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AN EXPERT SYSTEM FOR DESCRIBING AND 
PREDICTING THE COASTAL OCEAN ENVIRONMENT 

Tactical oceanography can be described as the military use of archival and contemporaneous 
oceanographic information to gain tactical advantage. Ensuring that tactical oceanographic support is 
provided to deployed fleet units often reduces to a problem of information acquisition, interpretation, and 
management. This article explores the suitability of expert system technology to the tactical oceanographic 
problem. It summarizes ongoing efforts to apply this technology to the autonomous description and 
continuous refinement of the coastal environmental scene in a form suitable for applications in tactical 
oceanography. 

INTRODUCTION 
The changing focus in maritime strategy from a major­

power Cold War confrontation perspective to a forward­
deployed maritime expeditionary force concepti places 
new significance on seizing control of the "littoral" sea 
early in a postulated military operation (littoral refers to 
that part of the coastal ocean extending from the deep 
offshore waters to the coast itself). Recent experience (for 
example, Desert Storm and the humanitarian operations 
in Somalia) suggests that future military expeditionary 
operations may occur in nontraditional littoral areas 
where locations cannot be predicted. Such operations in 
coastal and shallow waters will present significant chal­
lenges to the delivery of oceanographic support to the on­
scene tactical decision maker. 

Coastal ocean areas are inherently complex. The com­
plexity arises from the interactions between the ocean and 
the atmosphere along the sea-landmass boundary, a 
variable coastal geomorphology, and coupled coastal 
and deep-water ocean circulation dynamics. Figure 1, 
showing NOAA-lO satellite infrared imagery of the Sea of 
Japan in May 1991 , illustrates the complexity typical 
of many coastal seas. In this image, cold surface 
temperatures are shown as light grays or dull whites, and 
warm temperatures are shown as dark. The bright white 
features in the lower right quadrant are clouds. The 
Tsushima current, entering the Sea of Japan from the 
south, provides warm water (shown in the figure as the 
dark, convoluted gray plume in the lower left-hand cor­
ner) through the Tsushima Strait between Japan and the 
Korean peninsula. The transition from the warmer waters 
in the eastern region of the Sea of Japan to the cold coastal 
waters off Korea and China occurs through a complex 
series of eddies and thermal fronts (high horizontal tem­
perature gradient zones) fully extending across the sea. 
Such naturally occurring littoral variability presents a 
challenge not only to tactical decision makers who are 
striving to tune the capabilities of their in-water sensor 
and weapons systems to the prevailing environmental 
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conditions, but also to ocean forecasters trying to support 
ships at sea. 

We view tactical oceanography primarily as a problem 
in information management, that is, acquiring, interpret­
ing, and disseminating environmental information about 
local oceanographic and atmospheric conditions to the 
tactical decision maker in a readily usable form. Ideally, 
environmental information is provided in terms specif­
ically relevant to the operation of the available sensors 
and weapons systems. 

Historically, specially trained naval oceanographic and 
meteorological personnel (either located on-scene or 
assisting from detached supporting commands) have 

Figure 1. Infrared imagery of the surface of the Sea of Japan in 
May 1991 , obtained by the NOAA-1 0 satellite. The nearly cloud-free 
image, taken in late winter, shows the remarkable complexity in the 
thermal structure within the transition from the warm water tem­
peratures (represented by the dark shades) in the eastern portion 
of the sea to the colder waters (shown by the light shades) to the 
west. (Courtesy of the U.S. Naval Oceanographic Office, Opera­
tional Oceanography Center, Stennis Space Center, Miss.) 
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provided tailored environmental data to the tactical de­
cision maker concerning environmentally sensitive as­
pects of major at-sea and shore operations. Naval Ocean­
ography Command shore facilities generated atmospher­
ic and meteorological forecasts that were communicated 
to the forward-located analysts, who then merged that 
information with locally derived environmental data. The 
result was then distributed by the analyst for tactical 
decision support. Various approaches have been used for 
this information delivery process. Today, analysts (tradi­
tionally located on major combatant ships such as aircraft 
carriers) use a dedicated environmental computer work­
station called TESS (Tactical Environmental Support Sys­
tem2

) , which provides area environmental forecasts, sat­
ellite imagery and in situ data assimilation and interpre­
tation products. Platforms not equipped with TESS (which 
usually have no analyst on board) rely primarily on a 
blend of TEss-generated environmental analysis products 
received from the operational command ship and locally 
derived in situ data. Whatever additional analysis is 
performed to tailor the environmental analysis products 
to the ship's specific tasks and location is normally left 
to the ship's crew. 

