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Engineering Visualization

David E-P. Colbert and R. Edward Ralston

hysics-based, high-fidelity modeling and simulation (M&S) tools that the engineering 
community develops and employs to analyze the performance of modern weapon systems 
are necessarily becoming more complex. As the fidelity of these tools increases, so does the 
volume of pertinent information that they generate. To interpret the wealth of resulting 
engineering information, APL developed “engineering visualization” as a tool to facilitate 
a better understanding of weapon systems and their respective models and simulations. 
Engineering visualization allows the engineer to present the results of M&S-based analysis 
to the sponsor with unrivaled clarity and efficacy. By providing the highest level of insight 
possible to both engineer and sponsor, engineering visualization has established itself as 
an essential systems engineering tool. This article describes the history, development, 
implementation, and future of engineering visualization in the Laboratory’s Air Defense 
Systems Department.

INTRODUCTION
An important role of a weapon system engineer 

has been to interpret analytical results and present 
those results to the sponsor. Many early engineering 
efforts at APL produced tabular engineering informa-
tion printouts, which an engineer pored over, looking 
for patterns and trends in the array of numbers. Later, 
two-dimensional (2D) plotting tools became readily 
available. The engineer now had the ability to study a 
single metric versus another metric in a graphical repre-
sentation, looking for trends or anomalies in the graph. 
As time progressed, three-dimensional (3D) plotting 
applications became available to the weapon systems 
engineer that facilitated the ability to study three-
parameter modeling outputs, either as a line or a surface 
in 3D space. Adding a fourth dimension, usually time, 
to these plots enabled a unique quality of animation 

that allowed visualization of four-parameter engineer-
ing information.

The volume and complexity of the engineering infor-
mation resulting from these weapon systems models 
grow directly as the complexity of the threat increases. 
Also, with recent trends in DoD research focusing more 
on using statistical computer models of weapon systems, 
the weapon systems engineer has enormous amounts of 
information to analyze and interpret. In addition, these 
analytical results must be communicated to the sponsor 
in a clear and concise manner.

Commercially available engineering analysis tools are 
not capable of studying all aspects of a weapon system 
or presenting comprehensive analysis results succinctly. 
Often, complex analysis can result in a presentation 
with hundreds of slides and can require several hours to 
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present to the sponsor. To make this problem manage-
able, APL has developed “engineering visualization” as 
a tool to study such voluminous amounts of complex 
engineering information and to present findings to the 
sponsor efficiently and effectively.

EVOLUTION

Single-Screen Nondistributed Visualization
The first class of engineering visualization, single-

screen nondistributed visualization, has been used to 
analyze several weapon systems. This section describes 
the genesis of this fundamental visualization tool.

Visualization Entities
The visualization software’s basic purpose is to take 

weapon system simulation data and efficiently build a 
3D representation of those data within a visualization 
scene (Fig. 1). Thus mapping the data of an object (e.g., 
a missile) to a meaningful visual representation of the 
object is the fundamental objective. The core C++ 
object within the visualization software is, therefore, the 
entity object, which contains a reference to the graphi-
cal representation of the object within the visualization 
scene, a reference to the data source, and the mapping 
of the data to the graphical object’s various controls 
(such as position, orientation, and articulations). In 
the visualization software, anything that has a visual 
representation and is driven by data is represented as 
an entity object. The visualization software consists 
of about 250 C++ classes and contains a visualization 
scene; a motif interface; a math library; networking 

code, camera, and event scripts; a 3D graphical user 
interface; and 2D overlays. 

Defending Missile Entity
Air defense systems that use a defensive missile have 

detailed physics-based models of that missile, and these 
models produce information that must be correctly 
depicted. Visualizing the important aspects of the 
defending missile begins by creating a 3D representa-
tion. To create such a representation, the engineer must 
obtain engineering diagrams, blueprints, photographs, 
computer-aided design models, and detailed descrip-
tions of the missile to the highest possible fidelity. Using 
all of these resources, he creates via software a polygonal 
3D representation (or framework) of the missile to scale. 
Next, photographs are used to create computer images, 
known as textures, that mimic the surface appearance 
of the missile body. With the textures mapped onto 
the polygonal 3D representation or “wireframe,” the 
engineer can effectively reproduce the size, shape, and 
appearance of the defending missile body. Then addi-
tional texture-wrapped polygonal representations of 
each stage’s rocket motor flames may be attached to the 
tail of each respective missile stage. Finally, each part of 
the missile that is to be driven by modeling data (such 
as aero-control surfaces) must have an “articulation,” 
which describes its location with respect to the center 
of gravity of the missile and its range of motion relative 
to the missile’s axes (Fig. 2).

The resultant texture-wrapped polygonal representa-
tion can, however, be so highly detailed that computer 
graphics hardware becomes saturated, especially if 

Figure 1.  The weapon system simulation provides data to the entity, which attaches the 
data to the graphics object and its articulation in the visualization screen.

numerous such representations 
are simultaneously displayed in a 
visualization scene. Although the 
performance of the visualization 
software is greatly enhanced by 
object culling (removing “hidden” 
objects), most of the graphics 
optimization comes from polygon 
reduction. APL achieved polygon 
reduction by creating several ver-
sions of each graphic object, each 
with a different level of detail. 
When rendering a scene, the appro-
priate version is chosen based on 
the distance of the object from the 
viewer: the farther an object is from 
the viewer, the simpler the graphic 
object can be.

