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A

Trade-Offs in Sensor Networking

William G. Bath

ir defense dominance requires a precise and timely picture of the surrounding air-
space that is built using inputs from sensors on many different ships and aircraft. This 
article examines the sensor networking process in terms of its three primary descriptors: 
(1) The  robustness and capacity of the data distribution process used. (For example, what 
is the probability of a sent message never being received, and how much data can be sent?);  
(2) The data grouping approach used. (How are detections grouped in order to know that 
a particular detection by one unit and another detection by another unit do or do not cor-
respond to the same object?); and (3) The data sharing approach used. (Which data are 
transmitted between units, and how are these data used to calculate network tracks?)

INTRODUCTION 
The Navy generally strives to establish air defense 

dominance in the regions in which it operates. A pre-
condition for air dominance is having a precise and 
timely picture of the surrounding airspace. This “pic-
ture” is a digital representation (position and velocity) 
of every “piece of metal” in the sky—be that piece an 
airplane, a helicopter, or a missile. The air picture is 
essential to air dominance as it allows both the human 
operators and the computers under their control to sort 
through all these objects to identify any suspect or hos-
tile targets. 

The air picture is built using inputs from sensors on 
many different ships and aircraft. Sensor networking is 
the process of moving these data around and building 
the picture. A radar receives a reflected signal that is 
observed as a function of time delay—corresponding to 
target range. Many of these echoes are collected from 
different angles, producing a range-angle map of the sur-
rounding airspace. Over time, these individual “looks” 

are collected and combined to make an automatic track 
(Fig. 1).

This process is going on simultaneously on many 
ships and aircraft and at many different fixed and mobile 
land sites. Each is using its own sensors to attempt to 
create the best possible air picture. In an ideal world, 
each sensor could track every target continuously (e.g., 
from takeoff to landing, without interruption). How-
ever, in the difficult environment we face, the laws of 
physics do not permit this. Target fades, terrain block-
age, and spurious signals from the natural environment 
or from countermeasures all conspire to make the situ-
ation not ideal. As a result, in general, no single ship, 
aircraft, or land unit can create a complete air defense 
picture. 

Unfortunately, while advances in sensor and com-
puting power greatly improved what could be done 
automatically on a single ship or aircraft, on the 
whole, the networking systems have not kept pace. 
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When these incomplete pictures are combined through 
today’s tactical data links, considerable confusion 
results—including miscorrelations of data and ensu-
ing dangerous misidentifications of targets. Thus there 
is now considerable discussion within the Navy and, 
indeed, throughout the DoD, as to how best to improve 
the networking of sensors.  This article discusses some 
of the trade-offs inherent in different approaches to 
solving the problem.

THE THEORY OF RADAR TRACKING 
To understand the trade-offs in sensor networking it 

is necessary to delve into the basic theory of tracking. 
This theory is relatively well developed, having begun 
during World War II in the 1940s and being the sub-
ject of thousands of technical papers and dissertations 
since. Each sensor makes a digital detection when the 
received signal exceeds a threshold. The essence of 
the problem is that frequently each sensor’s detections, 
such as those in Fig. 1, are anonymous. That is, to a 
first approximation, the detections look alike, regard-
less of what target they correspond to. The tracking pro-
cess consists first of association—the process of grouping 
together detections that are believed to correspond to 
the same target—and then filtering—the process of cal-
culating the track state (estimated position and veloc-
ity of the target)—and finally prediction—the process 
of extrapolating. These three processes interact recur-
sively. First one groups together N detections and cal-
culates a track state. Then one uses that track state as 
the basis for associating the N  1st detection with 
the group. Because the detections are anonymous, the 
grouping is based largely on the measured positions of 
the detections.  

