
Introduction to Modeling and Simulation 

William A. Menner 

MOdeling and simulation constitute a powerful method for designing and 
evaluating complex systems and processes, and knowledge of modeling and simulation 
principles is essential to APL's many analysts and project managers as they engage 
in state ,~f,the,art research and development. This article presents an end,to,end 
description of these principles, taking the reader through a series of steps. The process 
begins with careful problem formulation and model construction and continues with 
simulation experiments, interpretation of results, validation of the model, documenta, 
tion of the results, and final implementation of the study's conclusions. Each step must 
be approached systematically; none can be safely omitted. Critical issues are identified 
at each step, and guidelines are presented for the successful completion of modeling and 
simulation studies. 

INTRODUCTION 
Constructing abstractions of systems (models) to 

facilitate experimentation and assessment (simula, 
tion) is both art and science. The technique is partic, 
ularly useful in olving problems of complex systems 
where easier solutions do not present themselves. 
Modeling and simulation methods also allow experi, 
mentation that otherwise would be cumbersome or 
impossible. For example, computer simulations have 
been responsible for many advancements in such fields 
as biology, meteorology, cosmology, population dy, 
namics, and military effectiveness. Without simula, 
tion, study of these subjects can be inhibited by the 
lack of accessibility to the real system, the need to 
study the system over long time periods, the difficulty 
of recruiting human subjects for experiments, or all of 
these factors. Because the technique offers solutions to 

these problems, it has become a tremendously powerful 
tool for examining the intricacies of today's increasing, 
ly complex world. 

As powerful as modeling and simulation methods 
can be, applying them haphazardly can lead to errone' 
ous conclusions. This article presents a structured set 
of guidelines to help the practitioner avoid the pit, 
falls and successfully apply modeling and simulation 
methodology. 

Guidelines are all that can be offered, however. 
Despite a firm foundation in mathematics, computer 
science, probability, and statistics, the discipline re' 
mains intuitive. For example, the issues most relevant 
in a cardiology study may be quite different from those 
most significant in a military effectiveness study. 
Therefore, this article offers few strict rules; instead, it 

6 JOHNS HOPKINS APL TECHNICAL DIGEST, VOLUME 16, NUMBER 1 (1995) 



attempts to create awareness of critical issues and of 
the existing methods for resolving potential problems. 

SYSTEMS, MODELS, AND SOLUTIONS 
Modeling and simulation are used to study systems. 

A system is defined as the collection of entities that 
make up the facility or process of interest. To facilitate 
experimentation and assessment of a system, a repre, 
sentation- called a model-is constructed. Physical 
models represent systems as actual hardware, whereas 
mathematical models represent systems as a set of 
computational or logical associations. Models can also 
be static, representing a system at a particular point in 
time, or dynamic, representing how a system changes 
with time. The set of variables that describes the system 
at any particular time is called a state vector. In general, 
the state vector changes in response to system events. 
In continuous systems state vectors change constantly, 
but in discrete systems they change only a finite num, 
ber of times. When at least one random variable is 
present, a model is called stochastic; when random 
variables are absent, a model is called deterministic. 
Sometimes the mathematical relationships describing 
a system are simple enough to solve analytically. An, 
alytical solutions provide exact information regarding 
model performance. When the model cannot be solved 
analytically, it can often imitate system operations­
a process called simulation-enabling performance to 
be estimated numerically. 

In general, systems are modeled as having a number 
of inputs (or stimuli), xl. X2, ••• , Xr; a number of outputs 
(or responses), Yb Y2, ... , Ys; and a number of system 
parameters (or conditions), Pb P2,···, Pc. Although each 
system is unique, inputs often are unpredictable phe, 
nomena, and system parameters often arise as a means 
for tuning responses in some desired manner. Thus, 
inputs commonly are modeled as random processes, 
and system parameters as adjustable conditions. For 
example, model input for a communication network 
could include the arrival times of messages and the 
size of each message. System parameters could include 
queuing protocols, the number of transmission chan, 
nels, and the capacity of transmission channels at each 
switching station. Output could include a characteriza, 
tion of the delays incurred by messages in queues and 
total end,to,end delivery time. Thus, a system is often 
viewed as a function f that produces output y from 
inputs x and system parameters p; that is, y = f(x, p), 
as shown in Fig. 1. 

Common Applications 

Modeling and simulation studies tend to fall into 
four application categories: proof,of,concept, modifica, 
tion, comparison, and optimization. Proof,of,concept 
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Figure 1. A functional view of system models, Y = f(x, p). 

studies are done during the predesign phase of a future 
system. Modeling and simulation help determine the 
viability of concepts and provide insight into expected 
system performance. For example, before constructing 
a retail outlet, customer demand can be estimated to 
help in the design of appropriate service facilities. 

Modification studies are done on existing systems to 
allow inferences regarding system performance under 
proposed operating conditions and to allow parameter 
settings to be tuned for desired system prediction ac, 
curacy. For example, alterations to existing military 
weapons systems are often evaluated for their effective, 
ness against new threats. 

Comparison studies involve competing systems. For 
example, two different systems for producing monetary 
gain through the trade of financial securities could be 
evaluated for their relative performance during simu, 
lated economic conditions. 

Finally, optimization studies are used to determine 
the best system operating conditions. For example, in 
manufacturing facilities, modeling and simulation can 
help determine the workstation layout that produces 
the best trade, off between productivity and cost. 