The engineer must next focus on 
the need to visualize from the per-
spective of the six-degree-of-free-
dom (6-DOF) model of the defend-
ing missile. The primary parameters 
that must be visualized are the data 
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that describe the actual translation and rotation of the 
missile at a fine time-step granularity (i.e., time, posi-

(a) (b)

(c) (d)

Figure 2.  Polygonal (a), surface (b), and textured (c) representations of the missile are shown, as well as a missile graphic object in the 
process of being constructed (d).

Missile metrics Target metrics

TGO: 137.31 Time: 362.00

Figure 3.  The missile entity, in this case a Standard Missile-3.

of the missile, the deflections of the missile’s fins, and 
any attitude control thrusters on the missile. With these 

tion, velocity, attitude, and acceler-
ation). By visualizing these param-
eters, the engineer can clearly see 
for each time step where the missile 
is, where it is heading, and where it 
is pointing (Fig. 3). 

Event information also facilitates 
the visualization of how the body of 
the missile changes size and shape as 
the missile continues along its flight 
path. Event information includes 
the missile launch time, each missile 
stage’s rocket motor burnout and 
separation times, the ejection time 
of minor elements of the missile 
body (e.g., nosecone, dome cover, 
clasps or nuts, bolts), impact events 
(e.g., debris clouds, explosions), 
and translucent spheres around the 
missile that represent its lethal kill 
radius. 

Additional parameters that the 
engineer must visualize are the 
thrust and aero-control surface 
data. These include the main thrust 
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parameters added to the missile visualization, the engi-
neer can scale the rocket motor flames in proportion to 
the main thrust data; rotate each fin according to its fin 
deflection data; and turn on, turn off, and scale the atti-
tude control thruster flames according to the attitude 
control thruster data. Having incorporated the thrust 
parameters and aero-control surface into the visualiza-
tion, the engineer can visualize the effects of the forces 
that affect the flight of the defending missile. To add 
realism to the visualization, the engineer may even add 
scaled smoke trails to the rocket motor flames to simu-
late plume from the rocket motors.

After obtaining the missile body representation and 
corresponding data driving each element of the body, 
the engineering information that describes the missile’s 
onboard sensor must be added. The onboard sensor usu-
ally comprises a protective cover and the sensor itself. 
A translucent cone or beam emanating from the sensor 
face is used to represent its field of view. Sensor informa-
tion includes the half-power beamwidth of the sensor, 
the range (if appropriate) of the sensor, the azimuth 
and elevation of the beam at all times, and the sensor 
activation time. Combining the protective cover ejec-
tion time from the stage data with the parameters for 
the sensor beam, the engineer can visualize the precise 
location, size, shape, and pointing angle of the sensor 
beam at all times, as well as any entities which happen 
to be contained within its field of view.

Threat Entity
The threat visualization process closely resembles the 

process for a defending missile except that intelligence 
information is now a critical input. The 3D representa-
tion of the threat is again created from any available 
engineering diagrams, blueprints, etc., pertaining to 
the threat, either from freely available or, more often, 
intelligence sources. Using these resources, the engineer 
generates via software a technically accurate wireframe 
of the threat and maps textures onto the polygons that 
mimic the threat’s appearance. Finally, the engineer 
adds flames to the rocket motors and articulations to 
any elements of the threat body, both of which are 
dynamically driven by data. The threat’s launch vehicle 
can also be visualized using the same process.

The flight of the threat for each time step can be 
visualized from data on its position, velocity, attitude, 
acceleration, main thrust, attitude control thrusters, 
and stage events. The engineer follows a visualization 
process similar to the one described for the defend-
ing missile to produce the trajectory, forces, and stage 
events for the threat. The engineer may now see where 
the threat is, where it is going, how it is oriented along 
its flight path, whether it is speeding up or slowing 
down, what forces are acting upon it, and how its size 
and shape change as its flight progresses (Fig. 4).

Ship Entity
The engineer must next add the launch platform for 

the defending missile, typically a ship. Using available 
Navy ship engineering diagrams, blueprints, etc., a 3D 
representation of the launching ship is produced in a 
similar manner as the defending missile and the threat. 
The trajectory for the ship has been less complicated to 
date than for the missile and threat because it can be 
described by a single latitude, longitude, and heading 
(Fig. 5). Adding roll, pitch, and yaw as well as surge, 
sway, and heave is simply a matter of attaching data 
from a ship motion model to the ship entity.

Radar Entity
Housed on the ship entity, the radar entity (typi-

cally a phased array SPY face) must now be added to 
the visualization to show search and track parameters. 
The metrics for the radar include the azimuth, eleva-
tion, and instrumented range extent of the volume in 
which the radar searches for the threat, as well as the 

Figure 4.  The threat entity, shown here as a target test vehicle.
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half-power beamwidth, instrumented range extent, and 
dynamic pointing angles of the beam(s) with which the 
radar searches the volume. With this information, the 
engineer may construct 3D representations of the radar 
beams and search volume. These 3D representations are 
created by constructing polygonal representations of the 
beams and volume, adding color and translucency so 
that the visualization simulates peering into the beams 
and volume to determine what entities (such as threats) 
are present.

