
JOHNS HOPKINS APL TECHNICAL DIGEST, VOLUME 23, NUMBERS 2 and 3 (2002)	 251

TRACK GENERATION AND MANAGEMENT WITHIN ACES

T

Track Generation and Management  
Within ACES

Chad W. Bates, Rebecca J. Gassler, Simon Moskowitz, Michael J. Burke, and Joshua M. Henly

his article describes the radar modeling methods used for Tactical Ballistic Mis-
sile track generation and management currently implemented in the APL Coordinated 
Engagement Simulation (ACES). The ACES radar model generates radar tracks unique 
to each radar platform, consequently affecting the accuracy of the integrated track picture 
at each platform and the effectiveness of coordinated engagements. Modeling fidelity is 
chosen to provide flexibility to represent various radar types and functionality while main-
taining reasonable execution times to support Monte Carlo analyses. The complexity of 
the radar modeling will increase as ACES grows to support other missions.

INTRODUCTION
The APL Coordinated Engagement Simulation 

(ACES) is being created to evaluate and develop dis-
tributed weapons coordination methods for supporting 
Navy, Joint, and Allied area and theater Tactical Ballis-
tic Missile Defense (TBMD), Overland Cruise Missile 
Defense (OCMD), and self-defense and area defense 
Anti-Air Warfare (AAW). An analysis of the effective-
ness of the different distributed weapons coordination 
approaches to achieve force-level coordination must 
consider critical factors that affect the outcome of pro-
cesses throughout the detect-to-engage chain of events. 
In operational situations these processes are fundamen-
tally dependent on available track information. For a 
given unit, track information may be generated locally 
or obtained from other units via common networks. 
Therefore, the generation of a realistic representation of 
the air picture at the individual platform level has been 
a primary objective in the development of ACES.

The ACES radar model generates radar tracks unique 
to each sensor, thereby impacting the accuracy of the 
integrated track pictures and the effectiveness of coor-
dinated engagements. Modeling fidelity is chosen to 
provide realistic radar track errors while maintaining 
reasonable execution times to support Monte Carlo 
analyses. ACES uses a generic radar detection model 
(RDM) designed to provide flexibility to model var-
ious types of radars. The RDM applies fundamental 
radar equations and modeling methods that depend on 
parameters unique to the specific radars being modeled. 
In conjunction with environmental and target charac-
teristics, the RDM is used to determine the radar’s view 
of the world. It is a piece of the overall track generation 
and management modeling within ACES. Other key 
elements include the selection of waveforms to manage 
radar resources during search and track, the combi-
nation of detections to form tracks, the clustering of  
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ballistic object tracks, and the correlation of local tracks 
to remote tracks to form a unit-level integrated air pic-
ture. These supporting pieces are more unique to the 
specific radar platforms modeled. This article focuses 
first on the approach taken to model a generic phased 
array radar on a stationary platform to support TBMD. 
Subsequent sections address processes that have been 
implemented for clustering, correlating, and extrapo-
lating ballistic tracks.

GENERIC RADAR DETECTION MODEL 
The generic RDM calculates the returned signal-to-

noise ratio (SNR) and associated probability of detec-
tion based on radar, target, and environmental charac-
teristics provided by input files. Figure 1 lists the RDM 
inputs, which are used to calculate the SNR of a single 
pulse as follows:
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where 

	 Pt	 = peak power of the transmitter, 
	 Gt	= transmitter gain, 
	 Gr	= receiver gain, 
	 	 = wavelength of the transmitted pulse, 
	 	 = target radar cross-section (RCS), 
	 F 	 = propagation factor, 
	 	 = pulse width, 
	 R	 = range to target, 
	 L	 = system losses, 
	 k	 = Boltzmann’s constant, 
	 T0	= standard temperature, and 
	 Fn	= receiver noise figure. 

System losses L include losses from the transmitter 
and receiver, signal processing, and scalloping and scan-
ning. Scalloping and scanning losses are associated with 
a phased array radar. Scalloping losses are the average 
losses due to the target not always being in the center 
of the beam detecting the target during search. Scan-
ning losses are due to the beam being off the normal of 
the array face. Both can be provided as input tables of 
elevation- and/or azimuth-dependent average losses. If 
these data are not available (e.g., when evaluating for-
eign systems), generic equations can be used to approxi-
mate them. 

