
Fuzzy Systems for Simulating Human, Like 
Reasoning and Control 

Therese F. Quaranta 

Ezzy theory is a powerful mathematical tool for simulating human-like reasoning 
and control. This advanced capability has been demonstrated in many commercial and 
noncommercial applications such as vehicle control, stock trading prediction, and 
pattern recognition automation systems. The principles involved in applying this 
theory to diverse problems are consistent and generalizable. Developing a model 
algorithm for adapting fuzzy theory to the solution of a broad range of control and 
information management problems is the goal of an Independent Research and 
Development project, the Fuzzy Development Model. 

INTRODUCTION 
As we enter an era of increased automation, we are 

developing computer algorithms to control systems and 
make timely decisions in the presence of uncertainties 
in data. Since humans are adept at handling informa, 
tion with uncertainties, an algorithm containing a 
technique for simulating human, like reasoning and 
control would be a definite asset. Fuzzy theory, which 
is a mathematical tool for representing and utilizing 
vague and ambiguous data in decision and control 
solutions, provides such a technique. Algorithms incor, 
porating fuzzy mathematics merge our high,speed abil, 
ity to evaluate information using computers with hu, 
man, like reasoning and control. 

The logic involved in these algorithms and the 
techniques used in system automation can be applied 
uniformly to diverse problems. A general,purpose 
method for utilizing the theory to automate systems can 

therefore be defined, and general software can be 
developed to implement the logic. The information 
gleaned from demonstrating this method with a model 
problem will serve as an example of this approach's 
application. 

This article documents a general,purpose algorithm 
for incorporating fuzzy theory into diverse control and 
information management system solutions. The objec, 
tives of the Fuzzy Development Model, an APL Inde, 
pendent Research and Development project under the 
Software Engineering Thrust Area, were to develop an 
algorithm consisting of a defined methodology for 
applying the theory in system automation solutions, to 
implement general software employing the logic, and 
to demonstrate the approach using a model ship col, 
lision,avoidance problem. Results of the project, which 
has fulfilled all of its objectives, are detailed. 
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FUZZY CONCEPT 
People are good at making decisions and controlling 

systems using vague and ambiguous data. These data 
uncertainties arise from system nonlinearities, time 
variations, poor~quality measurements, ill~defined con~ 
ditions, and the equivocalness of human language. One 
reason we can process data with uncertainties is that 
we think in terms of concepts, which are inherently 
vague and ambiguous, rather than crisp numbers. 
Concepts involve the use of variables whose values do 
not have sharp boundaries. 

Lotfi Zadeh, 1 a professor at the University of Cal~ 
ifornia at Berkeley, conjectured that automated systems 
could deal better with vague and ambiguous data if they 
were modeled after the human method of reasoning. To 
implement this approach, he introduced the linguistic 
variable, whose values are words rather than numbers. 
For example, the linguistic variable steering angle could 
have linguistic values SMALL LEFT, ZERO, and 
SMALL RIGHT. (In this article, words in italics are 
linguistic variables, words in all capital letters are lin~ 
guistic values, and words in double quotation marks are 
human concepts.) Systems could then be automated 
using instruction or control statements, written in 
terms of the linguistic variable, that define the dynam~ 
ics of the decision or control processes. These state~ 
ments are in the form of if-then rules such as 

if X is A, then Y is B, 

where X and Yare linguistic variables and A and Bare 
their linguistic values. 

Humans are very good at navigation and collision 
avoidance. We drive cars, pilot helicopters and boats, 
and operate remotely controlled robots and toys. The 
linguistic variables used in such activities include speed 
and steering angle, distance to obstacles, and, to deter~ 
mine course and speed adjustments, the speeds and 
angles at which obstacles approach. When these lin~ 
guistic variables are expressed as rules relating the input 
and output variables, the dynamics of the human de~ 
cision and control processes can be modeled. A possible 
collision~avoidance rule is 

if obstacle angle is SMALL LEFT, 
then steering angle is SMALL RIGHT. 

Here, obstacle angle is the input linguistic variable with 
a linguistic value SMALL LEFT, and steering angle is the 
output linguistic variable with a linguistic value 
SMALL RIGHT. This rule implies that if the obstacle 
angle is perceived as being a "small left" angle, the 
automated system will be controlled to steer at an angle 
that is "small right." 

In human thought, linguistic values of input and 
output variables do not have sharp boundaries. For 
example, in the instruction to make a "small right" 
steering angle when maneuvering a vessel, the bounds 
defining a "small right" steering angle are not well 
delimited because a smooth and gradual transition 
exists in human thought from the concept "zero" steer~ 
ing angle, to "small right," to "right" steering angle. A 
mathematical representation of a set with vague 
boundaries, such as a set of "small right" steering angles, 
is the fuzzy set. Fuzzy sets, therefore, provide a mathe~ 
matical representation for the linguistic variable. Fuzzy 
sets are discussed in the next section. 

We can model the human method of reasoning with 
instruction or control statements using linguistic vari~ 
abIes and the underlying mathematical representation 
of those variables. This human~ like reasoning method~ 
ology has been termed fuzzy logic. A fuzzy model is the 
culmination of statements governing the decision or 
control process dynamics, their underlying vocabulary 
of linguistic variables and values, and inferential logic 
procedures. The resulting automated system is called a 
fuzzy system. 

FUZZY SETS 
Fuzzy set theory, introduced by Zadeh2 and based on 

key ideas envisioned by Black3 and Lukasiewicz,4 is a 
generalization of set theory. In set theory, sets are 
defined on a universe of discourse such that elements 
within a set's domain belong to the set; otherwise, the 
element does not belong. For example, given the uni~ 
verse of possible steering angles, the set of SMALL 
RIGHT (SR) steering angles is defined over the do~ 
main of angles from 22.5 to 67.5°. Mathematically, this 
set is represented as SR = {O EE>l 22.5° ::; 0 ::; 67.5°}, 
where 0 denotes the steering angle and E> is the universe 
of possible steering angles. Figure 1 is a graphical rep~ 
resentation of the set SR. Here, [(0) is the two~valued 

SR = {8 Eel 22.5° ~ 8 ~ 67.5°} 

{ 
1 if 22.5° ~ 8 ~ 67.5° 

fSR (8) = ' 
0, otherwise 

SR 

L-____ -L ____ ~I------J-------_. e 

22.5 45.0 67.5 

System input: steering angle, 8 (deg) 

Figure 1. Set representation of a SMALL RIGHT (SR) steering 
angle. 
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characteristic function indicating the degree of mem, 
bership of a steering angle () in set SR as 

iSR «())={1, 
0, 

if 22.5°~()~67.5° 

otherwise 

This characteristic function represents a mapping of 
the universe of discourse of () values, 0, into the set 
{O, 1} and is a two,valued or black and white mapping 
of the steering angle element () into a concept of a "small 
right" steering angle. 