The engineer must attach the beams and volume to 
the appropriate SPY radar face on the representation 
of the ship using information from the detached radar 
model (typically the SPY FirmTrack model) to describe 
their motion. The search volume frame time determines 
how long it takes the radar beam to scan the entire 
search volume. Radar beam azimuth and elevation 
describe exactly where each beam is pointed at each 
moment in the visualization. The radar model (Fig. 6) 

also collects the state, type, group, cluster, object, and 
correlation information pertaining to the tracks for all 
threats that the radar is tracking. 

Fire Control Entity
Also attached to the ship entity is the fire control 

entity, or in some cases the illuminator(s). This entity 
is represented as a set of beams and volumes similar to 
the radar beams and volumes. The illuminator beams 
typically have different dimensions than those for the 
radar entity. Illuminator beams are attached to the illu-
minator dishes on the ship, and the beams are pointed 
according to the desired pointing angle of the dish. 
The illuminator dishes on the ship must also be rotated 
toward the threat because they are mechanically aimed 
(Fig. 7).

Aircraft Entity
All 3D representations of both friendly and threat 

aircraft that the engineer visualizes are created in the 
same way as a defending missile or threat is created. The 
position and attitude of the aircraft at a fine time-step 
are needed to visualize its flight. The visualization now 
shows where the aircraft is at each point in time, as well 
as how it is oriented at that time. For aircraft with an 
onboard sensor, the 3D representations for the sensor 
typically include the sensor itself, the sensor’s search 
volumes, and the sensor’s search beams. The beams and 
volumes for the sensor are similar to those of the radar 
and illuminator, except that they have different sizes 
and shapes (Fig. 8). 

Figure 5.  The ship entity, an Aegis cruiser in this visualization.

Figure 6.  The outer search volume, the inner search beam, and the threat can be seen in this image of a radar entity.
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Terrain Entity
The engineer must also create 

the terrain over which all other 
entities are located. The terrain 
entity is either a 3D representation 
of the entire Earth or a small patch 
of it. Terrain entities may be gener-
ated in several different ways and 
to several different fidelity levels, 
depending on the specific require-
ments of the visualization. 

Several geographic datasets are 
used to create a terrain visualiza-
tion. One source is digital terrain 
elevation data (DTED) from the 
National Imagery and Mapping 
Agency (NIMA). DTED datasets 
contain information for most of the 
Earth on ground-level elevation 
above mean sea level. This infor-
mation is obtained via satellite. 
Another source is digital eleva-
tion map data from NIMA, which 
includes similar elevation infor-
mation in a different file format 
and for different resolutions than 
DTED information. In addition, 

Figure 7.  The two beams emanating from the ship toward the threats on the horizon are 
the illuminators of the fire control entity.

Figure 8.  The aircraft entity, in this case an E-2C.

Celestial Entity
If the defending missile guides to the threat with a 

seeker that may be affected by stars entering its field 
of view, then celestial entities are important. Celestial 
entities are represented as emissive points on a celestial 
sphere that is at a great distance from the Earth. The 
instantaneous star and planet locations on the celestial 
sphere are calculated from their right ascension and 
declination according to the U.S. Naval Observatory’s 
Multiyear Interactive Computer Almanac for the specific 
launch date and time. Using this information, the 
engineer constructs a geocentric celestial sphere at a 
distance of 10 RE from the Earth.

digital feature analysis datasets contain cultural features 
for most of the Earth, e.g., buildings, roads, canals, rail-
roads, airports, etc. The engineer uses several software 
packages to generate terrains and integrates the data 
from several such geographical datasets to create any of 
three terrain classes. 

The first class is low-fidelity terrain, which is typically 
used for visualization of Anti-Air Warfare analysis where 
scenarios usually occur over a small area and are gener-
ally not near major land masses. Several steps are neces-
sary to generate this type of terrain. First, the appropriate 
DTED data for the area of the world to be visualized are 
loaded into polygon reduction software to construct the 
initial flat-Earth 3D polygonal representation of the 
location. Next, the engineer creates a low-fidelity image 
texture from the DTED or digital elevation map dataset 
using any of several software packages and then maps 
the texture onto the polygons. The engineer must now 
convert the terrain from its flat-Earth representation into 
a non–flat-Earth model which is usually the 1984 World 
Geodetic System’s ellipsoid Earth. In this manner, the 
engineer creates a terrain that contains elevation infor-
mation, not only in the polygons that determine the 
shape of the terrain but also in the texture that is mapped 
onto the polygons (Fig. 9). 