The propagation factor F accounts for the attenua-
tion due to atmospheric gases, rain, clouds, multipath, 
and diffraction. Atmospheric attenuation computations 
gradually reduce the attenuation at extreme altitudes 
to account for the thinning atmosphere. This approach 
was selected because the RDM is used to track high- 
altitude TBMs. The multipath calculations only account 
for specular reflections. Although diffuse reflections  
predominate over rough surfaces, multipath nulls are 
more severe over smooth surfaces where specular reflec-
tions predominate. 

The APL Tropospheric Electromagnetic Parabolic 
Equation Routine (TEMPER) is commonly used to cal-
culate multipath and diffraction effects for high-fidelity 
models. Because of TEMPER’s long run time, higher-
fidelity radar models use look-up tables to access the prop-
agation effects calculated by it. Each output of TEMPER 
is specific to a particular antenna pattern and antenna 
orientation. In an ACES scenario, there can be great 
variability in the types of radars and antenna orienta-
tions. Instead of maintaining an ever-changing database 
of TEMPER results, a simplified method of calculating 
propagation effects is implemented with multipath, based 
only on specular reflections and diffraction equations 
specific to radar frequencies. Comparisons between RDM 
and TEMPER propagation results and the extremely 
short run time of the former show that the RDM is appro-
priate for supporting ACES. Figure 2 illustrates the prop-
agation results of an S-band radar tracking a target flying 
at a 1-km altitude over a calm sea state and standard 
atmospheric conditions. 

Limitations do exist in the RDM. Clutter compu-
tations are not included because the radar platform is 
assumed to be stationary and using pulse Doppler radar 
or moving target indicator processing, and the target’s 
background clutter is assumed to be negligible. These 
assumptions may not be particularly limiting when the 
targets being considered are at high altitudes and high 
velocities, such as TBMs. However, the addition of 
clutter computations and moving target indicator mod-
eling is planned as the simulation evolves to support 
AAW and OCMD. The RDM also assumes a standard 
atmospheric condition, so modeling ducting environ-
ments will require changes. If the need to implement 

Target

•Range and altitude
•Radar cross-section

Environmental

•Earth radius
•Rain characteristics
•Cloud characteristics
•Surface characteristics

Radar

•Transmitter power
•Transmitter gain
•Transmit frequency
•Probability of false alarm
•Pulse length
•Transmit, receive, and signal
   processing losses
•Noise figure
•Half-power beamwidth
•Antenna pattern
•Minimum beam elevation
•Transmit and receive polarization
•Array face tilt
•Pulse repetition frequency
•Number of pulses integrated
•Antenna height

Input files

Figure 1.  Radar detection model inputs.
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this capability arises, the use of a database of TEMPER 
outputs or the application of simplified ray tracing tech-
niques will be investigated.

SEARCH-TO-TRACK INITIATION 
ACES uses the APL-developed Array Radar Guar-

anteed Useful Search tool to generate search sectors. 
Unlike in AAW, full hemispherical search for TBMD 
does not produce adequate probabilities of detection 
at the required detection ranges owing to constrained 
radar resources. The goal of constructing area defense 
search sectors is to detect TBMs early enough to com-
plete minimum reaction time engagements for intercepts 
at specific altitudes. Inputs to the Array Radar Guar-
anteed Useful Search include suspected TBM launch 
zones, TBM types, assigned defended assets, and ship 
location. The resulting search sectors include elevation- 
and azimuth-specific waveforms, slant range limits, and 
slant range rate limits as a function of beam positions.

Each radar has a search sector revisit rate assigned 
to each of its search sectors. This rate is based on radar 
resources available or a specified input value. Every 
time the simulation steps forward in time, each target 
is checked to determine if it is present in the search 
volume. If multiple targets are present, they are checked 
for resolvability. The target resolution process consid-
ers azimuth, elevation, range, and Doppler resolutions. 
If targets are not resolvable, the root mean square of 
the RCS of the unresolved targets is used by the RDM. 
The search sector is used to select the waveform of 
the search beam closest to the target’s location. The 
waveform provides the pulse length and number of 
pulses to integrate. The average scalloping loss is deter-
mined based on the azimuth and elevation of the target. 
The angular distance between the beam center and the  
location of the target can be used to calculate a more 

accurate scalloping loss than the average scalloping loss 
data, but this requires significantly more processing time. 
The RDM calculates the integrated SNR using the RCS 
of the target. It uses a roll-averaged, aspect-dependent 
RCS and treats this as the median value for a Swerling 
IV distribution. Finally, look-up tables are used to deter-
mine the probability of detection based on the inte-
grated SNR and the desired probability of false alarm. 