Fuzzy sets are a generalization of these sets. Fuzzy sets 
are defined on the universe of discourse such that el, 
ements within a fuzzy set's domain can belong to the 
set to a partial degree. For example, a fuzzy set SR 
representing the concept "small right" steering angle is 
shown in Fig. 2. As illustrated, fuzzy sets add a dimen, 
sion to the mathematical representation of a concept 
by allowing an element to belong to a set to a partial 
degree. The degree of membership J-tSR «()) represents 
the degree of compatibility between the steering angle 
element () and the concept SR. 

Q;' 
~ 
ci 
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E 
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E 
'0 
Q) 

~ 
Ol 
Q) 
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SR = {O E ® I "0 is small right"} 

{

0145 if 0° < ° < 45° 
ILSR (0) = 2 - 0145, if 45: < 0-$ 90° 

0, otherwise 

SR 

Membership 
function 

o~----------~------------~-+® 
o 45 90 

System input: steering angle, ° (deg) 

Figure 2. Fuzzy set representation of a SMALL RIGHT (SR) 
steering angle. 
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The triangular representation of the set SR shown 
in Fig. 2, which is called the membership function, 
is not unique. Examples of several other membership 
function representations are presented in Fig. 3. The 
membership function maps every element into the 
continuum [0, 1]. The shape and scope of the member, 
ship function are chosen to represent the compatibility 
of elements with a concept. For example, the triangular 
membership function in Fig. 2 models the concept of 
a "small right" steering angle to be totally compatible 
at a 45° turning angle, J-tsR(45°) = I, and to have 
monotonically decreasing compatibility as () moves 
away from 45°, 0 < J-tSR« ()) < 1. At steering angles less 
than 0 and greater than 90° the concept is totally 
incompatible, that is, J-tSR«() < 0° or () > 90°) = o. The 
singleton membership function at the left of Fig. 3 
models the concept of a "small right" steering angle 
that is completely compatible at 45° and incompatible 
at all other angles. N ote that this is an example of the 
general fuzzy set converging to the classical set, which 
can be described by a two,valued degree of membership 
function or characteristic function. 

The fuzzy set representation of concepts such as a 
"small right" steering angle is similar to the way hu, 
mans perceive concepts and traverse among them, 
since the degree of compatibility of an element, such 
as a precise steering angle, with a concept, such as a 
"small right" angle, may be partial. An element can 
thus be partially compatible with several concepts at 
the same time, giving rise to a smoother transition 
between concepts than a representation with conven, 
tional sets. For example, in the fuzzy sets of Fig. 4a, the 
angles 67.5 and 67.6° represent the concepts "small 
right" and "big right" angles to about the same degree, 
since their degree of membership in the sets SR and 
BIG RIGHT (BR) is about the same. In the sets of Fig. 
4b, these angles are characteristic of different concepts, 
even though they differ by only 0.1°. 

The theory of fuzzy sets includes operators for com, 
bining and manipulating the sets. Fuzzy operators for 
complement, intersection, union, and containment for 

SR SR 

0 L-__________ ~ __________ ~ ® L-______ =-__ ~ ____ -= ____ ~ ® L-____ -L ____ ~ __________ ~ ® 
0 45 o 45 o 45 

System input: steering angle, ° (deg) System input: steering angle, ° (deg) System input: steering angle, ° (deg) 

Figure 3. Several fuzzy set representations of a SMALL RIGHT (SR) steering angle illustrating that the membership functions are not unique. 
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(a) 
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SR BR 

~----~------~----~------~~ 0 

22.5 45.0 67.5 90.0 

System input: steering angle, () (deg) 

1 r-
SR BR 

0 L------L------L-' -----L ______ ~~ 0 

0 22.5 45.0 67.5 90.0 

System input: steering angle, () (deg) 

Figure 4. (a) Fuzzy set and (b) classical set representations of 
a SMALL RIGHT (SR) steering angle and BIG RIGHT (BR) 
steering angle. 

two fuzzy sets A and B defined on the universe of 
discourse X are listed and illustrated in Fig. 5. In the 
figure, the fuzzy regions resulting from these operations 
are outlined in bold and can be interpreted as follows:5 

Complement: T o what degree does an element 
not belong? 

Inter ection : T o what extent are items in both sets? 
Union : T o what degree are items in either 

set ? 
Containmen t: What groups belong to other groups? 

N ote that the vertical sum of the membership functions 
at a particular x value is restricted to 1 only if the 
overlapping sets are complementary. These definitions 
satisfy well-defined axiomatic principles. Different def­
initions meeting these principles have also been given 
and are expanded upon by Klir and Folger.6 N ote that 
when the degree of membership is restricted to the set 
{O, 1}, these functions define the class ical set operators. 

FUZZY SYSTEMS 
The structure of a fuzzy system is similar to that of 

conventional automated systems. Figure 6a illustrates 
the three main components: the physical device or 
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Complement of A: IJ-J..(x) = 1 - IJ-A(x) 

A 

o L-____ ---I. ______ ----liI'--____ ~ ______ __:l~ X E X 
o 

Intersection of A and B: IJ-Ans(x) = min{IJ-A(x), IJ-s(x)} 

A B 

o L--'-___ ....L-______ .l.... ___ ""--__ ----J~ X EX 
o 

A B 

0 L-~ ______ ~ ______ ~ ______ ~ __ __:l~ XEX 
0 

Containment of A in B: Ac B <=> IJ-A(x) ~ IJ-s(x) 

B 

o '---------'------Io. ___ ......... __ -'-______ __:l~ X E X 
o 

Figure 5. Fuzzy set complement, intersection , union, and contain­
ment operators. 