The second class, medium-fidelity terrain, has a rela-
tively low-fidelity polygonal representation but a rela-
tively high-fidelity texture mapped onto these polygons. 
This terrain class has been used mainly for Theater 
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Ballistic Missile Defense (TBMD) analysis, which takes 
place far above the Earth and thus does not require a 
high-fidelity polygonal representation of the Earth’s 
surface. However, visualization cameras are often in 
the exo-atmosphere looking down on the Earth, which 
requires a large and relatively high-fidelity texture to 
cover the camera’s field of view. To generate a terrain 
of medium fidelity, the engineer has to follow steps that 
are slightly modified from those for the low-fidelity 	
terrain. First he loads the appropriate DTED data for 

the pertinent area of the world into 
polygon reduction software. He may 
need to load several datasets into 
the software and concatenate them 
into one large flat-Earth terrain to 
cover the entire area. Following 
this, either DTED or digital eleva-
tion map datasets are loaded into 
the software, which reads the data-
sets and converts them into images. 
In this way, the engineer creates a 
relatively high-resolution texture 
wrap for the terrain. Finally, the ter-
rain is converted from its flat-Earth 
representation into the particular 
coordinate system and Earth model. 
The result is a terrain similar to 
the low-fidelity terrain, except that 	
the medium-fidelity terrain covers 
a much larger area of the Earth 	
(Fig. 10). 

The third class of terrain, and by 
far the most complicated to gener-
ate, is the high-fidelity terrain. This 

Figure 9.  The terrain in this image is a low-fidelity graphic representation of Hawaii, which 
was created for an Anti-Air Warfare reconstruction visualization. Kauai may be seen just 
behind the ship.

Figure 10.  This middle-fidelity terrain of the Persian Gulf was created for a single-screen nondistributed TBMD visualization.

terrain has a high-fidelity polygonal representation and 
a high-fidelity texture. It is used only when it is neces-
sary to have all of the characteristics of the medium-
fidelity terrain plus the highest geometrical accuracy 
and precision possible at the surface of the Earth. These 
terrains have been generated for joint mission analysis 
of Overland Cruise Missile Defense (OCMD) and 
TBMD, which involve defending against exo-atmo-
spheric theater ballistic missiles and terrain-hugging 
overland cruise missiles, respectively. 
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To build a terrain of this class, the engineer must 
first determine what computer resources are available 
on the visualization platform, including main memory 
and geometry as well as the texture limits of the graph-
ics card. The terrain is designed based on these hard-
ware constraints. To generate a high-fidelity terrain 
the engineer must first follow the steps for building a 
medium-fidelity terrain, then begin again with the same 
DTED datasets and batch-process the terrain as a set 
of rectangular tiles with far more polygonal detail. The 
terrain is divided into this set of rectangular tiles so that 
hardware resources are conserved by only having the 
hardware render high-fidelity tiles which are closest to 
the viewpoint. Similar to the level of detail optimiza-
tion used for entities such as the missile and target, sim-
pler versions of the terrain tiles are used as the distance 
from the viewer increases. 

Even with this terrain optimization, the engineer 
still must perform more optimizations to ensure that the 
capabilities of the target platform’s graphics hardware  
are not exceeded. Therefore, a critical step in generat-
ing a high-fidelity terrain is selecting an appropriate 
polygon reduction method and reduction parameters for 
the chosen method, customized to the specific capabili-
ties of the computer platform. The engineer then maps 
the highest-fidelity texture onto the tiles. If cultural 
features for the terrain are required, then the digital fea-
ture analysis data dataset overlays cultural features onto 
the terrain as a polygonal representation of the selected 
features (Fig. 11). 

2D Overlays 
Since not all data of interest can be meaningfully 

shown as a 3D object, the engineer needs to also sup-
port other forms of data display. This is accomplished 
by overlaying 2D graphic representations of the data 
such as 2D plots, rotary dials, scales, compasses, and 
attitude indicators onto the 3D scene, thereby allowing 
visual correlation. In addition to displaying the 2D data 
as graphical overlays, the data can also be displayed as 
text. Although this is not the optimal display choice 
for most data items, it is essential to be able to display 
text for such information as titles, time of flight, miss 
distance, and missile stage. It is also useful to have text 
displays in the 3D visualization environment such as 
annotations for track numbers attached to threats and 
labels attached to stars in the visualization. The text 
is rendered using a texture-mapped font for efficiency 
and to give the engineer the flexibility of editing the 
pixmap-based fonts.

Configuration Files
As the visualization software matured and APL 

amassed a large library of terrains and graphic models, 
users began to realize that most of the subsequent work 

in visualizing new input data sets would entail manipu-
lating the input data rather than developing new fea-
tures or graphic models. The input data come from a 
multitude of sources and are usually given to APL in 
a format that needs to be manipulated, resampled, or 
combined before they can be used by the visualization 
software. APL improved the process of visualizing new 
datasets somewhat by integrating a library of classes 
that provided useful mathematical operations (e.g., 
unit conversions, coordinate transformations, and 
quaternion-based spherical interpolations). However, 
the availability of certain data would sometimes neces-
sitate the modification of the C++ visualization code. 
For example, if APL received data that included an 
articulation that had not been previously visualized, 
then the software would have to modified so that these 
data could drive the articulation control points of the 
graphic representation.

The solution was to develop a configuration file that 
would fully describe the data and the control points of 
the graphic representation. This configuration file would 
also specify how the data were to be mapped to the cor-
responding graphic representation. Developing a visual-
ization was then a matter of modifying the configuration 
file instead of modifying the visualization code. 