Tracking works well when one 
knows in advance that the targets 
are sufficiently far apart from each 
other that detections from one 
target are not confused with those 
from another. When targets are 
close and detections do get con-
fused, many serious tracking prob-
lems can result. For one thing, the 
tracks may be pulled off onto fic-
titious positions or assume inaccu-
rate velocities. This then corrupts 
the association process on the next 
opportunity—potentially resulting 
in more erroneous associations. The 
outcomes of these types of errors fall 
into certain well-known categories. 
Track swaps occur when two tracks 
essentially swap their streams of 
detections so that track #1 assumes 
the position of track #2 and vice 

Figure 1.  The tracking process examines anonymous automatic detections (b), collected 
over time (c), and produces tracks (d, e).

versa (Fig. 1). This may seem innocuous, but it is a 
serious military problem. For example, if track #1 had 
been assessed as friendly/neutral and track #2 had been 
assessed as hostile, then track #2 could be engaged by 
shooting at it with surface-to-air or air-to-air missiles. 
If the measurement streams swap after the assessment 
of identity, then the surface-to-air or air-to-air missile 
will be fired at and guided to the wrong (friendly/
neutral) target position. The result could be the kill-
ing of innocent or friendly people. In addition, since 
the missile will not be fired at a track tagged as friendly/
neutral, the truly hostile target is not engaged. This 
can result indirectly in further damage or loss of life 
among friendly forces. 

One could try to eliminate track swaps by making 
correlation criteria very strict, that is, by using an algo-
rithm that will not group detections together unless 
they are very close to a common trajectory. Unfortu-
nately, this results in a second type of error called a 
dual track. This is the erroneous representation of a 
single target by two tracks instead of one, which occurs 
when the design overcompensates for trying to prevent 
the track swap described above. If the correlation crite-
ria are made unduly strict, then a single group of detec-
tions from a single target can be erroneously divided 
into two groups corresponding to two different tracks. 
Dual tracks produce less serious but still harmful effects 
in air battle management. One of the most important 
is that they tend to undermine the confidence of 
human operators in the air picture. (Operators often 
know from other sources that only one airplane is pres-
ent, so why are the computers telling them there are 
two?) Another important harmful effect is dual engage-
ments—launching two salvos of missiles when only 
one is needed. 

(a) Radar video (analog) (b) Automatic detections
(anonymous)

(c) Automatic detections over
time (throughout network)
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the system must track targets performing no more than 
a specified number of g’s). 

The process of calculating an estimate, X(k|k), of 
x(tk) given all measurements {y1,…,yk} is done recur-
sively using X(k|k  1), the estimate of x(tk) given all 
measurements {y1,...,yk  1}:

	 X(k|k) = X(k|k  1)  Kk{yk  f [X(k|k  1)]}	 (4)

and

	 X(k  1|k) = kX(k|k)  k  ,	 (5)

where Kk is the gain matrix, and the multiplication by   
k has the effect of moving the estimate forward in time 
from tk  1 to tk. The most general method for deter-
mining the gain matrix is the Kalman filter process1 in 
which maneuvers are modeled as a random walk. How-
ever, other less general methods also exist for deter-
ministic maneuvers.2,3 Although shown here for sim-
plicity in Cartesian coordinates, the update may also be 
done in the measurement coordinates.4 The term k is 
a deterministic correction for any known acceleration 
(e.g., acceleration of gravity or Coriollis acceleration for 
ballistic objects). In general, the track state, x(tk), and 
the estimates, X(k|k) and X(k|k  1), are vectors. A six-
dimensional vector is used for position and velocity in 
three dimensions, and a nine-dimensional vector is used 
for cases where instantaneous acceleration is also esti-
mated. Equation 4 represents the update of the filtered 
track state with a new measurement. These appear on a 
graph as discontinuities, such as are seen in Fig. 2. Equa-
tion 5 represents the extrapolation of the track to the 
time of the next anticipated measurement. For the case 
where only position and velocity are being estimated, 
these are the straight lines in Fig. 2. 