The actual position of the active search beam during 
a search volume update is not modeled over time. 
To approximate the variability of when the target posi-
tion coincides with an active beam searching near the 
target, the probability of detection is calculated once 
per second and modified using 

	
ʹ = ⋅P

k
PD D ,1

	 (2)

where PD  is the modified probability of detection, k 
is the number of seconds required to search the entire 
search volume, and PD is the currently calculated prob-
ability of detection using the nearest beam in the search 
lattice. The 1/k factor produces a uniform likelihood of 
the active beam being the one used to calculate the 
probability of detection. Later versions will model the 
actual beam positions over time.

After the target is detected during search, the process 
of initiating a track is based on a required number of 
detections out of a specific number of attempts defined 
by the type of radar platform. The SNR is assumed 
constant throughout this process so that the probabil-
ity of initiating the track can be simplified and quickly 
calculated. Equation 3 shows the probability of initiat-
ing a track for a simple case where the track initiation 
requires at least M detections out of N attempts: 

	 P
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If the track initiation succeeds, then track initiation 
time is approximated as the detection time plus N times 
the track initiation update rate. This method is appro-
priate because the target RCS used in the SNR calcu-
lation is representative of a range of orientations and  
the target does not move far during the track initiation 
process.

RADAR MANAGEMENT 
During track, the generic shipboard phased array 

radar selects waveforms to maintain the returned  
SNR within a desired range. The selection logic uses a 
maximum and minimum SNR, a preferred SNR, and a 
table of available waveforms for the radar. The avail-
able waveforms are of varying sizes in terms of number 

20

10

0

–10

–20

–30

–40

–50

–60

–70

–80

O
ne

-w
ay

 p
ro

pa
ga

tio
n,

 F
2
 (

dB
)

20 40 60 80 100 120 140 160 180
Ground range (km)

Figure 2.  Comparison of RDM (red) and TEMPER (green) prop-
agation effects.
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of pulses and pulse lengths. When the SNR exceeds the 
maximum bound, a shorter waveform is selected for the 
next update so that the resultant SNR will be closer to 
the preferred SNR. Conversely, when the SNR drops 
below the minimum SNR, a longer waveform is selected 
for the next update. A rolling average SNR is compared 
to the SNR bounds instead of the instantaneous SNR 
to inhibit overreaction to orientation-based RCS fluc-
tuations of the target. The number of returns to be con-
sidered in the rolling average can be adjusted for the 
particular radar. The purpose of adjusting the waveform 
is to minimize its size while maintaining a good-quality 
track, thus conserving radar resources.

The radar is limited in radar resources based on 
allowing time for the transmitter to transmit a signal, 
waiting for the reflected signal to return from the target 
or from the region of interest, allowing the receiver to 
process the signal, waiting for energy to be available to 
send the next signal, and maintaining radar component 
temperatures within permissible bounds. Based on the 
events in the scenario, prioritization of the radar activi-
ties can cause certain activities to be delayed or aban-
doned. Activities that are currently prioritized by the 
radar are

•	 Search sector revisit
•	 Cued search
•	 Transition to track
•	 Track management
•	 Missile communication
•	 Discrimination
•	 Kill assessment

Each radar platform prioritizes these activities differ-
ently depending on its mission.

The radar resources are accounted for by calculating 
the percentage of time devoted to a particular activity 
so that the sum of percentages is limited to 100%. The 
following equations show how this percentage is calcu-
lated per activity: 

	 % )( ]UR ,R n n y q)=[ (� + − +1 	 (4)
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where 

	%R =	 percentage of time devoted to the particular 
activity, 

	 n =	 number of pulses in the waveform associated 
with the activity, 

	  = 	pulse length in seconds, 
	 y = 	delay between pulses within a waveform in  

seconds, 
	 q =	 delay between waveforms in seconds, 
	UR =	 update rate in hertz, 
	 R =	 maximum range associated with the activity, 
	 z =	 processing delays between pulses,
	 w =	 processing delays between waveforms, and 
	 fp =	 pulse repetition frequency. 