46 JOHNS HOPKINS APL TECHNICAL DIGEST , VOLUME 16, NUMBER 1 (1 995) 



FUZZY YSTEMS FOR SIMULA TI G HUMAN-LIKE REASO ING AND CONTROL 

process, the system model, and the process logic. Sys~ 
tern automation entails developing a decision or con~ 
trol solution using the process logic on the basis of a 
system model and inputs from the physical device or 
process. The primary difference between conventional 
and fuzzy systems is in the system model approach. 
Conventional systems use models of the physical device 
or process, whereas fuzzy systems use models of the 
human operator's or decision maker's behavior. 

In fuzzy systems, as illustrated in Fig. 6b, the process 
logic involves three primary operations: fuzzification, 
rule evaluation, and defuzzification. The following sec~ 
tions describe and demonstrate these three operations 
using representative system variables and rules. How~ 
ever, the procedures demonstrated on the problem~ 
specific variables and rules are actually independent of 
the particular system problem. The problem~specific 
information is input to each operation block, as shown 
in the ovals on the right of Fig. 6b, for standard 
processing. 

(a) 

(b) 

Value of system 
input variable 

Value of system 
input variable 

Value of output 
control or decision 
variable 

Figure 6. (a) A conventional structure for an automated system. 
(b) A fuzzy system performs the processing logic in three operating 
stages: fuzzification, rule evaluation, and defuzzification. Problem­
specific information is input to each operation, as shown in the 
ovals on the right. 

Because the three process logic operations are prob~ 
lem~independent, general software can be developed to 
perform these procedures. This software can then be 
applied to many problems by changing the problem~ 
specific input information. General software that has 
been developed in the C language to implement the 
process logic procedures is described in the following 
sections. 

Fuzzification 

Fuzzification is the process through which the value 
of a system input variable, or crisp measurement, is 
taken from the physical device or process and mapped 
into fuzzy sets defined for this system input. The output 
of this operation is a fuzzy input, which is the degree 
of membership of the crisp measurement in the fuzzy 
sets. The fuzzy input is the input for the rule evaluation 
process. 

For example, if the physical system is a vessel steer~ 
ing control, a system input variable may be the desired 
course change to reach a destination, with a crisp 
measurement of 38°. For this desired angle (DA) system 
input, five fuzzy sets stored in the system input fuzzy set 
are BIG LEFT (BL), SMALL LEFT (SL), ZERO (ZE), 
SMALL RIGHT (SR), and BIG RIGHT (BR). These 
fuzzy sets and their underlying membership functions 
are shown in Fig. 7a. The crisp value of the linguistic 
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.& 
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OJ 
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OJ 
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'0 
OJ 
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Cl 
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(a) 

BL 
1.00 

SL ZE SR 

0.84 ~----,'--'.....--+-~---r' 

0.16 1-+----l....---f--~---I--__lI. 

BR 

0 
O L---~-----~--~------~~ 

(b) 

Value of OA 
variable 

- 90 -45 o 38 45 90 

Value of system input variable: OA (deg) 

38° 
Fuzzification 

Fuzzy Fuzzy 
sets input 

BL 0.00 

0.00 

0.16 

0.84 

BR 0.00 

Figure 7. (a) System input is the desired angle (DA), which is 
defined by five fuzzy sets: BIG LEFT (BL), SMALL LEFT (SL), 
ZERO (ZE), SMALL RIGHT (SR), and BIG RIGHT (BR). (b) 
Fuzzification is the mapping of the crisp system input value into the 
fuzzy set membership functions to produce a fuzzy input. 
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variable DA, 38°, maps into a fuzzy input, which is a 
variable containing the degree of membership that 
the crisp angle maps into each of the fuzzy sets. This 
mapping is illustrated in Fig. 7a. The mapping defines 
a 0.16 compatibility of 38° with the concept "zero 
desired angle" and 0.84 compatibility with the concept 
"small right desired angle." A 38° value for DA is 
incompatible with the other concepts. These degrees 
of membership in the fuzzy sets constitute the fuzzy 
input, as illustrated in Fig. 7b. 

Rule Evaluation 

Rule evaluation, or fuzzy inference, is the process of 
calculating a fuzzy control or decision output based on 
linguistic rules governing the control or decision sys~ 
tem dynamics. 

Fuzzy rules are usually if-then statements that de~ 
scribe the action to be taken in response to various 
system inputs. They are written in terms of linguistic 
input and output variables and linguistic values or fuzzy 
sets. A representative rule format is 

if X is A and Y is B, then Z is C. 

LJ LJ LJ 
antecedent antecedent consequent 

Here, X and Yare input variables, Z is an output vari~ 
able, and A, B, and C are their associated linguistic 
values or fuzzy sets. For example, a rule relating the DA 
(system input), obstacle angle (OA) (another system 
input), and steering angle (system output) is 

if DA is SR and OA is SR, then steering angle is ZE . 

Here, the OA's linguistic values, or fuzzy sets, and under~ 
lying membership functions are taken to be identical 
to those for the DA shown in Fig. 7a. The fuzzy input 
for a measured obstacle angle of 10° is illustrated in 
Fig. 8. The fuzzy sets stored in a system output fuzzy set 
for the steering angle are shown in Fig. 9. 

Value of 
OA 10° 

input 
variable 

F uzzification 

Fuzzy Fuzzy 
sets input 

BL 0.00 

0.00 

0.78 

0.22 

BR 0.00 

Figure 8. The system input obstacle angle (OA) is represented by 
the same five fuzzy sets describing the desired angle (DA). The 
fuzzy input OA is shown for a criSp OA input of 10°. 

