal analysis tools, such as the APL Coordi-
nated Engagement Simulation or the Extended Air
Defense Simulation.

•	 Radar: Add fuller functionality to the SPY radar
visualization in a scenario, including error ellipsoids,
launch event correlations, and increased precision
for search beam locations, clusters, groups, and any
other metrics which may be pertinent.

•	 Particle system: Develop a multiprocess particle
system for efficiently rendering great numbers of par-
ticles for improved smoke and debris representation
in the visualization.

310	 JOHNS HOPKINS APL TECHNICAL DIGEST, VOLUME 23, NUMBERS 2 and 3 (2002)

D.  E-P.  COLBERT  and  R.  E.  RALSTON

THE AUTHORS

DAVID E-P. COLBERT received a B.S. in engineering physics from the Univer-
sity of Illinois at Urbana-Champaign in 1996. He joined the Air Defense Systems
Engineering Group of ADSD at APL in 1996. Since then, Mr. Colbert has been
developing visualizations of naval weapon systems for Area and Self-Defense Anti-
Air Warfare, Area TBMD, Navy Theater Wide TBMD, Overland Cruise Missile
Defense, Cooperative Engagement Capability, and Joint Mission Defense. He is
currently working on oceanographic surface wave analysis, oceanographic environ-
mental analysis, and engineering visualization as a member of the APL Associate
Professional Staff. His e-mail address is david.colbert@jhuapl.edu.

R. EDWARD RALSTON is a member of APL’s Senior Professional Staff in the Air
Defense Systems Engineering Group of ADSD. He received a B.A. in mathemat-
ics from St. Mary’s College of Maryland in 1992 and an M.S. in mathematics from
Texas Tech University in 1995. Previously he worked for Veridian and Electronic
Arts as a graphics software engineer. He first came to APL as a subcontractor in
1996 and was tasked with redesigning existing visualization software into a reusable
object-oriented framework. Mr. Ralston became an APL staff member in 2001 and
is currently developing testbed software for the MESSENGER team. His e-mail
address is ed.ralston@jhuapl.edu.

SUMMARY
High-fidelity engineering information is critical to

facilitate the design, analysis, and M&S of complex
weapon systems to defend against threats to our nation.
The technical community and the associated DoD spon-
sors must have confidence in that engineering informa-
tion and must understand it at various levels, depending
on the functionality of the technical community and
sponsors in the overall acquisition process. Contempo-
rary engineering information is becoming even more
complicated because of advances in threat technology,
which drive the need for more complex weapon sys-
tems to defeat them. Also, the more recent DoD-wide 	
focus on a distributed simulation capability, which inte-
grates physically separate high-fidelity physics-based

simulations, is also contributing to the increasing
complexity of the engineering information. APL has
developed a state-of-the-art engineering visualization
capability which has become an essential systems engi-
neering tool by providing confidence in and compre-
hension of complex engineering information.

REFERENCE
  1Pollack, A. F., and Chrysostomou, A. K., “ARTEMIS: A High-Fidel-

ity End-to-End TBMD Federation,” Johns Hopkins APL Tech. Dig.
22(4), 508–515 (2001).

ACKNOWLEDGMENTS: The authors wish to acknowledge Bernie Kraus, 	
R. Kent Koehler, Kevin Wilmore, Doug Ousborne, Dave Wu, Phil Miller, Richard
Freas, Bill Critchfield, Nancy Crowley, Chad Bates, and Simon Moskowitz, as well
as the myriad APL modelers who provided their expertise and data to us.

	Engineering Visualization
	David E-P. Colbert and R. Edward Ralston
	INTRODUCTION
	EVOLUTION
	Single-Screen Nondistributed Visualization
	Visualization Entities
	Defending Missile Entity
	Threat Entity
	Ship Entity
	Radar Entity
	Fire Control Entity
	Aircraft Entity
	Celestial Entity
	Terrain Entity
	2D Overlays
	Configuration Files
	Visualization Products

	Reconstruction Visualization
	Quicktime Visualization
	Multiscreen Distributed Visualization
	ARTEMIS Three-Screen, Nine-Window Visualization

	THE FUTURE
	SUMMARY
	REFERENCE
	THE AUTHORS
	FIGURES
	Figure 1. The weapon system simulation provides data to the entity.
	Figure 2. Polygonal, surface, and textured representations of the missile, and missile graphic object in the process of being constructed.
	Figure 3. The missile entity, in this case a Standard Missile-3.
	Figure 4. The threat entity, shown here as a target test vehicle.
	Figure 5. The ship entity, an Aegis cruiser in this visualization.
	Figure 6. The outer search volume, the inner search beam, and the threat can be seen in this image of a radar entity.
	Figure 7. The two beams emanating from the ship toward the threats on the horizon arethe illuminators of the fire control entity.
	Figure 8. The aircraft entity, in this case an E-2C.
	Figure 9. The terrain in this image is a low-fidelity graphic representation of Hawaii, whichwas created for an Anti-Air Warfare reconstruction visualization.
	Figure 10. This middle-fidelity terrain of the Persian Gulf was created for a single-screen nondistributed TBMD visualization.
	Figure 11. These eight images display the level of precision to which a high-fidelity terrain must be generated while still covering a largearea.
	Figure 12. To the left is a reconstruction from the threat perspective.
	Figure 13. A reconstruction of the successful Standard Missile-2 engagement of a Lance target over the White Sands Missile Range in 1997.
	Figure 14. Three examples of quicktime visualizations.
	Figure 15. A multiscreen distributed visualization of the performance evaluation of the same scenario with three separate coordination algorithms.
	Figure 16. The ARTEMIS three-screen, nine-window visualization.