Solving Problems Using Modeling and 
Simulation 

Figure 2 is a high, level representation of the problem, 
solving process described here. This process has the 
following major steps: 

1. Formulate problem and model. Write a problem state' 
ment, model system attributes, and select a solution 
technique (presumably modeling and simulation). 

2. Construct system model. Next, construct conceptual 
and computerized models and model input data. 

3. Conduct simulation experiments. Design experiments 
and collect data. 

4. Interpret results. Statistically analyze output data and 
assess their relevance to the study's objectives. 

5 Document study. Write a description of the analysis 
and by, products associated with performing each 
major step in the problem,solving process. 

6. Implement conclusions. Act upon the decisions pro' 
duced by the study. 
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Figure 2. The process of solving problems using modeling and 
simulation. 

7. Validate model. During each step, assess the accuracy 
of the analysis. Validation is the ongoing attempt to 
ensure high credibility of study conclusions. 

The black arrows in Fig. 2 show the general direc, 
tion of development in a problem,solving study, begin, 
ning with "Formulate problem and model" and ending 
with "Implement conclusions." Problem solving, how, 
ever, is rarely a sequential process. Validation must be 
an ongoing process, and, as the figure shows, it applies 
to all steps. Furthermore, insights gained at any step 
may require a move "backward" to adjust previous 
work. The blue lines in Fig. 2 show the possibility of 
revisiting previous work. Each step in the problem, 
solving process is discussed in detail in the sections that 
follow. 

FORMULATING PROBLEMS AND 
MODELS 

Typically, formulation is the most overlooked aspect 
of solving problems. Prevailing educational systems, in 
which students are routinely asked to solve preformu, 
lated problems, may be to blame: such environments 
produce graduates with cookbook,like knowledge of 
solution methods. Such knowledge is insufficient for 
working scientists who must rank the importance of 
various problems and who must decide how to simplify 
problems while still capturing all essential elements, 
often with imperfect or missing data. In any single 
problem, one particular aspect may seem more difficult 

than another, but all steps in the problem,solving 
process are equally important. 

Problem Formulation 

Formulating problems includes wntmg a problem 
statement. The problem statement describes the system 
under study and lists input, system parameters, and 
output. Generating problem statements begins with an 
examination of the system, which can be a formidable 
task because so many interrelated phenomena can 
occur in complex systems. One way of dealing with the 
complexity is to view the whole system as a hierarchy 
of subsystems. Beginning at the highest level, the whole 
system can be recursively decomposed into smaller 
subsystems until the complexity of each subsystem is 
manageable. Each subsystem is characterized by its 
input, its output, and the processing that transforms 
input to output, as well as by the relationship of the 
subsystem to the whole system and other subsystems. 
To arrive at such a characterization may require reading 
of system manuals, discussion with system experts, 
many observation sessions, the use of sophisticated 
equipment to collect data, or all of these activities. 

The problem statement should also include lists of the 
objectives or goals of the study, the requirements, and 
any assumptions. Objectives in a study of communica, 
tions networks, for example, could include determining 
best packet size, best data routing scheme, best queuing 
protocol, best number of switching stations, and so forth. 
Objectives should be stated as precisely and as clearly as 
possible. Ambiguous objectives (e.g., unanswerable ques, 
tions) prevent clear conclusions from being drawn. 

Requirements commonly include the necessary per, 
formance levels and operating conditions of the system. 
For example, in military communications networks, 
lower bounds on throughput and message timeliness 
may be required to give targeting systems sufficient 
velocity and position accuracy to defeat particular 
threats. Sometimes specifications on hardware, such as 
transmitter duty cycles, cannot be exceeded. Limits on 
funding, software, hardware, and personnel can also 
significantly affect the study. These administrative is, 
sues can be considered requirements, although most 
often they are termed constraints. 

Assumptions normally are made to simplify the 
analysis of the system. For example, assessment of 
message timeliness in a communications network may 
not require the details of processing at switching sta' 
tions to be modeled. The time required to perform the 
processing might then replace the actual bit,switching 
manipulations in the model. The list of assumptions is 
usually generated during the model formulation pro, 
cess, but entries can also stem from lessons learned 
during any previous attempts to fix, modify, or evaluate 
the system or a similar system. 
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Model Formulation 

Modeling involves constructing an abstract repre, 
sentation of a system. The modeler must determine 
what system elements are essential- often a difficult 
challenge. Leaving out essential elements leads to an 
invalid model, but including unnecessary elements 
unduly complicates the model and adds to the cost of 
assessment. 

Because each system is unique, only three broad 
guidelines can be offered for the intuitive and artful 
process of formulating models. First, the analyst should 
gain experience through exposure to the modeling 
literature. Most of this literature contains particular 
models and specific techniques, only some of which 
may be useful in future modeling projects. 1,2 A smaller 
portion contains helpful lists of issues that a modeler 
should always consider.3

-
5 Second, the analyst should 

cultivate the use of both right,brain (imaginative 
and creative) and left,brain (rational and disciplined) 
thinking. Modeling is most successful when both are 
used. Third, the analyst should start with a simple 
model and add details only as the validation process 
shows they are needed. 

Selection of an Appropriate Solution Technique 

The last part of the formulation step involves the 
search for an appropriate solution technique. This 
search should be exhaustive, and the technique chosen 
should exhibit the highest benefit,to,cost ratio. Ana, 
lytical solutions generally are preferred because they are 
exact. Unfortunately, the vast complexity of many 
systems precludes the use of analytical solution tech, 
niques. For such systems, simulation may be the only 
effective solution method. 