The variables y and q represent, respectively, the maxi-
mum delay for the transmitter to maintain component 
temperatures within permissible bounds and the amount 
of time it takes the pulse or waveform to reach the 
region of interest and return to the receiver. 

LOCAL TRACK ERRORS 
Once the target is in track, the accuracies of the track 

state are based on the SNR return. The following equa-
tions are used to calculate the range, angular (either azi-
muth or elevation), and velocity standard deviations of 
error for an individual raw detection:

	 �Range

R
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SNR
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V
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where kR, k, and kV are constants associated with the 
measurement processes; n is the number of pulses; and 
ECEFRaw is the Earth-centered, Earth-fixed (ECEF) x, y, 
or z standard deviation of error derived from a coordi-
nate transformation of the raw range and angular stan-
dard deviation of error.

A generic approach is used to manipulate these raw 
standard deviations of error to approximate the effects 
of filtering and to approximate a variety of track filters; 
errors are easily parameterized to evaluate their effect 
on the performance of coordinated engagements. How-
ever, specific filter algorithms can be implemented if 
that level of fidelity is desired. The generic approach 
uses the following equations to approximate the stan-
dard deviations of error after track filtering: 

	 � �Track ECEFRaw( ) ,N = =1 	 (10)
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where 

	 N	 =	the number of detections of the target,
	  N 	 =	a rolling average of the ECEF x, y, or z 

standard deviation of error, 
	 NMAX	=	maximum value N can become, and

kFa and kFb	=	adjustable filter accuracy parameters. 

Each time the target is detected with a track beam, 
N is incremented up to the maximum NMAX. If the 
raw standard deviations of error do not dramatically 
increase, subsequent detections increase N and decrease 
the standard deviation of error after track filtering, 
thereby improving track accuracy. Conversely, if detec-
tions are not successful, N is decremented, thus increas-
ing the standard deviation of error after track filtering 
and degrading track accuracy after filtering. During 
track, ACES determines if a detection is successful by 
comparing the SNR to a threshold SNR. If the SNR is 
less than the threshold it counts as a miss, and if it is 
greater than the threshold it counts as a detection. The 
parameters for NMAX, kFa, and kFb were set in ACES to 
match the performance from a model using an actual 
Kalman filter employed for tracking TBMs.

The track measurements are created by randomly 
drawing from a normal distribution using the calculated 
ECEF standard deviations of error and the target ECEF 
ground truth values as the means. This is done for posi-
tion and velocity components. 

Local bias errors are also added to the measurements. 
The standard deviations of the bias errors can differ 
among platform types. These biases represent errors in 
sensor calibration and navigation. At the beginning of 
the simulation, position and orientation bias errors are 
randomly drawn for each sensor, and these biases are 
held constant throughout the scenario. The product of 
the orientation bias and the range to the target are 
added to the position bias to obtain the total bias error.

Once the track states are determined, they are lin-
early extrapolated to decide where to point the next 
beam to update the track. The angular error between 
the beam center and the ground truth target position is 
used to calculate a beampointing loss, which is applied 
in calculating the updated SNR.

LOCAL TRACK CHARACTERIZATION 
In ACES, each platform characterizes local tracks 

to differentiate tracks on objects associated with TBMs 
from those on aircraft and to associate TBM objects that 
are from the same launch event. ACES methodology 
includes the following processes: 

•	 “Categorize” tracks, i.e., is it a piece of a TBM or an 
aircraft?

•	 “Cluster” TBM tracks together. 
•	 Select a primary object track (POT) for each cluster. 
•	 “Link” POTs from the same TBM launch event. 
•	 Select a guidance track for each launch event from 

among its POTs. 

Categorization in ACES is based on elevation, alti-
tude, velocity, and range rate. Tracks that meet specific 
criteria are designated as TBM tracks. Because multiple 
objects may be associated with a given TBM launch 
event, all TBM tracks are subjected to a clustering 
process. A list of TBM tracks is ranked in decreasing 
order of mean RCS. The track on the object with the 
largest RCS becomes the first POT. Other (secondary) 
tracks are clustered with it based on separation velocity 
and separation distance tests. The clustered tracks are 
removed from the list, and the process is repeated as 
many times as necessary until no tracks remain. Only 
POTs are made available for engagement decision pro-
cesses and for reporting to other units.