Since the measurements are anonymous, each one 
must be assessed and a decision made as to whether it 
belongs to each existing track. Both the measurement 
and the predicted track states have regions of uncer-
tainty (ROUs) that contain the true target position 
with some statistical confidence, say 99%. A measure-
ment is a candidate for grouping into a track when these 
ROUs overlap, as shown in Fig. 2. The measurement 
ROU is simply proportional to the measurement accu-
racy. The extrapolated track state ROU has a covari-
ance term, Cov(k  1/k), which includes the effect of 
the accuracies of all previous measurements, the gains 
used, and the degree of extrapolation. It also contains 
a lag term, Lag(k  1/k), due to biases created by any 
potential maneuver:

	 ROU(k  1/k) = Lag(k  1/k)  2.6 Cov(k  1/k)  .

To prevent the track swaps and duals described pre-
viously and in Fig. 2, these association decisions must 

There are many different variations on these errors, 
which will not be discussed here. Needless to say, the 
name of the game is to prevent mistakes in grouping the 
detections to form tracks. The tracking system optimizes 
this grouping process by calculating the most accurate 
track state possible and by making the best possible 
association decisions. A well-known theoretical frame-
work exists for grouping measurements into tracks. Let 
the true target position as a function of time be given by 
the function x(t). A given sensor will make a measure-
ment yk at time tk:

	 yk = f(xk)  nk  ,	 (1)

where nk is an independent stream of measurement 
errors with covariance matrix R, and f() is the function 
which determines the measurement coordinate frame. 
The filtering process that estimates the true target posi-
tion and velocity is based on a classical Kalman filter 
formulation in which the target state is position and 
velocity and the target motion is modeled as linear. For 
example, 
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	 (2)

The modeled target state at time tk evolves in time 
according to

	 Xk  1(model) = kXk(model)  wk  .	 (3)

The transition matrix k represents linear motion. 
The vector wk represents maneuvers—deviations of the 
target from a straight line. Generally these are turns, 
changes in speed, or changes in altitude rate having 
any of an uncountable number of shapes. Examples are 
the brief portions of a sinusoid (constant rate turn or 
course), jinks or a sustained sinusoid (evasive target 
executing a weave), and a parabola (constant longitu-
dinal acceleration typical of speed changes). The max-
imum sustained maneuver level or “g level” is deter-
mined by the density of the atmosphere as well as the 
shape, speed, and construction of the target.  Generally a 
human pilot cannot withstand much more than several 
g’s, so this limits what a manned aircraft can do. Mis-
siles can have higher limits before they become unstable 
or fail structurally. Most military systems are specified 
for some maximum g level based on these limits (e.g., 



JOHNS HOPKINS APL TECHNICAL DIGEST, VOLUME 23, NUMBERS 2 and 3 (2002)	 165

TRADE-OFFS IN SENSOR NETWORKING

have a very reliable backbone infrastructure for inter-
connecting the cells. Data distribution between mobile 
platforms in a military theater (e.g., ship-to-ship, ship-
to-air) is considerably different because no such estab-
lished infrastructure exists. (Or if there is an infra-
structure and it is still intact, it may belong to the 
enemy and be unavailable.) Denied this infrastruc-
ture, data distribution is accomplished by a network of 
radio communications. Units are often at the bound-
ary of reliable communications from a fading or jam-
ming perspective. Thus, robustness of data distribution 
is not guaranteed and becomes a strong driver of over-
all system performance.

For simplicity, characterize the robustness of the data 
distribution by a single number—the probability of mes-
sage loss. Not surprisingly, if one is looking for a cer-
tainty of 99% containment of the tracking errors, then 
one needs a probability of message loss somewhat less 
than 100% minus this number. Figure 3 shows the 
increase of the track ROU as the probability of message 
loss increases. Something in the .1 to 1% range is clearly 
needed if the radios are not to be the limiting factor in 
tracking quality.

Unfortunately, many of today’s military data distribu-
tion systems are not this robust. Sensor networking sys-
tems generally require some sort of improvement to the 
existing data distribution process. APL has been instru-
mental in two such improvements: the development 
of robust high-frequency/ultra-high-frequency commu-
nications using Multi-frequency Link-11 and the devel-
opment of robust microwave communications using the 
Cooperative Engagement Capability.