CONSTRUCTING SYSTEM MODELS 
After the decisions and by,products of the formula, 

tion step are validated, attention turns to the software 
engineering aspects of developing conceptual and com, 
puterized models of the system. Input data processes 
must also be modeled. Because software engineering is 
a well, documented subject separate from modeling 
and simulation, this aspect is given only cursory treat, 
ment here. 

The Conceptual Model 

The conceptual model is a structured description 
that provides a common understanding of system orga, 
nization, behavior, and nomenclature. Its purpose is to 
provide analysts with a way to think about the system. 
The conceptual model can be developed using any 
combinations of standard techniques, such as data flow 
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diagrams, structured English, pseudocode, decision ta, 
bles, Nassi-Schneiderman charts, flowcharts, and any 
of numerous graphical or textual methods.6 

The Computerized Model 

The computerized model should be developed ac, 
cording to the accepted conventions of software engi, 
neering. This means using a structured approach to 
analysis, design, coding, testing, and maintenance. A 
structured development approach focuses on three as, 
pects of software quality-its operational attributes, its 
accommodation of change, and its capacity to adapt 
to new environments. 7 The development team should 
address at least the following list of software quality 
factors: 

• Auditability • Maintainability 
• Consistency • Modularity 
• Correctness • Portability 
• Data commonality • Reliability 
• Efficiency • Reusability 
• Expandability • Robustness 
• Flexibility • Security 
• Integrity • Testability 
• Interoperability • Usability 

The matter of selecting a programming language also 
commands considerable coverage in the modeling and 
simulation literature.8 General,purpose languages such 
as Ada, C++, and Fortran are usually praised for flex, 
ibility, availability, and low purchase price, but the 
resulting software can require more development time 
and be more difficult to maintain than software con, 
structed with specialized simulation languages. There 
are two types of simulation languages: general, purpose 
languages, which can be applied to any system (GPSS, 
SIMSCRIPT, and SLAM are examples), and applica, 
tion,specific languages (AutoMod and SIMFACTORY 
for manufacturing; also COMNET II.S and NETWORK 
II.S for communications networks). Simulation lan' 
guages provide preprogrammed means for satisfying 
many anticipated simulation needs, such as numerical 
integration, random number generation, and statistical 
data analysis. Many simulation languages also provide 
animation capabilities. Their built,in conveniences 
can reduce development time, enhance software 
quality, and increase model credibility. Spreadsheets 
are a third option for computerizing some models.9 

Ultimately the choice of a computer language should 
account for (1) the technical background of the soft, 
ware development team, (2) the appropriateness of the 
language for describing the model, and (3) the extent 
to which the language supports the listed software 
quality factors. 
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Modeling the Input Data 

The problem of modeling input data has two parts. 
First, appropriate input models must be selected to 
represent the random elements of the system. Second, 
a mechanism must be constructed for generating ran, 
dom variates according to the input model. 

With respect to input data, simulation models are 
categorized as trace,driven or distribution,driven mod, 
els. Trace,driven models use the data that were collect, 
ed during measurements of the real system. (The real 
system must exist and be measurable.) Distribution, 
driven models use probability distributions (for exam, 
pIe, exponential, normal, or Poisson distributions) 
derived from the trace data, or from assumptions when 
trace data are not available. 

The process of deriving probability distributions in' 
volves selecting a distribution type, estimating values for 
all distribution parameters, and evaluating the resulting 
distribution for agreement with the trace data. The 
selection of an appropriate distribution type is aided by 
visual assessment of graphs and the use of statistical 
attributes, including coefficients of variation (the ratio 
of the square root of the variance to the mean for con, 
tinuous random variables) and lexis ratios (the ratio of 
the variance to the mean for discrete random vari, 
ables).10 The reason for using a particular distribution 
can be compelling, as it is when arrival times are mod, 
eled as a Poisson process. Distribution parameter values 
are often estimated using the maximum likelihood 
method.10 This method involves finding the values of 
one or more distribution parameters that maximize a 
joint probability (likelihood) function formed from the 
trace data. Assessing the resulting distribution for agree' 
ment with trace data involves visual assessment of 
graphs and goodness,of,fit tests. Goodness,of,fit tests are 
special statistical hypothesis tests that attempt to assess 
the agreement between trace data and derived distribu, 
tions. Some of the more common goodness,of,fit tests 
are the chi,squared test, the Kolmogorov-Smimov test, 
and the Anderson-Darling test. 10 

In some cases (proof,of,concept studies, for exam, 
pie), collecting trace data is impossible. When data are 
unavailable, theoretical distributions should be select, 
ed that can capture the full range of system behavior. 
Law and Kelton 10 suggest querying experts for estimates 
of parameter values in triangular or beta distributions. 
The simulation should be run for multiple distribution 
parameter settings, and results should be stated with an 
appropriate degree of uncertainty. 

Random Number Generation 

The term "random number" typically denotes a 
random variable uniformly distributed on the interval 
(0, 1). The term "random variate" denotes all other 
random variables. Random variates commonly are 

generated from some mathematical combination of 
random numbers. Thus, having a good mechanism for 
generating random numbers is extremely important. 

True randomness is a difficult concept to define. 11 
Despite the availability of many tests for satisfactory 
randomness,12 random number generators typically are 
based on a deterministic formula. Using the formula, 
the next number in the "random" sequence can always 
be predicted, which means the numbers are not truly 
random. The numbers produced by such generators are 
generally called pseudorandom numbers. 