SL ZE SR 

OL-L-__ -L~ __ ~-J __ ~~ __ ~~~ 

- 90 -45 o 45 90 
Value of system output variable: steering angle (deg) 

Figure 9. The system output is the steering angle, which is 
defined by th ree fuzzy sets: SMALL LEFT (SL), ZERO (ZE), and 
SMALL RIGHT (SR). 

A popular rule evaluation method is called 'min-max 
inferencing.' This technique assumes the isomorphism 
between logic operators and set operators indicated in 
Table 1. Rule evaluation proceeds by first applying the 
logical 'and' operator to the rule antecedents, or taking 
the minimum of the antecedents' strengths. The ante~ 
cedents' strength is equal to the corresponding fuzzy 
input value. The result is the strength of the rule as it 
applies to the consequent action. 

For example, the strength of the antecedent 'DA is 
SR' is 0.84, since the 38° desired angle is consistent 
with the concept SR by 0.84. The strength of the 
antecedent lOA is SR' is 0.22, since the 10° obstacle 
angle is consistent with the concept SR by 0.22. The 
strength of the consequent action 'steering angle is ZE' 
is the minimum of 0.84 and 0.22, or 0.22. Therefore, 
the rule conditions imply a 0° steering angle to the 
degree of 0.22. (The min-max inferencing process is 
further illustrated in the boxed insert, The Rule Eval~ 
uation Process.) 

Defuzzification 

Defuzzification is the process of mapping a fuzzy 
output onto a crisp system output value. One of the 
most popular defuzzification techniques is the centroid, 
or center~orgravity (COG) method, which is per~ 
formed by first mapping the fuzzy output onto the 
defined system output fuzzy sets. The area defined by 
this mapping is used in the COG calculation to derive 
the COG value for the output control or system 

Table 1. Relation between set and logic operators. 

Set Logic 
operator 

Intersection 

Union 

operator 

and 

or 

Definition 

ILAnB(X) = min {ILA (x), ILB(X)} 

ILAuB(X) = max {ILA (x), ILB(X)} 
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THE RULE EVALUATION PROCESS USING MIN- MAX INFERENCING 
Rule 1: 
Rule 2: 
Rule 3: 

If DA is SR and OA is SR, then steering angle is ZE. 
If DA is ZE and OA is SR, then steering angle is ZE. 
If DA is SR and OA is ZE, then steering angle is SR. 

Step 1: Calculate strength of rule . 
Strength of Rule 1 = min[/LSR(38°), /LSR(100)] = min(0.84, 0.22) = 0.22 
Strength of Rule 2 = min[/LZE(38°), /LSR(100)] = min(0.16, 0.22) = 0.16 
Strength of Rule 3 = min[/LSR(38°), /LZE(100)] = min(0.84, 0.78) = 0.78 

Step 2: Calculate fuzzy output. 
/LZE(steering angle) = max(strength of Rule 1, strength of Rule 2) = max(O.22, 0.16) = 0.22 
/LSR(steering angle) = strength of Rule 3 = 0.78 

Fuzzy Fuzzy 

OA sets output 

fuzzy input SL 0.00 

Rule 0.22 
evaluation 

OA SR 0.78 
fuzzy input 

Given the fuzzy inputs and fuzzy rules, the strength of the rule can be calculated by applying the logical 'and' operator. The 
final step is to calculate the fuzzy output by applying the logical 'or' operator. 

When more than one rule suggests the same action, such as Rule 1 and Rule 2, which both imply a 0° course change, the 
rule that applies most is used. The resulting degree of membership of the output variable in its defined fuzzy sets is the fuzzy output. 

The fuzzy additive method is another inferencing method. In this method each rule strength is calculated, as in min-max 
inferencing, by taking the minimum of the antecedent's rule strength. However, when more than one rule implies the same 
consequent action, the consequent strength is the minimum of 1.0 and the sum of the rule strengths implying that consequent. 
For the example here, the fuzzy output /LZE (steering angle) is calculated as 

= min( 1.0, strength of rule 1 + 
/LZE (steering angle) strength of rule 2) 

= min(1.0, 0.22 + 0.16) = 0.38 . 

The fuzzy output /LSR (steering angle) is the same, 0.78. An advantage of this method is that it allows all the rules to contribute 
something to the final model solution. This approach is used in decision models when accumulating evidence, or strength, on 
a consequent action is important, such as in risk assessment. 

variable, as shown in the boxed insert, Calculating the 
Center of Gravity. 7 

General Software for Fuzzy Inferencing 

The general software for the fuzzification, rule eval­
uation, and defuzzification processes is written in the 
C language. The system inputs, outputs, and member­
ship functions and rules are associated using link list 
data structures, as originally defined by Vioe and listed 
in the boxed insert on C-Ianguage structures. An algo­
rithm has been developed to accept the problem­
specific information and set up the three required 
operation inputs: system input fuzzy set, fuzzy rules, and 
system output fuzzy set. The number of system inputs, 
outputs, and associated membership functions or rules 
is unlimited. The limitation of this software is that the 
membership functions must have a shape describable by 

two points and two slopes, such as triangles, trapezoids, 
and rectangles, as illustrated in Fig. 10. 

FUZZY SYSTEM DEVELOPMENT 
Fuzzy system development is defined by the two 

stages illustrated in Fig. 11. In the initial stage shown 
in Fig. lla, the overall system is first evaluated for its 
functional and operational characteristics to identify 
separate component processes. The output of this stage 
is an identification of system components that can be 
implemented using fuzzy logic. This output is the input 
to the second stage, as defined in Fig. 11 b. In the 
second stage, a fuzzy system is developed for the com­
ponent using the following processing steps:8,9 

1. Define Model Functional and Operational Charac, 
teristics: This step entails defining the information 
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CALCULATING THE CENTER OF GRAVITY (COG) 
Step 1: Calculate area of each fuzzy set i defined by fuzzy output (). 

<D 
<D 
0, 
<D o 

Run 1 ----J Top L Run 2 

I+--Base~1 

Run 1 = p.,((})/slope 1 
Run 2 = p.,((}) /slope 2 
Base = point 2 - point 1 

Top = base - run 1 - run 2 
Area = p.,((}) x (base + top)/2 

Step 2: Calculate the COG over all fuzzy sets. 