Again for simplicity, characterize the capacity of the 
data distribution by a single number—the update rate of 
tracks. In general, the amount of data that needs to be 
networked is on the order of  (the number of tracks)  
(the number of bits in a message)  (the rate at which 
the messages are sent per track).

The number of tracks is an independent variable 
determined by the environment. The number of bits in 
the message will be discussed later, but is likely on the 
order of a few hundred. If one views these two numbers 
as fixed, then the effects of data distribution capacity can 
be seen in the track update rate. Consider a sensor that 
makes measurements every 2 s. If one had the capacity 
to transmit some sort of message immediately following 
each update, then the maximum time any user would 
have to extrapolate the track would be the 2 s until the 
next measurement. If one can only update track data 
every 12 s, then the maximum extrapolation time would 
be 14 s. The sensitivity of track ROU to this extrapola-
tion depends on the degree to which the target could be 
maneuvering (e.g., is there at least a 1% chance of this?). 
For example, in Fig. 4, we consider measurements that 
are relatively inaccurate—1200 ft. This would likely be a 
long-range angle case. Here the difference between a 2-s 
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Figure 2.  An expanded view of the tracking process shows the 
three main functions.

be correct. The best approach to making them correct is 
to keep this track ROU, ROU(k  1/k), as small as pos-
sible. This reduces the chance that measurements from 
a different target will be grouped into the track acciden-
tally.  Further, with the small ROU, duals are reduced 
because the designer is not tempted to use overly strict 
grouping criteria. 

ALTERNATIVES FOR SENSOR  
NETWORKING

Although sensor networking is a complex and multi-
faceted problem, there are three primary descriptors of a 
sensor networking system. 

1.	 The robustness and capacity of the data distri-
bution process used. (For example, what is the 
probability that a sent message will never be 
received, and how much data can be sent?)

2.	 The data grouping approach used. (How are 
detections grouped in order to know that a 
particular detection by one unit and another 
detection by another unit do or do not corre-
spond to the same object?)

3.	 The data sharing approach used. (Which data 
are transmitted between units, and how are the 
data used to calculate network tracks?)

These descriptors and the fundamental trade-offs 
between different design approaches are detailed next.

Data Distribution 
In our personal dealings with computers we are 

used to relatively reliable distribution of data (e.g., 
over local area networks, the Internet, etc.). These 
sorts of data distribution generally have a communi-
cations media over established infrastructure—copper 
wires, fiber-optic cables, fixed point-to-point micro-
wave relay, etc. Even cellular phones, while potentially 
of low quality from the handset to the cell antenna, 
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and 14-s extrapolation is about 3 to 1. If one considers data that are more 
accurate to begin with, such as 30 ft, then this ratio grows to 5 to 1.  Clearly, 
in either case, the capacity of the data distribution equipment greatly affects 
the accuracy of sensor networking.

Data Grouping
Data grouping is key because, as previously discussed, the most serious 

sensor networking errors can result from mistaken grouping of the data. 
There are two basic data grouping approaches (Fig. 5):

1.	 Measurement-to-track association associates each measurement to the net-
worked track potentially calculated using measurements from all sensors. 
Thus the entire stream of measurements (up to the present) is potentially 
available to calculate the track state used for the decision on the most 
recent measurement.

2.	 Track-to-track association associates each measurement to a single sensor 
track state calculated using only measurements from that sensor. The 

single sensor track states are then 
grouped with each other to pro-
duce a netted track state.

The design decision as to which 
approach is better for grouping data 
depends on the sensors and targets 
involved. One case where measure-
ment-to-track association is clearly 
better is when the sensors have a 
reduced probability of detection so 
there are potential gaps in the data 
stream or the data stream is sparse 
for a period of time. In these cases, a 
much more accurate track state can 
be calculated using multiple data 
streams than using only one, as mul-
tiple streams will tend to fill in the 
gaps in detection and restore a high, 
consistent data rate during periods 
of reduced probability of detection. 
Figure 6 illustrates the sensitivity to 
target fades by plotting track ROU 
versus probability of detection for 
single sensor tracking and multiple 
sensor tracking. When the proba-
bility of detection is much less than 
unity, the multisensor track is con-
siderably more accurate since the 
probability of a significant outage of 
data is much reduced if two sources 
are available. With a more accu-
rate track, tighter association crite-
ria can be used for measurements. 
However, if the biases cannot be 
effectively removed, then there may 
be an advantage to associating to 
a single sensor track, which by 
definition is unbiased with respect 
to itself. If biases cannot be kept 
smaller than the ROU, then at 
the high probabilities of detection, 
one would prefer single sensor asso-
ciation followed by track-to-track 	
association.