The most commonly used pseudorandom number 
generators are linear congruential or multiple recursive. 
Linear congruential generators have the following 
form: 

Xn = (exxn-l + (3)(mod m), (1) 

where Xn is the (n + l)th pseudorandom number in the 
sequence, x 0 (the first member of the sequence) is 
called the seed, m is the constant modulus, ex and (3 are 
also constants, and the Xn values are divided by m to 
produce values in the interval (0, 1). Multiple recursive 
generators avoid the addition operation by setting 
(3 = ° in Eq. 1. For either type of generator, once 
Xn = Xj for some j < n, an entire sequence of previously 
generated values is regenerated and this cycle repeats 
endlessly. The length of this cycle is called the period 
of the generator. When the period is equal to the 
modulus m, a generator is said to have full period. 
Maximum period is equal to the largest integer that can 
be represented, which on many machines is 2b

, where 
b is the number of bits used to store or represent nu' 
meric data in a computer word. (The value of b is 31 
on many mini, and microcomputers in current use, 
providing a maximum period of over 2.1 billion.) 

A good pseudorandom number generator is compu, 
tat ion ally fast, requires little storage, and has a long 
period. Conditions for achieving full period are given 
by Law and Kelton. 10 Good generators should produce 
numbers that pass goodness,of,fit tests when compared 
with the uniform distribution. They also should not 
exhibit correlation with each other. A generator's ca, 
pacity to exactly reproduce a stream of numbers is also 
important, particularly for subjecting different models 
of the same system to the same input stimuli for 
comparison. Changing the scalar notation of Eq. 1 to 
matrix or vector notation also allows several separate 
streams of pseudorandom numbers to be generated, 
which is important when more than one source of 
randomness is being modeled. 

A pseudorandom number generator should be cho, 
sen with the preceding criteria in mind. In addition 
to the types of generators already described, many 
other excellent generator types are available, such as 
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lagged~Fibonacci, generalized feedback shift register, 
and Tausworthe. 11 Because a number of poor generators 
are also on the market,13 the modeling and simulation 
community has developed a general distrust of the 
library generators that come packaged with many soft~ 
ware products. Therefore, analysts should choose 
generators for which descriptions and favorable test 
results have been published in reputable literature. 
When this strategy is not possible, output from a cho~ 
sen generator should be tested for independence, cor~ 
relation, and goodness of fit using statistical hypothesis 
testing procedures. 

Random Variate Generation 

The inverse~transform method for generating ran~ 
dom variates relies on finding the inverse of the cumu~ 
lative distribution function (CDF) that represents the 
desired distribution of variates. The CDF, F(x), is either 
an empirical distribution or a theoretical distribution 
that has been fitted to trace data. Empirical CDFs are 
formed by sorting trace data into increasing order and 
forming a continuous, piecewise~linear interpolation 
function through the sorted data. With either theoret~ 
ical or empirical distributions, a variate Y having the 
CDF F(x) is generated as Y = F- 1(U), where U is a 
random number uniformly distributed on the interval 
(0, 1) generated according to the criteria just described. 

The composition method is used when the CDF 
F(x) can be expressed as 

] 

F(x)= LPjF/x), 
j=l 

(2) 

where {Pj} represents a discrete probability distribution, 
and each Fj is a CDE A positive random integer k, 
where 1 :s k :S j, is generated from the {Pj} distribution, 
and the final random variate Y is generated from the 
distribution Fk• 

Sometimes random variates can be generated by 
taking advantage of special relationships between prob~ 
ability distributions. For example, if Y is normally dis~ 
tributed with a mean of zero and a variance of one, then 
yZ has a chi~squared distribution with 1 degree of free~ 
dom. Several other advanced techniques are also 
available for random variate generation, including 
acceptance-rejection14 and the alias method. 15,16 

CONDUCTING SIMULATION 
EXPERIMENTS 

Once the computerized model is finished, it is 
tempting to consider the most important work finished 
and to believe that turning on the computer will start 
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the answers coming. Modeling is not that simple, 
however. It is a big mistake simply to run the model 
once, compute averages for output data, and conclude 
that the averages are the correct set of values with 
which to operate the system. To support accurate and 
useful decisions, data must be collected and character~ 
ized with much greater fidelity. Effective design of 
experiments begins this process. 

The experimentation step involves building a com~ 
puterized shell to drive the computerized model and 
collect data in a manner that supports the study objec~ 
tives. Thus, in designing the experiments, the analyst 
should look back at the study objectives and look for~ 
ward to the methods for analyzing output data. T ypi~ 
cally the shell manages such things as pseudorandom 
number seeds and streams, warm~up periods, sample 
sizes, precision of results, comparison of alternatives, 
collection of data, variance reduction techniques, and 
sensitivity analysis. Variance reduction techniques and 
sensitivity analysis are treated in the following para~ 
graphs; the other items either were discussed in the 
preceding sections or are considered later in the article. 

Variance Reduction Techniques 

In some cases, the precision of results produced by 
simulation is unacceptably poor. The most common 
remedy for poor precision is to collect more data during 
additional simulation runs, even though computational 
costs can limit both the number of simulation runs and 
the amount of data that can be gathered. Regardless of 
circumstances, variance reduction techniques often 
can improve simulation efficiency, allowing higher~ 
precision results from the same amount of simulation. 