APL also wanted the configuration file to be flexible 
enough to allow it to read each data file in its native 
format. Rather than writing a static configuration file 
format, the Laboratory decided to embed a scripting 
language into the visualization software. This would 
allow the flexibility to perform arbitrary data manipula-
tions, define the control points, and specify the data-
to-graphic mapping within a single configuration file. 
Perl was chosen as the scripting language because it is 
optimized for scanning arbitrary text files such as APL’s 
visualization data files, has object-oriented support, 
can be embedded into existing applications with rela-
tive ease, and has an established community that has 
developed a voluminous software code base from which 
APL draws.

Visualization Products 
Because visualizations allow for user interaction, 

they are most useful when viewed from a display while 
it is being rendered directly from the computer. Being 
able to interact with the visualization (e.g., viewing a 
scene from varying angles, changing the playback speed, 
enlarging screens on a subdivided display) enables the 
engineer or sponsor to focus on any aspect of the visual-
ization desired.

Since the host platform for the visualization software 
is too large to permit ease of physical portability, APL 
has used several methods of capturing the visualization 
onto analog or digital media to create portable versions 
for distribution. The simplest but least preferred method 
is an analog VHS video capture of the visualization. To 
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 11.  These eight images display the level of precision to which a high-fidelity terrain must be generated while still covering a large 
area. In (a) and (b), the relatively small distance between the missile and the mountain ridge over which it has just flown may be seen. In 
(c)–(e), the red profile of the cruise missile is seen weaving through valleys (light green) in the terrain. The scenario as seen from space 
is depicted in (f)–(h). This high-fidelity terrain was generated for a mixed-mission TBMD and OCMD multiscreen distributed visualization, 
another class of visualization which is discussed later in this article.
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create the VHS videotape, a video camera is mounted 
directly facing the computer monitor of a running 	
visualization.

An alternative and preferred method of capturing to 
VHS videotape is to first create a digital video capture 
and then create the videotape from the digital version. 
To make a digital capture of the visualization, APL 
added code to step through the visualization (usually 
at 30 frames per second), capturing each individual 
frame to disk. After the visualization has saved all of 
the frames to disk, movie-editing software is used to 
assemble the frames and compress them into a single 
quicktime movie. Once the quicktime movie has been 
generated, it may be postprocessed to include titles, 
sound, labels, transitions, and other effects which 
improve the quality of the movie. The final movie is 
then written to videotape.

To produce an even higher-quality visualization 
product, the quicktime movie may be written to a DVD-
R disk for playback on a television with a DVD player. 
For the highest-quality portable visualization product, 
the engineer writes the quicktime movie to a compact 
disk for playback on a desktop or laptop computer.

The digital capture process can be lengthy because, 
although the visualization software can display the ren-
dered images at high frame rates, the capture software 
is limited by the speed at which it can write the images 
to disk. APL accelerated this process by purchasing spe-
cialized computer hardware that could save the images 
to disk as fast as they could be rendered. The addition of 
this hardware allows a visualization that had previously 
required days to be captured to now be captured in a 
matter of minutes.

To allow digital capture of visualizations, it was also 
necessary to have scripted interactions (e.g., camera 
angle changes, screen zooms, pauses, playback speed 
changes) so that the digital capture could be performed 
without user interaction. To facilitate this, the visual-
ization software was written with a generic event inter-
face that allowed all actions to be driven either by a user 
interactively invoking events through the keyboard and 
mouse or by inserting fixed events into the configura-
tion script.

Reconstruction Visualization
The second class of engineering visualization—

reconstruction visualization—is built on the same 
visualization framework as single-screen nondistributed 
visualization. Reconstruction visualization allows the 
weapon system engineer to simultaneously compare the 
actual performance of real-world weapon systems to the 
performance predictions of M&S tools. The sources of 
the engineering information for this visualization class 
include data from actual weapon systems and telemeters 
from weapon systems participating in an at-sea or land-
based test firing. Reconstruction visualization allows 

the engineer to validate the M&S tools and present the 
findings to the sponsor.

The visualization entities in a reconstruction visual-
ization are the same as those for the single-screen non-
distributed class of visualization. The data, however, 
are collected from several of the participating weapon 
systems in the test. The data germane to the ship and 
shipboard weapon systems—ship location, ship head-
ing, raw radar track from the SPY radar, filtered radar 
track from the weapon control system (WCS), and illu-
minator information from the fire control system—are 
all collected by the ship systems and sent to APL via a 
secure link to the Aegis performance assessment net-
work. Engineering information germane to the defend-
ing missile system—the missile state bilevels, position, 
attitude, velocity, acceleration, and gimbal angles from 
the seeker—are collected from telemeters onboard the 
defending missile and transferred to APL via a secure 
network link with the Naval Warfare Assessment 
Station. The engineer must use several data fusion 
techniques to overcome the disparities in the data and 
integrate all of the engineering information into a single 
visualization.