BALLISTIC EXTRAPOLATION  
OF LOCAL TRACKS 

Local TBM tracks are extrapolated based on Kepler’s 
laws to support threat assessment and engageability cal-
culations. Because the tracks contain errors, an extrap-
olated TBM track state creates an error ellipse about 
a predicted impact point. If this error ellipse breaches 
the boundaries of a defended asset, the track is declared 
a threat. The Kepler equations take the position and 
velocity data of the track and determine the eccen-
tricity vector and the geometric constant of the conic 
called the parameter. These variables allow the position 
of the ballistic object to be determined anywhere along 
its elliptic trajectory using 

	 r =
p

e1+ ⋅ cos( )
,

�
	 (13)

where 

r	 =	ECEF position vector of the ballistic object, 
p	=	 the parameter, 
e	 =	eccentricity vector, and 
	=	angle between the position vector and the vector 

from the prime focus to the periapsis. 

Figure 3 provides an illustration. Kepler’s second law 
states that the line joining the ballistic object and the 
prime focus sweeps out equal areas in equal times. This 
law is used to approximate the position of the ballistic 
object at any time.

By appropriately adding the track’s velocity stan-
dard deviations of error to the radar’s measured velocity 
state, the extreme cross-range and down-range impact 
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locations are determined to define the impact error 
ellipses associated with the magnitude of standard devi-
ations added. This ellipse is centered about the pre-
dicted impact point, which is calculated from the radar’s 
measured velocity state without adding any standard 
deviations of error.

This approach is appropriate for the extrapolation 
of ballistic objects over long periods of time, such as 
predicting impact location and engageability. However, 
ACES also extrapolates ballistic track states to support 
correlation. Data with different time stamps are extrap-
olated to a common time before attempting correla-
tion. Because the duration of these extrapolations is 
on the order of seconds and that for impact location 
and engageability can be on the order of minutes, other 
less accurate methods were investigated to support these 
extrapolations of shorter durations. One approach was 
to use constant gravity ballistic equations: 

	
r r v
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where

rcoast and � coast	=	extrapolated position and velocity 
vectors, respectively,

	 r0 and �0	=	initial position and velocity vectors, 
respectively, 

	 t	 =	duration of extrapolation, and 
	 	 =	Earth gravitational parameter.

The constant gravity approach requires significantly 
less code than the Kepler approach but produces greater 
errors in extrapolation over long durations. The actual 
Kepler-based equations are much more complicated 
than Eq. 13 and require almost 50 times more process-
ing time than the constant gravity approach.

Figure 4a shows position error results from extrapola-
tions using the constant gravity approach on a generic 
1500-km-range TBM. The calculated error is the dis-
tance between the coasted position and the ground 
truth position of the ballistic object. Based on the accu-
racies of the presently modeled radars, this approach is 
appropriate for short durations of coast. Figure 4b shows 
the performance of the Kepler approach on the same 
target. Because its performance is so much better than 
the constant gravity approach, a different color scale is 
used. The Kepler approach is clearly more appropriate 
for extrapolations over longer durations. Consequently, 
to reduce simulation execution times, ACES uses the 
constant gravity approach for coasting over short dura-
tions, such as between link updates, and the Kepler 
approach for coasting over long durations, such as pre-
dicting impact ellipses and engageability. 

p
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Figure 3.  Ellipse of the ballistic trajectory.
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CORRELATION OF LOCAL  
AND NETWORK TRACKS 

Each unit in the simulation creates and maintains 
a unique set of local tracks. Units also exchange track 
information in accordance with the capabilities and 
constraints of modeled networks. Currently, ACES sim-
ulates two types of networks: (1) the Time Division 
Multiple Access Data Link (TDL), which is based on 
Link 16, and (2) the Sensor-Based Network (SBN), 
which is based generally on the performance of the 
Cooperative Engagement Capability (CEC). A more 
detailed description of ACES network modeling can be 
found in the article by McDonald et al., this issue. 

Remote tracks are received via the TDL network. 
The track originates from a single unit, the one with the 
highest-quality track for that object. The remote track 
has the same random error as the local track on the 
sending unit but a different bias error. The bias error 
is different because the units perform a relative naviga-
tion process to eliminate unit-to-unit biases. Bias errors 
for each unit, representing the residual relative naviga-
tion bias, are selected by random draw at the beginning 
of the simulation and held constant throughout the  
scenario.