Two of the most common variance reduction tech~ 
niques, common random numbers and antithetic vari~ 
ates, are based on the following statistical definitions17: 

var[aX + bY]=a2var[X]+b2var[Y] + 2ab cov[X, Y], (3) 

where 

cov[U, V]=E[(U - E[U]) (V - E[V])] , (5) 

and E is the expected value. The common random 
number technique is used when alternative systems are 
being compared. Simulations are run for two different 
models of the same system. Model X produces obser~ 
vat ions Xl> Xz, ... , Xn for a particular output variable, 
and model Y produces observations Yl> Yz, ... , Yn for 
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the same output variable. A point estimate for the 
difference between corresponding output from the two 
models is 

(6) 

The width of the confidence interval for this point 
estimate depends on var[X - V], which, using Eq. 3 
with a = 1 and b = - 1, is 

var[X - Y]=var[X]+var[Y]- 2 cov[X, YJ. (7) 

Therefore, if the output data from the two models can 
be positively correlated (i.e., cov[X, V]> 0), the vari~ 
ance of the difference between the two outputs will be 
smaller than if the output data were independently 
generated. Positive correlation can often be induced by 
using common p eudorandom number streams in the 
two models. It is reasonable to expect the models to 

respond in roughly the same way to the same inputs. 
For example, if two different (and reasonable) routing 
schemes were being compared within the same com~ 
munication network, despite any inherent superiority 
of one routing scheme over the other, delays would be 
expected to increase in both model when input mes~ 
sage traffic increases. Such insights can lead to more 
precise characterizations of competing output data, 
showing what differences result from actual system dif 
ferences rather than from the effect of random inputs. 

Nevertheless, a risk is associated with applying this 
technique. If the pseudorandom number streams are 
not synchronized properly (that is, if they are not used 
for the same purposes in each model), output from the 
two models can become negatively correlated. In this 
case, cov[X, Y]< 0, and the precision of the estimated 
difference between the two models will be worse than 
if independent pseudorandom number streams had 
been u ed. 

The antithetic variates variance reduction tech~ 
nique increases the precision of results obtained from 
the simulation of a ingle system. First, the simulation 
is run using pseudorandom numbers U[! U2, •.• , Urn to 

produce observations Xl! X2, ••• , Xn for a particular 
output variable. Then, the simulation is run using pseu~ 
dorandom numbers 1 - U1, 1 - U2, ... , 1 - Urn to 
produce output observations Y1, Y2, ... , Yn for the same 
output variable. The observations are then averaged to 
produce the following point estimate for the output 
variable: 

X+Y 1 n 
--=-IJXi+Y). 

2 2n i= l 
(8) 

The width of the confidence interval for this point 
estimate depends on var[(X + Y)/2], which, using Eq. 
3 with a = 1/2 and b = 1/2, is 

Therefore, when the output data from the two models 
are negatively correlated (that is, cov[X, Y]< 0), the 
variance of the average of the two different output data 
sets is less than if the output data were independently 
generated. The opposing nature of the antithetic 
variates is often sufficient to provide this negative 
correlation. 

As with common random numbers, a risk is associ~ 
ated with applying antithetic variates. If the pseudoran~ 
dom number streams are not synchronized properly, 
output from the two runs can become positively cor~ 
related. In this case, cov[X, V]> 0, and the e timated 
average of the two different output data sets exhibits 
worse precision than if independent pseudorandom 
number streams had been used. 

Other methods for variance reduction include con~ 
trol variates, indirect e timation, and conditioning. IS 

All of these methods attempt to increase the precision 
of estimates by exploiting relationships between esti~ 
mates and random variables. 

Sensitivity Analysis 

As mentioned in the introduction and shown in 
Fig. 1, output variables yare often modeled as a func~ 
tion of inputs x and system parameters p. In addition, 
inputs are often modeled as random processes that have 
distribution parameters 8. Thu , a particular output 
variable y can be viewed as the function y = j [x(8), p], 
and knowing how small changes in 8 and p affect the 
output y is desirable. Sensitivity analysis (al 0 called 
gradient estimation) involves forming the following 
ratios after conducting simulation runs at various 
parameter values: ~y / ~p and ~y/ ~(), where y common~ 
ly represents the mean or variance of the output 
variable, and p and () represent particular sy tem and 
di tribution parameters. The magnitude of the e ratios 
is an indicator of output sensitivity. This technique is 
called the finite~difference method of sensitivity analysis. 

Another sensitivity analysis method is the likelihood 
ratio (or score function) method, which is based on the 
following ideas. If X is a random variable with distri~ 
bution parameter () and continuous probability density 
function (PDF) j, then the expected value E of X is 

E[X]= f xj(x, ()) dx, (10) 
all x 
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and, using the usual continuity assumptions regarding 
the interchange of integration and differentiation, it 
follows that 

dE[X] d 
--=- f xf(x,O) dx 

dO dO all x 

= f x~ f(x,O) dx. 
all x dO 

(11) 

Thus, the sensitivity of the expected mean of X with 
respect to changes in the distribution parameter ° is 
estimated using samples of X as follows: 

(12) 

Other sensitivity analysis methods include infinites~ 
imal perturbation analysis, cut~and~paste methods, and 
standard clock methods. 19 All of these methods involve 
the simultaneous tracking of variants of the same out~ 
put variable, each corresponding to a slightly different 
parameter value. For example, in infinitesimal pertur~ 
bation analysis, a time is chosen for a simulation pa~ 
rameter to be perturbed. From then on, the simulation 
tracks not only how the model behaves, but also how 
the model would have behaved if the parameter had 
not been perturbed. 