Telemetry data for the reconstruction is collected 
from separate physical telemeters, all of which have 
unique clock and coordinate systems. To integrate 
these data sources, the engineer must align all tele-
meter clocks to a standard clock (usually Greenwich 
Mean Time) and resample all of the variable fre-
quency data to a single, fixed sampling rate. Then he 
must align the coordinate systems. The coordinate 
system of the data collected from the missile telemeter 
is usually missile body frame, whereas the coordinate 
system of the data collected from the ship is usually 
either downrange-crossrange-up or east-north-up. To 
import these data into the visualization, the engineer 
must transform the data from their native coordinate 
systems into the coordinate system of the visualization 
and then merge the processed data from the various 
telemeter files into separate data files for each visual-
ization entity.

The next step is for the engineer to collect the data 
from actual sensors in real-world weapon systems. These 
data will inherently contain noise and singularities due 
to the physical characteristics of the sensor, so the 
engineer must remove the singularities from the data 
or replace them with an average of surrounding points. 
Noise from the data must be removed with filtering 
techniques appropriate to the type of trajectory that 
is being reconstructed. Low-resolution, high-altitude, 
radially inbound threat tracks require different noise fil-
ters than high-resolution, low-altitude, weaving threats. 
The engineer determines the proper filter based on the 
quality of the track, the dynamics of the track, and any 
known peculiarities specific to the particular tracking 
sensors and telemeters recording the data.
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To produce a best estimate of the actual filtered 
trajectories, the engineer works with several quantities 
and weighs them based on confidence in the data. For 
example, if there is high confidence in the actual inter-
cept point of the threat and missile, the engineer may 
choose to fix the final point in both trajectories to the 
actual intercept point and filter the position data from 
either the missile telemeter or the SPY radar track data 
back to the trajectories’ respective origins. However, 
if there is no confidence in the actual intercept point 
but instead confidence in the launch position and the 
velocities of the two trajectories, the engineer may fix 
the launch locations and determine 
the position of the two entities 
using the velocity from either the 
SPY radar track data or the missile 
telemeter data. 

It is obvious from these two 
examples alone that the process of 
converting raw real-world data col-
lected from sensors and telemeters 
into a filtered best estimate of the 
actual trajectory is a delicate and 
sensitive one in which data integ-
rity must be maintained yet known 
anomalies filtered out. Through 
optimization and automation tech-
niques, the time required to process 
these data from the time that they 
arrive at APL has been shortened 
from several weeks to about a day.

The visualizations of this real-
world engineering information are 
used to analyze the actual perfor-
mance of the SPY radar, illumina-
tors, defending missile, and threat 
weapon systems participating in an 
actual at-sea test. Reconstruction 
visualization may be compared to 
M&S predictions for the at-sea 
test performed before and after 
the actual test. By overlaying all of 
this engineering information into 
a single visualization, the engineer 
can simultaneously observe APL’s 
pretest modeled performance pre-
diction, the actual performance of 
the actual weapon system from the 
at-sea test, and the posttest mod-
eled performance prediction (Figs. 
12 and 13). 

Quicktime Visualization
The third class of visualization, 

quicktime visualization, is inherently 
distinct from the other classes. It is 

Figure 12.  To the left is a reconstruction from the threat perspective. The beams are from 
the ship’s illuminators. To the right is the same reconstruction from the missile’s perspec-
tive. The green cone emanating from the missile is its seeker.

Figure 13.  A reconstruction of the successful Standard Missile-2 engagement of a Lance 
target over the White Sands Missile Range in 1997. The SM-2 telemetry data were ana-
lyzed to determine the relative range, velocity, and attitude of the missile and target at end-
game and were then used as input to the visualization. The visualization screen is divided 
into two parts: the first screen shows a scene of the endgame from a virtual camera 
oriented according to the SM-2’s infrared (IR) camera gimbal angles, and the second 
screen shows the seeker IR images captured from the actual flight test. By setting the field 
of view of the virtual camera and orienting the camera according to the actual IR seeker’s 
orientation, as reported in the telemetered data, APL was able to visually confirm that the 
visualized geometry was correct. The visualization was then used to extrapolate past the 
last available telemetry data point to not only conclude that the engagement was a “direct 
hit” but also pinpoint where on the target the missile collided.

by nature a 2D visualization and may be created offline by 
virtually any third-party software package that is used to 
analyze engineering information. APL developed quick-
time visualizations to meet a requirement for integrating 
2D engineering information into 3D visualizations and 
synchronizing the playback of the information to the exe-
cuting quicktime. Examples of such 2D image sequences 
are returns from onboard sensors, results of finite element 
analysis of intercepts, results of discrimination and han-
dover algorithm analysis, quad charts displaying engineer-
ing information exported from third-party applications, 
and slide show presentations (Fig. 14). 
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Figure 14.  Three examples of quicktime visualizations: the left image is a visualization of the handover and discrimination process, the 
center image is a visualization of the finite element analysis of intercept, and the right image is a quad chart of some metrics relevant to 
the radar entity.

To generate the quicktime visualization, the frames 
of the quicktime movie are produced using third-party 
software applications. Next the images and times for 
each respective frame of the visualization are collected 
and the images are compressed into a quicktime movie. 
The engineer must associate a time to each of the 
frames in the quicktime movie. Then he begins play-
back of the quicktime visualization and synchronizes 
the current frame time of the running quicktime movie 
to the current time in the running master visualization. 
Quicktime visualizations may either be viewed as a 
stand-alone visualization or as a node in a multiscreen 
distributed visualization, which is described in the fol-
lowing section.