Another variant of this occurs 
when combining data from a high 
data rate sensor with those from a 
low data rate sensor. The netted 
track, because of its higher update 
rate, will provide a much more 
accurate basis for data association 
than the low update sensor alone. A 
common example of this is the com-
bination of data from a low update 
rate airborne early warning (AEW) 
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Figure 4.  The importance of data distribution capacity is shown by ROU sensitivity to 
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sensor with a higher update rate surface-based fire control radar. If one 
uses track-to-track association, then the AEW sensor is on its own for data 
association. Because the data rate is low, the ROU is relatively large and 
there can be significant chances that the track uncertainty will encompass 
a detection from another object. This potentially leads to track and identi-
fication swaps. If one uses measurement-to-track association, then the AEW 
sensor measurements are associated to a track that contains the high update 
rate measurements from the fire control sensor. As a result, the ROU is 
much smaller, and the likelihood of a track or identification swap can be 
reduced by an order of magnitude or more.

Finally, measurement-to-track association can actually increase the 
number of measurements available to the tracking process. In general, 
track formation requires a very low measurement false alarm rate, whereas 
tracking can proceed with a somewhat higher false alarm rate. Thus the 

detection threshold (Fig. 1) can be 
reduced at one sensor if another 
sensor has the target in track. Fur-
ther, if the sensors can manage 
their energy, then additional energy 
can be used in the direction of 
known tracks. Both these factors 
can increase the number of mea-
surements that a sensor is able to 
put into the network.

Data Sharing 
There are two basic data sharing 

approaches, both based on the track-
ing theory already described:

1.	 Measurement fusion combines the 
measurement streams from all 
sensors to produce a single com-
posite measurement stream. This 
composite measurement stream 
is then filtered using Eqs. 4 	
and 5. 

2.	 Track fusion pre-filters the data 
before sending them. Thus Eqs. 
4 and 5 are applied recursively to 
a sequence of single sensor mea-
surements prior to transmission. 
The recipient then combines the 
tracks (for example a weighted 
combination5 with the weights 
based on the relative size of the 
covariance Pk). Track fusion has 
some interesting variants. 

•	 Track selection is a very 
simple and data rate efficient 
logic which has been used in 
today’s widely deployed net-
working systems (e.g., Link-11 
and Link-16). A common 
decision is reached among 
all units as to which unit 
has the best single sensor 
track. Then only this track is 
transmitted. This selection is 
known as reporting responsi-	
bility. Each unit in the net-
work (except for the one 
with reporting responsibility) 
then has two tracks to choose 
from—its local one and the 
“best” remote one. 

•	 Tracklet fusion6 pre-filters the 
data before sending them, then 
filters them again on recep-
tion. Thus Eqs. 4 and 5 are 	
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Figure 6.  Comparison of measurement-to-track and track-to-track association. For fading 
targets (Pd < 1), measurement-to-track is preferred. For large sensor biases and nonfad-
ing targets, track-to-track is preferred. (Second sensor biases = 0, 100, 200, and 300 ft, 
respectively, for measurement-to-track curves going from bottom to top.)
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applied recursively to a 
sequence of single sensor 
measurements prior to trans-
mission, producing a stream 
of tracklets emanating from 	
each site. The recipient then 
combines the streams of sin-	
gle sensor tracklets into a 
composite stream of tracklets 
and applies Eqs. 4 and 5 to 
the composite sequence of 
{X(k|k)}. To ensure that the 
input to the second filtering 
process is statistically inde-
pendent, the first filtering 
is either over disjoint sets 
of measurements or is pre-	
whitened upon reception.