INTERPRETING RESULTS 
When a computerized model is driven with random 

variables, the output data are also random variables. 
Output data therefore should be characterized using 
confidence intervals that include both mean and vari~ 
ance. If classical statistical data analysis methods are to 
be used, however, independent and identically distrib~ 
uted (lID) data must be collected from simulation runs. 

Approaches for collecting IID data depend on the 
type of system being studied. Terminating (or transient) 
systems have definite start and stop times. For example, 
a business that opens at 10:00 a.m. and closes at 
5:00 p.m. would usually be modeled as a terminating 
system. The analyst is interested in characterizing data 
collected between the start and stop times of the sys~ 
tern, such as the distribution of service times for busi~ 
ness clients. Nonterminating (or steady~state) systems 
have no definite start and stop times. Output from 
these systems eventually becomes stationary- a pat~ 
tern in which random fluctuations are still observed, 
but system behavior is no longer influenced by initial 
conditions. For example, a manufacturing facility that 
operates continuously would usually be modeled as a 

I TRODUCTION TO MODELING AND SIMULATION 

nonterminating system. The analyst is interested in 
characterizing the distributions of output processes once 
they have become invariant to the passage of time. 

Terminating Systems 

Initial conditions definitely influence the output 
distributions of terminating systems. For instance, the 
average wait at a ticket window depends on the number 
of people in line when the ticket window opens. 
Therefore, the same initial conditions must be used to 
begin each simulation run. If Xi represents a particular 
result (e.g., average wait in line) for the ith simulation 
run, then n runs of the simulation produce data 
{Xl, X2, .•• , XJ. These data are independent when an 
independent set of random number seeds is used. They 
are also identically distributed because the model was 
not changed between runs. Therefore, the statistical 
techniques for IID data can be applied. 

A point estimate for the mean is calculated as 

(13) 

and the 100(1 - a) percent confidence interval for the 
mean is 

- [2 
X±ta /2,n-l ~ ~, (14 ) 

where tex/2,n-l represents the value of the t distribution 
with n - 1 degrees of freedom that excludes a/2 of the 
probability in the upper tail, and where the sample 
variance is 

2 1 n - 2 
S =-IJXi -X) . 

n-1 i=l 
(15) 

The second term in Expression 14 is called the haIr 
width or absolute precision of the confidence inter~ 
val, and the ratio of the second term to the first term 
is called the relative precision of the confidence 
interval. 

This method is called the method of independent 
replications. It is applied to each output process to 
produce confidence intervals for all random output 
variables. 

Nonterminating Systems 

Nonterminating simulations are commonly started 
in an "empty" state and proceed to achieve a steady 
state. The period of time between these states is known 
as the warm~up period. Because the system state chang~ 
es, data collected during the warm~up period are 
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unlikely to be independent. This problem, called 
initialization bias, is typically solved by ignoring data 
collected during the warm~up period. 

Many procedures exist for determining when a sim~ 
ulation has achieved a steady state.20 One of the most 
effective involves plotting moving averages of each 
frequently sampled output variable during many inde~ 
pendent replications.21

,22 The time at which steady 
state occurs is chosen a the time beyond which the 
moving average sequences converge, provided the plots 
are reasonably smooth. Plot smoothness is sensitive to 
moving average window size and may need to be ad~ 
justed-a process similar to finding acceptable interval 
widths for histograms. 

If a good estimate of steady,state time is available, 
nonterminating systems can be treated much like ter~ 
minating systems by using a method called indepen, 
dent replications with truncation. In this method, 
independent pseudorandom number streams are used 
for each simulation run, and output data collection is 
truncated during the warm~up period. The moving 
average values of each output variable are recorded as 
point estimates once steady state is achieved. This 
method produces IID data, but it has the disadvantage 
of "throwing away" the warm~up period during each 
run. If simulation runs are costly, one~long~run meth~ 
ods may be preferred, but these methods force the 
analyst to deal with the problem of autocorrelation. 

Autocorrelation means that consecutively collected 
data points exhibit correlation with one another; they 
are not independent. For example, two cars arriving 
consecutively to a car wash both must wait for all 
cars ahead of them. Compounding this problem is the 
tendency for simulation output to be positively auto~ 
correlated. Change occurs more slowly under such 
conditions, resulting in confidence intervals that un, 
derestimate the amount of error in output data. 

Autocorrelation effects can be defeated in many 
ways. The batch means method is perhaps the most 
common. With this method, data collected during 
steady state are grouped into batches and the sample 
mean is computed for each batch. For large enough 
batch sizes, the batch means are sufficiently uncorre~ 
lated that they can be treated as IID data for compu~ 
tation of a confidence interval. Methods for determin~ 
ing batch size generally use one of the many hypothesis 
testing procedures for independence, such as the runs 
test, the flat spectrum test, and correlation tests. 23 

Other methods for output data analysis include the 
autoregressive method, the regenerative method, the 
spectral estimation method, and the standardized time 
series method.24 

Most output data analysis methods can be ap~ 
proached in two different ways: by specifying fixed sam~ 
pIe sizes or by specifying precision. The fixed sample size 

approach involves collecting a prespecified number of 
data points from which a confidence interval is com~ 
puted. The precision of the confidence interval thus 
depends on the sample size. The precision approach 
increases sample size until a prespecified precision is 
achieved. Choosing the best approach for a given study 
depends on factors such as the desired accuracy and the 
cost of simulation runs. 