Multiscreen Distributed Visualization
The fourth class of visualization that APL has 

developed is a multiscreen visualization that is distrib-
uted across several computers. The Laboratory had a 
requirement to simultaneously visualize several weapon 
systems in great detail. This could not be accomplished 
with a single screen, so the visualization was designed 
to span multiple screens. Instead of attempting to 
render the visualization onto multiple screens using a 
single computer, multiple computers were used, with 
each computer rendered to an individual display. This 
allowed APL to take advantage of the resources of 
several midrange visualization computers for the mul-
tiscreen visualization that would otherwise require a 
single high-end visualization computer.

Multiscreen distributed visualization is accomplished 
by building a visualization for each midrange computer 
that displays a subset of the visualization windows and 
then running the visualizations simultaneously on each 
computer. The visualization software contains network 
software that enables APL to keep the visualizations 
synchronized, creating the appearance of a single, 
coherent visualization (Fig. 15).

The synchronization software used for the multi-
screen visualizations also enables synchronization of 
other software with the visualization. Most notably, it 

Figure 15.  A multiscreen distributed visualization of the per-
formance evaluation of the same scenario with three sepa-
rate coordination algorithms. By visualizing all three algorithms 
simultaneously, APL was able to clearly see how each algorithm 
affected the overall performance.
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allows for the integration of the quicktime visualization 
captured from other sources. 

ARTEMIS Three-Screen, Nine-Window  
Visualization

APL developed the most recent visualization 
class—the APL Area/Theater Engagement Missile/Ship 
Simulation (ARTEMIS)1 three-screen, nine-window 
visualization class—to realize specific visualization goals 	
for a new type of M&S effort in the Navy Theater 	
Wide TBMD program. ARTEMIS is a high-level-archi-
tecture federation of engineering models that integrates 
existing high-fidelity weapon system models into a 
distributed architecture. These distributed models, or 
federates, exchange engineering information among 
themselves as they execute, thus creating a closed-loop, 
end-to-end simulation.

The ARTEMIS simulation consists of several sepa-
rate federates, each requiring a unique window in the 
visualization. To simultaneously visualize all of these 
federates, APL designed the ARTEMIS visualization 
for viewing in the System Concept Development Labo-
ratory as a three-screen display in which the left and 
right screens are subdivided into quadrants. The center 
screen is a 3D window that shows a wide-area view of 
the entire scenario; each of the quarter-screen windows 
on the left and right shows information pertaining to 
a single federate. Taking advantage of new high-end 
computers with advanced graphics capabilities, APL 
has developed a single visualization for ARTEMIS 
that simultaneously displays each federate, allowing 
engineers and sponsors to view the enormous amount of 
engineering information from an ARTEMIS simulation 
run (Fig. 16). 

To best represent each individual federate, APL 
decided that several federates would be shown as 2D 
plots or as text readouts instead of the 3D-rendered 
images for which the visualization software was geared. 
The solution was to write these non-3D federate 	

windows using the Motif widget set and combine the 
widgets with the 3D software. The Motif-based feder-
ate windows were written into a library separate from 
the core 3D visualization software so that these feder-
ates could run in a separate process, taking advantage 
of APL’s multiprocessor system and minimizing the 
impact on the 3D rendering software. Shared memory 
was used for communication between the Motif and 
the 3D processes and for integrating the two processes 
onto a single display by reparenting the 3D windows 
into the Motif screen.

Even with three 1280  1024 pixel screens, the 
display real estate is at a premium when trying to simul-
taneously visualize all of the federates; therefore, any 
of the quarter screens can be interactively selected and 
enlarged to take up one, two, or all three screens. When 
a federate window is enlarged, the engineer populates 
the remaining window area with additional metrics 
and other engineering information pertinent to the 
window’s federate. To conserve screen space, displayed 
data are dynamically changed through the use of Motif 
selection lists, dynamic and logarithmic scales, scrol-
lable text lists, and context-sensitive popups that can 
display extended data.

The global window is the center visualization 
window for ARTEMIS. It is the only window that 
occupies one entire screen and is similar to a single-
screen nondistributed visualization. The global window 
visualizes the ARTEMIS run from a fixed view far 
above the Earth. It contains the terrain visualization, 
the ship from which the defending missile is launched, 
the threat and its launcher, and any relevant beams or 
volumes from the SPY radar or infrared (IR) seeker 
onboard the fourth stage of Standard Missile-3 (SM-3). 
It also contains readouts for metrics such as time and 
launch position for the missile and threat.

In the upper left-hand quadrant of the left screen, 
the engineer visualizes engineering information from 
the scenario manager federate. This window also 	
shows the message traffic exchanged among all of the 

Figure 16.  The ARTEMIS three-screen, nine-window visualization. From upper left to bottom right: the scenario manager federate 
window, systems engineering window, missile guidance federate window, missile signal processor federate window, global window, threat 
federate window, SPY radar federate window, command and decision federate window, and WCS federate window. 
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ARTEMIS federates. As the visualization progresses, 	
federate-to-federate message metrics scroll by in the 
scenario manager window. The window contains the 
sender of the message, the receiver of the message, the 
message type, the time at which the message was sent, 
and plots of the message traffic rates. Also, if the mes-
sage contents are available, the user can select messages 
and display their contents in a pop-up window.