These approaches tend to be 
similar when the target is known 
with certainty to not be accelerat-
ing. However, when one is uncer-
tain about the level of maneuver the 
target is currently performing, sig-
nificant differences between mea-
surement fusion and track (or track-
let) fusion exist. This is because as 
more sensors are combined through 
measurement fusion, the lags are 
significantly reduced. The reduction 
when more sensors are combined 
through track or tracklet fusion is 
considerably less. To illustrate this 
point, take a very simple case con-
sisting of a single tracking filter. 
The filter gain is

	 K
Tk =

⎡

⎣
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⎤

⎦
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/
,

Figure 7.  Comparison of data sharing approaches. (a) For air-breathing targets, mea-
surement sharing produces the smallest ROU. (b) For exo-atmospheric motion, the  
ROUs are similar. (For parts a and b, sensor accuracy = 1200 ft, sensor update rate = 
2 s, and probability of detection = 1.0; target max. maneuver = 2 g and 0.01 g in a and 
b, respectively.)

which is a constant, and the terms  and  are the posi-
tion and velocity tracking gains, respectively.

It is well known2 that the steady-state ROU with 
99% probability of containment is
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Using this expression, it is possible to make simple com-
parisons between the accuracy of measurement fusion as 
opposed to track fusion (equal accuracy is one-dimen-
sional). When the ROU is plotted as a function of posi-
tion gain , it has the “bathtub” shape shown by the 
single sensor curve in Fig. 7a. The left-hand side of the 

bathtub is dominated by the lag component, while the 
right-hand side is dominated by the covariance compo-
nent. Since the gains (horizontal axis) are the designer’s 
choice, the single sensor ROU is the minimum of the 
bathtub curve. 

Now consider the fusion of two sensors in a particu-
lar dimension. If one sensor has one-tenth the ROU of 
the other, then fusion is uninteresting because the more 
accurate sensor will dominate and essentially determine 
the result. At least in steady state, it is relatively easy 
to produce this dominance by any of the fusion meth-
ods. Of more interest is the case where the sensors are 
comparable in terms of accuracy and update rate, pro-
ducing comparable ROUs. This case more clearly shows 
the difference in the fusion methods.
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For example, when two identical sensors are 	
combined by measurement sharing, the update rate is 
essentially doubled. This reduces the lag by a factor 
of 4, allowing a smaller gain to be selected (optimiza-
tion more to the left of the bathtub) and reducing the 	
covariance. The net result is the movement from the 
single sensor curve to the measurement sharing curve in 
Fig. 7a.

When two identical sensors are combined by track 
sharing, the update rate for each tracking process does 
not change, and so the lag does not change. However, 
the overall covariance is reduced, allowing a larger gain 
to be selected (optimization more to the right of the 
bathtub) and reducing the lag. The net result is the 
movement from the single sensor curve to the track 
sharing curve in Fig. 7a.

If any significant maneuver is possible (e.g., if the 
target is an aircraft or cruise missile), the factor of 4 in 
lag will have a more significant effect than the factor 
of 2 in covariance. Thus one can see that the measure-
ment fusion curve achieves a significantly lower mini-
mum than the track fusion curve. The number of sensors 
combined amplifies this difference. If maneuvers can 
be excluded (e.g., exo-atmospheric motion of an inert 
object such as a ballistic missile part with no thrusters), 
then the factor of 4 in lag does not have nearly the same 
effect, and measurement and track fusion become com-
parable for equal message lengths (e.g., Fig. 7b, where 
the acceleration is 0.01 g). 

Tracklets will generally produce results in between 
those of measurements and tracks. If many measure-
ments are combined into a tracklet, then tracklet fusion 
will compare with single sensor tracking as track fusion 
does. If only one or two measurements are used in 

Figure 8.  Measurement ellipsoids on uncertainty are very narrow in range dimension. 
Accurate triangulation requires precise characterization of ellipsoids. 

a tracklet, then they will compare 
with single sensor tracking as mea-
surement fusion does.