L areai X COG i 
COG V 

I 

ci 
:E.-., 

ZE SR ~~ 
<DOl 1.00 .oc: 
ECll 0.78 
<DOl 
E·§ 
-<D 
0<1> 
0)-
O)~ 0.22 o,::t 
0) 

0 0 
- 90 -45 0 45 90 

Value of system output variable: steering angle (deg) 

Defuzzification is performed by mapping the fuzzy outputs onto the system output fuzzy sets, computing the area defined, and 
finding its COG. Note that only the fuzzy sets with nonzero degrees of membership are shown. The figures illustrate the two steps 
for calculating the COG. The figure in Step 2, for example, shows the fuzzy output values of 0.22 and 0.78 degrees of membership 
in the fuzzy sets ZE and SR, respectively. The areas defined by these degrees of membership for each of the fuzzy sets are shaded. 
The COG, 37.4°, which represents the crisp output control command for the steering angle system output variable, is calculated 
as the centroid of the shaded areas. 

0) 
Q. 
o 

U5 

flow into the system, the basic 
transformations performed on 
the data, an d wh at data are 
output. 

~ Point 1 Point 2 Point 1 Point 2 Point 1 Point 2 

2. Decompose Model Variables 
into Fuzzy Sets: Each system 
input and output variable is de~ 

composed into on e or more 
qualitative labels or fuzzy sets. A 
membership function is defin ed 
for each fuzzy set that semanti~ 

cally represents the concepts 
associated with the label. Some 
rules of thumb are as fo llows: 

Input or output value, x Input or output value, x Input or output value, x 

Figure 10. Membership functions for input into general software must be describable by two 
points and two slopes such as triangles, trapezoids, and rectangles. 
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• The number of labels associated with a variable 
should generally be an odd number between 5 and 9. 

• Each label should overlap with its neighbors by 10 
to 50% of the neighboring space, and the sum of 
the vertical points of the overlap should always be 
less than l. 

• The density of the fuzzy sets should be highest 
around the optimal control point of the system and 
should then decrease as the distance from that 
point increases.8 

3. Write Rules to Define Model Behavior: The system 
dynamics are rules that tie the system inputs to the 
system outputs. Rules are usually expressed in the 
if-then format such as if X, then Y. 

4. Select a Defuzzification Method: Many de~ 
fuzzification strategies have been developed for vari~ 
ous problem types; however, the most popular is the 
centroid method that was described in the 
previous section. Others have been well described 
by Cox.9 

Once the fuzzy model has been constructed, the 
process of simulating the fuzzy system and tuning the 
model begins. The system's results are compared against 
known test cases for validation. When the results are 
not as desired, changes are made either to the fuzzy set 
descriptions or to the mappings encoded in the rules. 
Once the desired result is achieved, this fuzzy system 
component is incorporated into the larger system. 
These procedures will be demonstrated for a fuzzy ship 
collision~avoidance system. 

FUZZY SHIP COLLISION .. A VOIDANCE 
SYSTEM 

P roblem 

Much attention has focused on open ocean and 
confined~water vessel collisions because of public inter~ 
est in their environmental impact. For example, col~ 
lis ions involving vessels carrying large loads of oil have 
caused extensive environmental hazards, and there are 
concerns about ships carrying nuclear reactors. With 
this interest in protecting the environment, as well as 
the lives of seamen, many investigations have been 
made to develop automated navigation and collision~ 
avoidance systems. 1O- 14 The goal of these automated 
systems is to eliminate human error resulting from such 
factors as fatigue by removing the human operator from 
continuous vessel control. To automate the navigation 
and collision~avoidance processes of the mariner, they 
must first be defined and modeled. 

The functional and operational characteristics of a 
mariner's dynamic processes are illustrated in Fig. 12 and 
translated into a context diagram centered around the 
mariner in Fig. 13. The dynamic process begins with a 

(a) 

(b) 

Define system fu nctional and 
operational characteristics 

Figure 11. Fuzzy system development is a two-stage process. 
(a) The first stage entails system evaluation for the appropriate­
ness of fuzzy logic in the solution . (b) The second stage builds the 
fuzzy model for a component identified in the first stage. 

mlsslon that has two objectives: (1) to navigate the 
vessel to a destination and (2) to avoid obstacles en~ 
countered along the path. Given this mission and 
knowledge of the vessel's current location, speed, and 
heading, a mariner will chart the desired course to the 
mission destination. Using this desired course, heading 
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C~LANGUAGE STRUCTURES USED FOR SYSTEM INPUTS, OUTPUTS, AND MEMBERSHIP FUNCTIONS 
AS WELL AS RULES ORIGINALLY DEFINED BY VIOT 

/* io_type structure used to build a link-list of system inputs and system outputs. */ 
struct io_type{ 

char name [MAXNAME]; /*name of system input or output */ 
float value; /*crisp value of system input or output */ 
struct mLtype /*list of linguistic values, or fuzzy set labels */ 

*membership_fns; /* defined for this input or output */ 
struct io_type *next; /*pointer to next input or output */ 
}; 

/* Fuzzy sets and membership functions (mf) associated with each system input and output. */ 
struct mLtype{ 

char name [MAXNAME]; 
float value; 
float pointl; 
float point2; 
float slopel; 
float slopel; 
struct mLtype *next; 
}; 

/*linguistic value, or fuzzy set label */ 
/*degree of membership * / 
/*left x-axis point of mf domain */ 
/*right x-axis point of mf domain * / 
/*slope of left side of mf * / 
/*slope of right side of mf * / 
/*pointer to next mf for system input or output*/ 

/*Rules are of the if-then form. The rule_elemenCtype pointers point to the degree of 
membership value mLtype->value for the system input or output specified by the 
antecedent for the 'if' side and the consequent for the 'then' side. */ 
struct rule_type{ 

struct rule_elemenCtype *iLside; 
struct rule_elemenctype *then_side; 
struct rule_type *next; 
}; 

struct rule_elemenCtype{ 
float *value; 
struct rule_elemenCtype *next; 
}; 

/*pointer to io_type of antecedents in rule */ 
/*pointer to io_type of consequent in rule */ 
/*pointer to next rule */ 

/*pointer to antecedent/consequent mLtype->value*/ 
/*next antecedent/consequent element in rule */ 

Note: This material has been adapted with permission from Ref. 7. 

and speed are computed, and the vessel is navigated 
according to standard navigational rules. During vessel 
navigation, the mariner monitors the safety situation. If 
a hazard is detected, an avoidance action is taken based 
on collision regulations as well as navigational rules. 