To the right of the scenario manager federate 
window is the systems engineering window, which 
displays a slide show that is synchronized with the visu-
alization. As the visualization progresses, the slide show 
presents critical events, such as launching, staging, and 
intercepting, as they occur. 

In the lower left quadrant of the left screen is the 
missile guidance federate window which displays a 3D 
visualization of the missile guidance federate and is 
similar to the missile entity single-screen visualizations 
for which the software was originally written. Entities 
displayed in this window are the terrain, the ship from 
which the missile is launched, the defending missile 
itself, the beam representing the seeker onboard the 
fourth stage of SM-3, and the threat as it enters into 
view during endgame.

To the right of the missile guidance federate window 
is the missile signal processor federate window which 
contains engineering information that is germane to 
the missile signal processor, including the azimuth and 
elevation of the IR returns from the SM-3’s fourth stage 
IR seeker, the current mode of the seeker, and raw and 
stabilized animated plots of the reported elevation and 
azimuth.

In the upper left quadrant of the right screen is 
the threat federate window. Like the missile guidance 
federate window, the threat federate window displays 
a 3D visualization similar to the original single-screen 
visualizations. It contains the terrain entity, the threat 
and launcher entity, and the missile entity as it enters 
into view during its fourth stage. It also provides menu-
selectable options to enable subwindows, which display 
the current IR signature and radar cross-section sig-
nature that the threat is projecting to the defending 
weapon systems.

To the right of the threat window is the SPY radar 
federate window which contains search and track infor-
mation from the SPY radar federate. Here, a 3D visual-
ization of the SPY-filtered threat track and the ground-
truth threat track provides a visual representation of 
the SPY track errors. These errors are also displayed in 
three overlay strip charts to better show their scale and 
direction.

In the lower left quadrant of the right screen is the 
window for the command and decision federate. This 
window visualizes the engageability tests performed 
by the command and decision federate preceding the 	
missile engage order. The instantaneous results of 

engageability tests for engagement quality, altitude 
check, screens, and intercept point evaluation are 
presented as a table of pass/fail bars. To the immediate 
right of the table, any of the individual engageability 
parameters may be plotted.

To the right of the command and decision federate 
window is the WCS federate window. This window 
shows such metrics as prelaunch calculations performed 
by the WCS federate; metrics from the midcourse guid-
ance of the missile, which is handled by the WCS; and 
metrics from the handover event in which the WCS 
“hands over” information to the missile signal processor. 
To the immediate right of the tabular data, the user may 
view plots for any of the federate’s metrics.

THE FUTURE
APL intends to develop many additional visualiza-

tion capabilities and incorporate them into the current 
engineering visualization:

•	 Reconstructions: Include video footage from launch 
site as well as footage from airborne and onboard 
missile/threat video cameras and engineering infor-
mation from the ground station and satellites in the 
visualization.

•	 Communications: When relevant to the visualiza-
tion, add a display of communications as they pass 
back and forth among the visualization entities.

•	 IR signatures: Develop a method by which instanta-
neous IR signatures of the threat can be dynamically 
mapped onto its skin as it flies.

•	 Finite element: Improve upon the Sphinx hydrocode 
tool’s 2D visualizer used at APL to evaluate postint-
ercept lethality of threats through finite element 
analysis.

•	 ARTEMIS: Make APL a visualization federate in the 
ARTEMIS federation of models, enabling users to 
visualize ARTEMIS concurrent to the simulation’s 
execution.

•	 Undersea: Develop an undersea visualization capabil-
ity that will allow APL to study undersea-launched 
weapon systems.

•	 Multimission: Develop an engineering visualization 
for nodal analysis tools, such as the APL Coordi-
nated Engagement Simulation or the Extended Air 
Defense Simulation.

•	 Radar: Add fuller functionality to the SPY radar 
visualization in a scenario, including error ellipsoids, 
launch event correlations, and increased precision 
for search beam locations, clusters, groups, and any 
other metrics which may be pertinent. 

•	 Particle system: Develop a multiprocess particle 
system for efficiently rendering great numbers of par-
ticles for improved smoke and debris representation 
in the visualization.
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SUMMARY
High-fidelity engineering information is critical to 

facilitate the design, analysis, and M&S of complex 
weapon systems to defend against threats to our nation. 
The technical community and the associated DoD spon-
sors must have confidence in that engineering informa-
tion and must understand it at various levels, depending 
on the functionality of the technical community and 
sponsors in the overall acquisition process. Contempo-
rary engineering information is becoming even more 
complicated because of advances in threat technology, 
which drive the need for more complex weapon sys-
tems to defeat them. Also, the more recent DoD-wide 	
focus on a distributed simulation capability, which inte-
grates physically separate high-fidelity physics-based 

simulations, is also contributing to the increasing 
complexity of the engineering information. APL has 
developed a state-of-the-art engineering visualization 
capability which has become an essential systems engi-
neering tool by providing confidence in and compre-
hension of complex engineering information. 
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