So far this discussion has cen-
tered on which data sharing ap-
proach is most accurate. Another 
important consideration is how well 
the approach characterizes the accu-
racy of the track. In many applica-
tions, such as the grouping of data, 
there is relatively little benefit to 
having a more accurate track unless 
one knows exactly how accurate it 
is in each dimension.

The importance of accurately 
representing the data covariance 
and lags is amplified by the physics 
of radar detection. With modern 
components, one can easily build a 
radar that can measure range to the 
target to an accuracy of 20 ft. How-
ever, in the microwave band, it is 

impossible with a shipboard or aircraft antenna to mea-
sure angle to an equivalent precision. Thus the sensor 
ellipsoid of uncertainty (Fig. 8) is very narrow in one 
dimension (range) and much wider in the other two 
dimensions. When the viewing difference angle is sig-
nificant, data fusion essentially triangulates the target 
position to the volume where the ellipsoids overlap. 
This can produce a factor of 10 or more reduction 
in ROU. However, knowing the result of this fusion 
requires a very precise knowledge of the shape and ori-
entation of the ellipsoids. This is exactly the informa-
tion contained in the covariances and lags.

An advantage of measurement fusion is that the 
recipient, using the measurements, can calculate the 
ROU. Thus it is only necessary to send the covariances 
of the measurements. This covariance matrix is diago-
nal, and so contains typically only a few non-zero num-
bers. In a track (or tracklet) fusion system, the recipient 
does not see the individual measurements and so needs 
additional data to calculate the ROU—the track noise 
covariance and the lags.

Table 1 compares the amount of data that must be 
sent for the simple example of three-dimensional sen-
sors (range, bearing, and elevation). Clearly, update 
messages for track fusion will be significantly longer 
than for measurement fusion. As a result, the data must 
be sent less frequently. To reduce the track fusion mes-
sage size, some approximations can be made. The lags 
and covariances can be combined and the resulting 
matrix block diagonalized. This results in a significant 
reduction in the fidelity of representing the ROU, 
but does permit the data to be sent more often. (Sepa-
rate accounting for noise covariances and lags is impor-
tant because they grow at different rates.) A very data 	
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Table 1.  How errors are represented in different data sharing approaches. Track selection and measurement fusion gener-
ally require the shortest messages.

Networking approach	 How errors are represented	 What is sent

Measurement fusion	 Full representation	 6 numbers: 3 measured coordinates,
	 	   3 measurement covariances

Track or tracklet fusion	 Full representation	 33 numbersa: 6 filtered coordinates, 21 track
	 	   covariances, 6 acceleration lags

Downsized track or	 ROU representation only; covariance 	 15 numbers: 6 filtered coordinates,
  tracklet fusion	   matrix block diagonalized	   9 “total” track covariances

Track selection	 ROU representation only (heavily and 	 Approx. 6 numbers: 6 filtered coordinates,
	   logarithmically quantized)	   1 ROU index
a This is for a six-dimensional track state. For a nine-dimensional track state, 67 numbers are required.

distribution efficient variant is track 
selection. In this case, the ROU 
is heavily quantized into an ROU 
index in a logarithmic fashion. If 
only a single unit, the one with 
the highest ROU index, is allowed 
to report data, then networking is 
possible at very low data distribu-
tion rates. 

When one discounts track fusion 
for the additional length of the 
messages (a factor of 3 increase is 
assumed), the difference between 
measurement and track fusion 
becomes more pronounced (track 
sharing [message length included] 
curve in Fig. 7a).