Although numerous approaches to automated nav­
igation and ship collision-avoidance systems have been 
suggested, a satisfactory solution has yet to be achieved. 
Coenen et alY reported that this failure has largely 
been due to the algorithmic approach, which generally 
entails mathematical modeling of the system and en­
counter situation. This approach becomes inadequate 
when problem complexity increases, as when multiple 
encounters occur simultaneously. 

Additionally, the models developed using the al­
gorithmic method do not capture the way mariners 
themselves navigate and solve collision-avoidance 
problems. Mariners interpret standard regulations on 
the basis of their training and experience and an 

evaluation of the situation. Rule-based expert sys­
tems, however, provide an automated approach to 
simulate the mariner's use of regulations. The con­
ventional rule-based approach, which employs binary 
logic, has shown some success,11 but its main limita­
tion is the required hard coding of boundaries on 
concepts in the regulations, such as 'timely and pos­
itive' action to avoid a collision, and the need to 

recognize the point at which vessels are 'in extremis' 
and must turn to avoid a collision. These boundaries 
define the conditions where a rule does or does not 
apply. Rules are frequently implemented through a 
tree-like reasoning structure. 

A rule-based expert system employing fuzzy logic 
uses fuzzy sets to represent inexact or fuzzy concepts as 
well as fuzzy inferencing so that rules can apply partial­
ly. Actions are inferred by parallel processing the rules 
along with their degree of applicability. A fuzzy logic 
approach will be demonstrated here. 
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Chart 
course 

Compute course 
heading and speed 

Convert heading 
and speed to 

control commands 

Assess safety 
of situation 

Define obstacles 
of highest priority 

Figure 12. Functional and operational characteristics of a 
mariner's navigation and collision-avoidance process 
(GPS = Global Positioning System). 

System Problem 

T he system problem is to design a control solution 
by employing the logic that mariners use for navigating 
a vessel to a goal location without collisions with 
unexpected obstacles and with minimum deviation 
from a defined course. On the basis of Figs. 12 and 13, 
this problem can be broken into several fuzzy control 
modules: 

• A ch arting routine to define the optimal path plan 
• A system for automatic navigation and steering control 
• A system for obstacle identification at each sensor 

• A system for sensor fusion and obstacle identification 
• A collision-avoidance system for circumventing ob­

stacles found by the sensor identification system 

To reduce the scope of the problem for this Indepen­
dent Research and Development project, only the fuzzy 
collision-avoidance module is being developed. A gen­
eral simulation is employed to create sensor data inputs 
and the required ship heading to the destination. Figure 
14 is a context diagram for this reduced problem. Here, 
the actual regulations governing collision-avoidance 
actions are not used. Quantification of the collision­
avoidance regulation concepts is beyond the scope of 
this project; therefore, general rules are used instead to 
demonstrate the fuzzy logic concept. The system can be 
modified later to include more realistic rules. 

Simulation Problem 

The geometry of the simulation problem is defined 
in Fig. 15. This simulation is similar to that described 
by Kong and Kosko. 15 The system is defined by three 
position variables (3(t), x(t), and y(t), and a constant 
speed variable v, where (3(t) specifies the angle of the 
ship with respect to the vertical or northerly direction 
and t is the discrete simulation time step. The coordi­
nate pair x(t) and y(t) specify the position of the vessel's 
bow center at time step t. The output, or control vari­
able, is the rudder angle 8(t). 

The initial simulation stage is defined as a plane, 
(0, 100) x (0, 100), with the initial starting position 
at (0, 0) and the destination at (100, 100). The 
planned course to the destination is a straight path 
along the diagonal joining the initial and final 
positions. 

Five sensor measurements provide obstacle informa­
tion to the vessel. As shown in Fig. 15, the sensors 
point in the - 90, - 45, 0, 45, and 90° directions rel­
ative to the direction of the vessel's motion angle (3(t). 
A sensor's measurement consists of the closing rate 
(positive for closing) and distance of the closest obsta­
cle within its field of view. The field of view for each 
sensor is listed in Table 2. The sensors' fields-of-view 
do not overlap, and an obstacle can therefore not be 
seen by more than one sensor. An obstacle simulation 
system generates these sensor inputs using an obstacle 
database. The obstacle database consists of the speed 
and the obstacle's current and destination positions. 

Figure 16 is the data flow diagram for the simulation, 
which begins with initial and destination positions 
along with speeds for the vessel and the obstacles. The 
simulation computes which obstacles are within the 
field of view of each sensor, the closest obstacle per 
sensor, and the closing rate of these obstacles. The 
desired vessel course is computed as the angle of a 
vector drawn from the current ship position to the 
planned course (pc) destination location (3pc(t). T he 
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mechanical 

control 

updates the vessel's position using 
the fo llowing simplified kinematic 
equations: 

(3( t + 1) = (3(t) + O(t) , 

x(t + l)= x(t)+ vsin[(3(t+ 1)] , 

y(t+ l)= y(t)+ v cos[(3(t + 1)] . 

Similarly, the obstacle pOSItiOnS 
are updated. The simulation con, 
tinues until the vessel reaches the 
dest ination or the end of the stage 
boundaries. 