Composite tracks are produced from data received 
via the SBN network. The receiving unit combines data 
from all units contributing to a given composite track. 
In ACES this combination is a weighted average, which 
provides a better estimate of the track state than any 
single unit’s data. The composite track has a smaller 
random error because more data are used to form the 
estimate. Bias errors are added to the composite track 
state to represent the residual bias errors remaining after 
the gridlocking process. These bias errors are selected by 
random draw at the beginning of the simulation and are  
held constant throughout the scenario.

The remote and composite tracks from the TDL and 
SBN, respectively, are correlated to the locally held tracks 
on each unit. This correlation process attempts to deter-
mine whether two tracks are actually representations of 
the same object. The same basic method is currently used 
for both the TDL and SBN.

Within ACES, the timing of the correlation process 
differs between the TDL and SBN. Correlation with 
TDL tracks is performed when a unit has locally held 
tracks from its sensors and it receives remote track 
reports from the data link. The TDL tracks received and 
local POTs are the only ones considered for correlation. 
A track must pass several other tests to become a can-
didate for correlation calculations. The track accuracies 
must be greater than a given threshold, and the track 
must not be in boost phase. Only local tracks that are 
not correlated are considered candidates. All local and 
remote tracks that meet these requirements are eligible 
for correlation. The SBN performs correlation between 

local and composite tracks periodically as part of the 
process of updating composite tracks. With the SBN, 
correlation also occurs periodically among the compos-
ite tracks to eliminate dual tracks.

Once two tracks are selected to undergo the corre-
lation calculations, a common time is found at which 
to do the calculations. In ACES, this is the latest of 
the last update times for the tracks. The state vectors of 
the tracks are extrapolated to this time using the con-
stant gravity approach discussed previously. The posi-
tion covariance matrices are also extrapolated, but the 
velocity matrices are not.

With the two tracks now at the same time, statisti-
cal comparisons can be made to determine whether the 
tracks represent the same object. The Mahalanobis dis-
tance and velocity values are calculated using the state 
vectors from the two tracks and their respective cova-
riance matrices. These calculations normalize the sepa-
ration by the error and express it as a nondimensional 
scalar quantity. The Mahalanobis distance value is

	 MDV ( ) ( ) ( ),R L pR pL R L= − ʹ − −−x x x xP P 1
	 (16)

where xR is the remote track position vector, xL is 
the local track position vector, and PpR and PpL are the 
remote and local position covariance matrices, respec-
tively. The Mahalanobis velocity value calculation is 
done analogously to the Mahalanobis distance value 
calculation.

The sum of the Mahalanobis distance and velocity 
values produces a statistic that follows a chi-squared dis-
tribution with six degrees of freedom. If the statistic is 
less than a designated confidence threshold, it is con-
cluded that the two tracks could correlate.

Because a TDL track may correlate with only one 
other track, a method is needed to select among 
tracks meeting the confidence threshold. In ACES, this 
method chooses the remote track with the smallest 
local-remote Mahalanobis sum.

FUTURE DIRECTIONS 
The level of radar modeling in ACES was selected 

to ensure the presence of the most common radar track 
phenomena and to maintain a flexible structure to 
incorporate other functionality. Methods of approxi-
mating some effects are pursued in the interest of reduc-
ing processing time to support Monte Carlo analyses 
while still ensuring that the effects create a degree of 
reality appropriate to what is being studied.

Based on the needs of the analysts, the fidelity of 
certain radar aspects may need to be increased or new 
capabilities may need to be added. Perhaps actual track 
filtering algorithms will be desired or the capability to 
model environmental conditions other than standard 
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atmosphere. The complexity of the radar modeling  
will also increase as ACES evolves to support other  
missions. Functionality will be added, and current 
methods may be modified to support these new areas. 

When ACES begins support in AAW, sea and land 
clutter will be incorporated, as will moving target indi-
cator processing. Support for OCMD will require the 

modeling of airborne radars, and digital terrain eleva-
tion data will be used to determine radar blockages and 
clutter. Infrared sensors may also need to be included. 

The engineers involved in maintaining the ACES 
sensor model must continue to envision possible future 
capabilities in order to maintain a flexible structure that 
can adapt to modeling needs as they arise.
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