Another consideration in select-
ing the data sharing approach is 
maintaining an open architecture 
for the user of the system. In gen-
eral, target data are used for many 
different functions in a weapon 
system (e.g., situational awareness, 
data correlation, interceptor launch 
scheduling, handover of a target to 
an interceptor seeker, etc.). Each 
of these functions has different 
data filtering requirements. One of 
the main differences among these 
requirements is how heavily the 
data are smoothed (effectively, how 
small is ). Generally very heavy 
smoothing (small ) is used when 
predicting ahead for a long time 
(e.g., scheduling the launch time of 
a long-range interceptor). In this 
case one deliberately discards infor-
mation by filtering out much of 
the higher-frequency components 

of the measurement spectrum. Conversely, very light smoothing (large ) 
is used when predicting ahead for a short time (e.g., associating data at the 
next measurement). In this case one wants to preserve nearly all the spectral 
content of the measurements. The data sharing approach may restrict the 
types of functions that can be supported with the networked data (Fig. 9).

Measurement sharing provides the most open architecture because all 
functions can be supported (assuming that the original data are of sufficient 
quality). As shown in Fig. 9, the wide spectral content of the measure-
ments allows various filtering processes to be used to achieve any desired 
spectral shape. Tracklets have a narrower spectrum because the higher-
frequency components have been essentially averaged out. As long as the 
application needs a smaller spectrum (i.e., smoother data) than the tracklet 
itself, the application can be supported. However, applications requiring 
highly responsive filtering (large bandwidth) cannot be supported. This cre-
ates a somewhat undesirable coupling between the application design and 
network design, in that the application designer may have to come back to 
the network designer and request a different tracklet formation process. 

Tracks are not easily refiltered for different applications, so a track-based 
system provides the least open architecture. Only a single bandwidth of 
track data is available, and this one form of data must be used for any 	

Figure 9.  The type of data shared may restrict the applications for which they can be 
used. Measurement sharing provides the most open architecture.

Types of data
networked

Applications supported
by networking

Application

Tracklet
formation

Spectrum of
measurement

Tr
ac

k 
fo

rm
at

io
n

Spectrum of
tracklets

Spectrum of
track

Highly responsive filtering
for short-term prediction
(cueing, association)

Moderately responsive
filtering for medium-
term prediction

Slowly responsive filtering
for long-term prediction

1/t

1/t

1/t



JOHNS HOPKINS APL TECHNICAL DIGEST, VOLUME 23, NUMBERS 2 and 3 (2002)	 171

TRADE-OFFS IN SENSOR NETWORKING

THE AUTHOR

WILLIAM G. (JERRY) BATH received B.E.S., M.S.E., and Ph.D. degrees from 
The Johns Hopkins University in 1974, 1975, and 1980, respectively. Since joining 
the Laboratory in 1974, he has worked on the signal processing, automation, and 
integration of radar systems for Navy ships (AN/SYS-1, AN/SYS-2, MK-92 CORT, 
SPS-48C DDC) and the early networking of Navy radars using the Surface Gridlock 
System (SGS/AC). For 14 years, he led the engineering analysis group that devel-
oped the concepts, requirements, and algorithms for sensor netting in the Coopera-
tive Engagement Capability. Since 1997, Dr. Bath has led the Sensor and Weapon 
Control Integration Branch of the Air Defense Systems Department. He has pub-
lished over 30 papers on radar signal processing, tracking, and networking. He is a 
senior member of IEEE and the first recipient of the IEEE radar systems panel award 
for outstanding contribution to radar. His e-mail address is jerry.bath@jhuapl.edu.

application. This creates an even stronger coupling of 
the network designs, in that now different units with 
different applications may compete with each other to 
have the network tracking process designed to meet 
their needs.

SUMMARY
The sensor networking process has been examined 

in terms of its three primary descriptors: (1) the robust-
ness and capacity of the data distribution process, 	
(2) the data grouping approach used, and (3) the 
data sharing approach used. The sensitivity of track 
accuracy to data distribution robustness and capacity 
has been examined. The measurement-to-track group-	
ing approach has been shown to have advantages 	
when single sensors have target detection fades, but it 
is more sensitive to sensor biases. The transmission of 

measurements (vice tracks or tracklets) has been shown 
to be a more efficient use of data distribution band-
width when targets are capable of significant maneu-
vers. The transmission of measurements also provides a 
more open architecture by giving the user more options 
for tailoring the track data to the application.
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