Define collision­
avoidance action 

Fuzzy Collision .. Avoidance 

System 

The fuzzy collision ,avoidance 
system is an extension of an adap, 
tive path execution system for a 
robot developed by Yen and Pflung, 

Assess safety 
of situation 

Figure 13. Context diagram describing the inputs and outputs used by the mariner in 
navigation and collision avoidance. 

er. 16 In this system, a collision, 
avoidance method for both station, 
ary contin uous obstacles, such 
as walls, and stationary discrete 

DA is the difference between the vessel's current course 
(3( t ) and the desired course (3pc(t). The DA and the 
sensor data are input into a fuzzy collision,avoidance 
decision system, wh ich is described in the next sect ion. 
This system computes a direction , based on fuzzy logic, 
to a safe course of travel for the next time step. The 
output is the rudder control angle O(t). The simulation 

Vessel 
data 

obstacles, such as tables, is considered. The primary 
differences between the adaptive path execution 

North 

y 

Sensor 3 
at -45° 

Sensor 4 
at -90° \ 

Start 
(0, 0) 

Sensor 0 
at 90° 

Destination 
(100, 100) 

x 

East 

Figure 15. The geometry of the simulation problem, where (3 (t) is 
the vessel heading angle at time t, (3pc(t) is a heading angle 
(planned course) from the vessel to the destination at time t, and 

Figure 14. Context diagram for simulation of a fuzzy collision- (1 (t) is the rudder control angle for time tthat defines the change in 
avoidance solution . heading for time t+ 1 (v= constant speed variable) . 
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T able 2. Sensor field of view. 

Sensor Sensor 
number anglea Field of viewb (deg) 

0 90° [(3(t) +90.0 to (3(t) +67 .5) 

45° [(3(t) +67.5 to (3(t) +22.5) 

2 0° [(3(t) +22.5 to (3(t) -22.5) 

3 -45° [(3(t) -22.5 to (3(t) - 67 .5) 

4 -90° [(3(t) -67.5 to (3(t) -90.0] 

as ens or angle is relative to vessel heading (J (t) . 
b A bracket indicates the endpoint is inclusive. A parenthesis 
indicates the endpoint is noninclusive. 

system and the approach used here for the ship 
collision,avoidance system are that only the discrete 
obstacles are considered, obstacle motion is allowed, 
and the con trol solut ions are modified accordingly. 
These obstacles represent other moving and stationary 
vessels. This description of the collision,avoidance 
system follows that of Yen and Pflunger. 

Overview 

The data flow diagram for the collision,avoidance 
system is shown in Fig. 17. The two inputs on the left, 
the sensor data and DA, are input from the simulation 
defined in Fig. 16. The sensor data consist of a closest 
obstacle distance and closing rate for each sensor. T he 
DA is measured as the d ifference between the vessel's 
current course (3 (t) and the desired 
course (3pc(t). The output is the 
rudder control angle O(t) at which 
the vessel travels to its next time 
posit ion. These data are processed 
in the following steps: 

1. Mapping sensor, input obstacle 
locations and motion to fuzzy sets 
that define a weighted undesired 
direction (UD) 

2. Fuzzifying the DA and mapping it 
to a weighted general desired di~ 
rection (D D) 

3. Combining the DD and the UD 
of movement to yield a weighted 
control direction (CD) 

Fuzzy collision­
avoidance system 

Rudder control 
angle, e(t) 

Sensor 
data 

Figure 16. Diagram of sh ip collision-avoidance simulation data. 

direction of desired travel. T he membersh ip values 
indicate the weighted preference of a particular direc, 
tion. As shown in Fig. 17, DD is determined by first 
fuzzifying the crisp DA. This fuzzy input is then used 
with the following rules to compute the DD fuzzy 
output: 

Fuzzy collision-avoidance system 

4. Defuzzifying the resultant CD and 
determining the crisp rudder con, 
trol angle O(t) 

Determining Desired Direction 

The DD is a fuzzy region with a 
domain over angles in the general 

Figure 17. Data flow for the fuzzy collision-avoidance system. The sensor data and 
desired angle (DA) are input from the simulation. The sensor data consist of the closest 
obstacle's distance and closing rate for each sensor. The DA is the difference between the 
vessel 's current course (J (t) and the desired course (Jpd t) . The output is the rudder control 
angle O(t), which drives the simulation to the next step. (UD = undesired direction, 
DO = desired direction, and CD = control direction.) 
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If OA is BR, then DO is BRoo. 

If OA is SR, then DO is SRoo. 

If OA is ZE, then DO is ZEoo. 

If OA is SL, then DO is SLoo. 

If OA is BL, then DO is BLoo. 

Here, DO is categorized into the following five system 
output fuzzy sets: BIG RIGHT (BRoo), SMALL RIGHT 
(SRoo), ZERO (ZEoo), SMALL LEIT (SLoo), and BIG 
LEIT (BLoo). These fuzzy ets and their membership 
functions are illustrated in Fig. 18. (The system input 
fuzzy sets for OA were illustrated in Fig. 7.) An example 
of the resultant fuzzy region defined by this mapping for 
.a crisp OA of 38° is shown in Fig. 19, which illustrates 
a mapping of a fuzzily defined prescription of the 
motion direction to a more general (fuzzier) concept 
of a ~O. 

Determining Undesired Direction 

The UO i a fuzzy region defining a weighted risk 
involved in choosing a direction of travel over the 

a a 
':i: 
.~ 
L: 
~ 
0) 
.0 
E 
0) 

E 
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~ 
0> 
0) 

o 

BLOO SLoo ZEoo SRoo BRoo 

-45 o 45 90 
Value of system output variable: DO (deg) 

Figure 18. System output fuzzy sets for desired direction (~O) , 
which is defined by five fuzzy sets: BIG LEFT (BLoo), SMALL LEFT 
(SLoo), ZERO (ZEoo), SMALL RIGHT (SRoo), and BIG RIGHT 
(BRoo)· 

a a 
':i: 
ci. 
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~ 1.00 
E 0.84 
0) 

E 

0) 
0) 

0, 0.16 

SRoo 

8 OL-----~~--~--~~~--~~~ 
-90 -45 o 45 90 

Value of system output variable: DO (deg) 

Figure 19. Fuzzy region defining desired direction (~O) for a crisp 
desired angle (OA) of 38°. 

universe of possible travel directions. This directional 
risk is based on the obstacle distance (00) and obstacle 
closing rate (OC) of the closest obstacle on the -90, 
-45, 0, 45, and 90° sensors. The 00 and OC are 
fuzzified by mapping their crisp values to the system 
input fuzzy sets shown in Figs. 20a and 20b, respective, 
ly. These map into the fuzzy output UO using the 
following fuzzy rules: 

If -90°00 is NEAR, then UO is BLuo. 