In either approach, the analyst must remember that 
confidence interval analysis is based on the central 
limit theorem, 17 which states that the means of random 
samples of any parent population having finite mean 
and variance will approach a normal distribution as the 
sample size tends to infinity. Sample size must be large 
enough to justify the assumption that collected output 
data are approximately normally distributed. The size 
of a large~enough sample is proportional to the skew~ 
ness (i.e., nonsymmetry) of the parent distribution for 
an output process. If the parent distribution is not 
skewed, small sample sizes (as few as 10 data points) 
may suffice. For severely skewed output processes, on 
the other hand, sample sizes of 50 may not be large 
enough. The nature of some systems may suggest a 
certain level of skewness in output processes, but in 
general, parent output distributions are unknown quan~ 
tities. Therefore, when in doubt, collect more data. 

VALIDATING THE MODEL 
Because modeling and simulation involve imitating 

an existing or proposed system using a model that is 
simpler than the system itself, questions regarding the 
accuracy of the imitation are never far away. The pro~ 
cess of answering these questions is broadly termed 
validation. More specifically, the term validation is 
used to describe the concern over accuracy in modeling 
and data analysis. The term verification describes ef­
forts to ensure that the computerized model and its 
implementation are "correct." The terms accreditation, 
credibility, or acceptability describe efforts to impart 
enough confidence to users of the model or its results 
to guarantee the implementation of tudy conclusions. 
Validation, verification, and accreditation (known 
collectively as VV&A) cover all teps in the modeling 
and simulation process, implying that accuracy is of 
great concern throughout the study. 

Performing VV &A on simulation models has been 
likened to the general problem of validating any sci~ 
entific theory. Thus, borrowing from the philosophy of 
science, three historical approaches to VV &A have 
evolved: rationalism, empiricism, and positive eco~ 
nomics. Rationalism involves establishing indisputable 
axioms regarding the model. These axioms form the 
basis for logical deductions from which the model is 
developed. Empiricism refuses to accept any axiom, 
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deduction, assumption, or outcome that cannot be 
substantiated by experiment or the analysis of empirical 
data. Positive economics is concerned only with the 
model's predictive ability. It imposes no restrictions on 
the model's structure or derivation. 

Practical efforts to validate simulation models 
should attempt to include all three historical VV &A 
approaches. Including all approaches can be difficult, 
because situations do exist in which high predictability 
goes hand,in,hand with illogical assumptions, as in the 
case of studying celestial systems or amoebae aggrega, 
tion using continuum models. 25 Empirically validating 
a model of a nonexistent system is also a problem. 
Despite these difficulties, some subset of available 
validation techniques must be systematically applied to 
every modeling and simulation study if conclusions are 
to be accepted and implemented. 

The modeling and simulation team must first decide 
who will conduct VV &A. The team can perform this 
task itself or can use an independent party of experts. 
If the team performs VV&A, few new perspectives are 
generally brought to bear on the study. The use of 
independent peer assessment can be costly, however, 
and can involve repetition of previous work. In either 
case, the VV&A team should be familiar with model, 
ing and simulation methods and their potential pitfalls. 
The VV &A team's first step should be comparing the 
methods used by the modeling and simulation team to 
the accepted methods outlined in any of the standard 
texts on the subj ect. 

Validation techniques typically are categorized as 
statistical or subjective. Statistical techniques are used 
in studies of existing systems from which data can be 
collected. They are particularly useful for assessing the 
validity of input data models, analyzing output data, 
comparing alternative models, and comparing model 
and system output. Statistical techniques include, but 
are not limited to, analysis of variance, confidence 
intervals, goodness,of,fit tests, hypothesis tests, regres, 
sion analysis, sensitivity analysis, and time series anal, 
ysis. In contrast, subjective techniques generally are 
used during proof,of,concept studies or to validate 
systems that cannot be observed and from which data 
cannot be collected. Subjective techniques include, 
but are not limited to, event validation, field tests, 
hypothesis validation, predictive validation, submodel 
testing, and Turing tests. 26 

Verifying the correctness of the computerized model 
and its implementation has two main components: 
technical reviews and software testing. Technical re' 
views include structured walk,throughs of the software 
requirements, design, code, and test plan. Software re, 
quirements are assessed for their ability to support the 
objectives of the modeling and simulation study. The 
software design is reviewed in two phases. Phase 1, a 
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preliminary design review, evaluates the transformation 
of requirements into data and code structures; phase 2, 
a critical design review, walks through the details of the 
design, assessing such things as algorithm correctness 
and error handling. A structured walk, through of the 
software code checks for such things as coding errors 
and adherence to coding standards and language 
conventions. 

Software testing is designed to uncover errors in the 
computerized implementation and includes white, and 
black, box testing. White,box tests ensure that all coded 
statements have been exercised and that all possible 
states of the model have been assessed. Black,box 
tests explore the functionality of software components 
through the design of scenarios that exhaustively ex, 
amine the cause and effect relationships between in, 
puts and outputs. All of these software verification 
techniques are applied with respect to the list of soft, 
ware quality factors given in the Constructing System 
Models section. 

Most software systems provide tools to assist the 
VV &A process. Among the more important are graph, 
ics and animation, interactive debuggers, and the 
automated production of logic traces. Graphics and 
animation involve the visual display of model status 
and the flow of entities through the model. These tools 
are extremely useful, particularly for spotting gross 
errors in computerized model output and for enhancing 
model credibility through demonstrations. Interactive 
debuggers help pinpoint problems by stopping the sim, 
ulation at any desired time to allow the value of certain 
program variables to be examined or changed. A logic 
trace is a chronological, textual record of changes in 
system states and program variables. It can be checked 
by hand to determine the specific nature of errors. 
Typically, the logic trace can be tuned to focus on a 
particular area of the model. 