If -90 0 0C is CLOSING, then UO is BLuo. 

If -45°00 is NEAR, then UO is SLuo. 

If - 45 ° OC is CLOSING, then UO is SLuo. 

If 0°00 is NEAR, then UO is ZEuo· 

If OOOC is CLOSING, then UO i ZEuo. 

If 45 °00 is NEAR, then UO is SRuo. 

If 45 °0C is CLOSING, then UO is SRuo. 

If 90°00 is NEAR, then UO is BRuo. 

If 90 0 0C is CLOSING, then UO is BRuo. 
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NEAR ma 
.00 
~.... 1.00 1---------.. 
E5l _c 
00) 

O)~ 
O)::i. 

0, 
0) 

o 

(b) 

ci. 
:c 
(J) 

OL---------L---~--~~~ 

o 10 100 
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0, 
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System input : sensor OC 
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Figure 20. System input fuzzy sets for obstacle distance (00) and 
obstacle closing rate (OG). (a) The 00 is described by one fuzzy 
set NEAR with a universe of discourse [0, 100]. (b) The OC is 
described by one fuzzy set CLOSING with a universe of discourse 
[- 10, 10]. 
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Table 3. Example sensor obstacle data for obstacle distance (OD) and obstacle closing rate (OC) for the nearest obstacle 
detected on each sensor. The corresponding fuZZY input for each is listed. The last two columns are the mapping of these 
inputs to the output undesired direction (VD). 

Sensor OD OC JLNEAR JLCLOSING JLuo UD 
angle (arbitrary (arbitrary units/ (degree of (degree of (degree of fuzzy 
(deg) units) time step) membership) membership) membership) sets 

-90 20 -2 0.89 

-45 10 0 1.00 

0 50 6 0.56 

45 120 -5 0.00 

90 100 3 0.00 

Here, the UD is defined by the five fuzzy sets BIG 
RIGHT (BRuo), SMALL RIGHT (SRuo ), ZERO 
(ZEuo ), SMALL LEIT (SLuo ), and BIG LEFT (BLuo ). 
The underlying membership functions are identical 
with those defined for DD in Fig. 18. 

The rule evaluation process is illustrated in Table 3. 
For each of the five sensors, the nearest OD and OC 
(negative for opening) are listed. The next two columns 
labeled J-tNEAR and J-tCLOSING are the fuzzified OD and 
OC. The sixth column lists the fuzzy output for the UD 
using the fuzzy additive method for the rule evaluation, 
with corresponding fuzzy sets shown in the last column. 
The resulting fuzzy region is illustrated in Fig. 21a. 

(a) 
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-45 o 45 90 

Value of system variable: VD (deg) 

Figure 21. (a) Fuzzy region defining the undesired direction (UD) 
of travel for the illustative sensor obstacle data listed in Table 1 . (b) 
Fuzzy region defining the complement of UD, UD. 

0.00 0.89 BL 

0.00 1.00 SL 

0.60 1.00 ZE 
0.00 0.00 SR 

0.30 0.30 BR 

Determining Control Direction 

The CD is a fuzzy region defined by combining the 
fuzzy DD and UD. This process is performecL.Qy first 
taking the complement of UD to obtain UD. For 
example, the complement of UD in Fig. 21a is shown 
in Fig. 21 b. The fuzzy CD is computed as the intersec, 
tion of UD with DD. As defined in Fig. 5, the inter, 
section is calculated by taking the minimum of the 
degree of membership of UD and DD at each angle 
element. This operation is illustrated in Fig. 22. 

This procedure illustrates the evaluation of an un, 
conditional rule, or one that is not qualified by an 'if' 
statement. The rule here is defined as 'CD is DD and 
UD,' which serves to restrict the solution space for the 
control direction to the maximum of the intersecting 
regions. 

Defuzzifying the Results 

A crisp CD is defined through defuzzification. De, 
fuzzification is performed by calculating the COG of 
the fuzzy CD region, as illustrated in Fig. 22. If CD has 
disjoint regions, the COG is calculated for the region 
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Q) 
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0, 
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COG = 45° 
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Value of system output variable: CD (deg) 

Figure 2~.Jhe fuzzy region defining CD is the intersection of the 
DO and UD fuzzy regions. Defuzzification computes a crisp CD 
through calculation of the COG of the area with the greatest mass. 
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with maximum mass. The rudder control angle (J(t) 
required to move in this direction is equal to the con, 
trol angle. 

DISCUSSION AND STATUS 
The objectives of this project were the development 

of an algorithm employing fuzzy logic, the implemen, 
tation of general, purpose fuzzy logic software, and the 
demonstration of a model. We developed an algorithm 
in this article for employing fuzzy logic, and general, 
purpose software has been implemented using the 
method described. The demonstration problem, the 
ship collision, avoidance problem, was defined, and a 
simplified simulation was devised for testing a fuzzy 
collision,avoidance solution. Further, a fuzzy solution 
for this problem was created. The fuzzy ship collision, 
avoidance solution has been implemented as defined, 
and its effectiveness in preventing ships from colliding 
with stationary and moving obstacles has been demon, 
strated through a simulation. The general software and 
collision, avoidance simulation are available on a dis, 
kette included with Ref. 17. 

The modeled ship collision, avoidance fuzzy solution 
and simulation were greatly simplified in comparison 
with a real,world collision, avoidance sy tern, but the 
real, world solution could be implemented using this 
model as a basis. For example, more realistic rules could 
replace the simplified rules here to account for factors 
such as obstacle's closest time of approach and closest 
distance of approach. Further, as suggested by Charles 
H. Sinex, a high,fidelity ship simulation could replace 
the simplified kinematic equations used in this model. 

THE AUTHOR 

A fuzzy model of the mariner's steering control could 
then be added to create a fuzzy steering control system 
that would account for the nonlinear effects in chang, 
ing the rudder angle. 
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