Ultimately, for each step of modeling and simula, 
tion, the goal of VV &A is to avoid committing three 
types of errors. A type I error (called the model builder's 
risk) results when study conclusions are rejected despite 
being sufficiently credible. A type II error (called the 
model user's risk) results when study conclusions are 
accepted despite being insufficiently credible. A type 
III error (called solving the wrong problem) results 
when significant aspects of the system under study are 
left unmodeled. Many methods besides the techniques 
described here are available for avoiding these errors 
and producing a model that is accepted as reasonable 
by all people associated with the system under study. 
These methods include the use of existing theory, com' 
parisons with similar models and systems, conversa, 
tions with system experts, and the active involvement 
of analysts, managers, and sponsors in all steps of the 
process. 
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DOCUMENTING THE STUDY 
Documentation is critical to the success of a mod, 

eling and simulation study. If it's not written down, it 
didn't happen. Done properly, documentation fosters 
credibility and facilitates the long, term maintainability 
of the computerized model. Credibility is extremely 
important if the conclusions and recommendations of 
the study are to be taken seriously. Maintainability is 
important because software, hardware, and personnel 
change. Technological advances in the computer field 
may necessitate changes in the parts of the computer, 
ized model that interface with new hardware or soft, 
ware. Personnel levels also can change during or after 
a study. Required model changes and education of 
new people are much easier if good documentation is 
available. 

Several tendencies conspire against the generation 
of good documentation. Preparing good documenta, 
tion consumes a significant amount of time during and 
after development work. One tendency is to lose sight 
of how time,consuming preparing documentation can 
be and to push for quick results. Another temptation 
is to view the documentation as relatively unimportant 
during and shortly after model development and 
simulation studies. During this time, the development 
team usually understands the model quite well, so 
changes are less likely to require complete documenta, 
tion. Finally, analysts tend to dislike the documentation 
task; they would rather devote time to the modeling 
and simulation work itself. To counteract these tenden, 
cies, the entire development team should agree on the 
importance of good documentation. Managers and 
sponsors should support documentation with adequate 
schedules and funding. 

Good documentation includes a written description 
of the analysis and by,products associated with per, 
forming all major steps in the process. Documentation 
is best written at the peak of understanding. For some 
items, the peak of understanding occurs at the end 
of the study, but other items are better documented 
earlier. As a minimum, final documentation should 
include the following: 

1. A statement of objectives, requirements, assump, 
tions, and constraints 

2. A description of the conceptual model 
3. Analysis associated with modeling input data 
4. A description of the experiments performed with the 

computerized model 
5. Analysis associated with interpreting output data 
6. Conclusions 
7. Recommendations 
8. Reaso~s for rejecting any alternatives 

The conceptual and computerized models should be 
documented according to the standards of whatever 

software engineering methodology was employed. If the 
simulation is designed for use by a broad audience, a 
user's manual may also be necessary. 

Often a visual presentation is also part of the doc, 
umentation step. Presenters address the same topics 
listed for written documentation but use a different 
format. Animation, which allows visual observation of 
system operations as predicted by the computerized 
model, is extremely useful for illustrating system 
idiosyncrasies that support the study's conclusions, aI, 
though it can be quite costly. For physical models, 
videotape can often serve the same purpose. If anima, 
tion cannot be used, presenters should make maximum 
use of charts, graphs, pictures, and diagrams. Presenters 
also should try to anticipate questions and prepare 
visual aids to answer them. 

IMPLEMENTING THE CONCLUSIONS 
The implementation of conclusions culminates the 

successful modeling and simulation study. Conversely, 
the failure to implement conclusions is usually a sign 
that the study has lost credibility with its sponsor. The 
best way to influence the implementation of conclu, 
sions is to follow a structured set of guidelines, such as 
those presented here, throughout the study. Perhaps 
the most important guideline, however, is to commu, 
nicate all major decisions to every participant. A high 
level of involvement from all participants throughout 
the process is a major hedge against credibility failure. 

Once results are implemented, the system should be 
studied to verify that the predicted performance is 
indeed realized. Discrepancies between predicted and 
observed performance can indicate that aspects of the 
real system were incorrectly modeled or left entirely 
unmodeled. 

SUMMARY 
The following list summarizes this article's major 

suggestions for successful problem solving using mod, 
eling and simulation: 

1. Define specific objectives. 
2. Start with a simple model, adding detail only as 

needed. 
3. Follow software engineering quality standards when 

developing the computerized model. 
4. Model random processes according to accepted 

criteria. 
5. Design experiments that support the study obj ecti ves. 
6. Provide a complete and accurate characterization of 

random output data. 
7. Validate all analysis and all by, products of the 

problem,solving process. 
8. Document and implement conclusions. 
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Also, over the course of the study, the modeling and 
simulation team should systematically communicate all 
major decisions to every participant. This step helps 
ensure that the model retains credibility from the start 
of the work through the final stages of the study. 

Unfortunately, one short article cannot present all 
issues relevant to modeling and simulation. Readers 
interested in further study of the issues presented here 
are encouraged to consult the many excellent modeling 
and simulation textbooks available, such as Banks and 
Carson27 ; Bratley, Fox, and Schrage28

; Fishman23
; Law 

and Kelton1O
; Lewis and Orav29

; and Pritsker.30 
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