Given current trends in military force levels, the future 
availability of trained, professional analysts at the local 
decision-making level is uncertain. Forward-deployed 
platforms such as submarines and antiair defense frigates 
will increasingly have to rely on their own oceanographic 
measurement, interpretation, and decision-aid resources. 
The increased emphasis on the littoral regions of the 
world will create additional demands for local environ­
mental asse sment capabilities. The availability of ocean­
ographic data for many littoral regions is spotty because 
of the historical focus of oceanographic research on the 
mid- to high-latitude deep-water ocean. Moreover, ocean­
ographic research is just beginning to develop an under­
standing of shallow-water coastal characteristics and 
physical processes. 

The problem, then, is how optimally to exploit the 
available sparse data and incomplete coastal ocean envi­
ronmental information to support naval expeditionary 
force operations in the littoral regions. Advanced infor­
mation management technologies may play an important 
role in mitigating potential shortcomings; a knowledge­
based systems approach is a promising candidate. This 
article describes an embodiment of such an approach, 
termed the Ocean Expert System (OES), being developed 
at APL. 

INTRODUCING KNOWLEDGE-BASED 
SYSTEMS TECHNOLOGY 

Expert systems are computer-based systems that sup­
port, or perform automatically, cognitive tasks in a nar­
rowly defined problem domain. Such tasks are typically 
carried out by human experts who employ their personal 
skills, domain-specific technical expertise, and judgment 
learned over time.3 Expert or knowledge-based systems 
technology is one of the most widely applied develop­
ments to emerge from the broader field of artificial in­
telligence, regarded to have begun in the late 1950s. 
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Artificial intelligence research initially focused on 
general-purpose problem-solving strategies, theorem 
proving, and game playing. Although some interesting 
results were achieved (such as the General Problem 
Solver,4 the Logic Theorist,S and Samuel's checker-play­
ing programs6

), the focus on general-purpose techniques 
resulted in systems that were limited to puzzle solving 
and game playing, and seemed less well suited to more 
complex problems. 

A major change in the artificial intelligence research 
perspective occurred when researchers realized that the 
true power in artificial intelligence-based systems lay in 
the knowledge embedded in the system, and not neces­
sarily the reasoning process or procedures used. Knowl­
edge engineering, a term generally attributed to Edward 
Feigenbaum (an expert system pioneer), came to repre­
sent the process by which one acquires expertise from 
human experts and reproduces it in knowledge-based 
systems. Specifically, it is not the problem-solving meth­
od that distinguishes human experts from no ices but 
rather the amount of task-specific knowledge the expert 
possesses (frequently represented by heuristics or rules 
of thumb) and has culled from an extensive base of ex­
perience, largely without conscious effort. 

Following this realization, research in artificial intel­
ligence focused on capturing human expertise in narrow, 
well-defined domains, and the field of expert systems was 
born. Three early and landmark knowledge-based system 
applications were Dendral,7 M ycin, 8 and Prospector. 9 

Dendral encompasses the analytical expertise of two 
Nobel prize winners and uses mass spectrogram and 
nuclear magnetic resonance data to determine the struc­
ture of complex organic molecules. Dendral demonstrat­
ed performance equal to some human experts, and sub­
sequently produced molecular analyses that were pub­
lished in the peer-reviewed scientific literature as original 
research results. 10 Mycin captures the expertise of phy­
sicians to diagnose and recommend treatment for infec­
tious blood diseases. Prospector is an "expert geologist" 
system that has been used successfully to locate several 
commercially viable mineral deposits. 

These early successes generated tremendous interest in 
knowledge-based systems. Later efforts produced sys­
tems supporting various interpretation, prediction, diag­
nosis, design, planning, monitoring, debugging, repair, 
instruction, and complex system-control tasks. Knowl­
edge-based or expert systems have since found use in 
such diverse fields as agriculture, chemistry, electronics, 
engineering, geology, law, manufacturing, medicine, 
meteorology, military science, physics, process control, 
and space technology. II 

COMPARING KNOWLEDGE-BASED AND 
CONVENTIONAL SOFTWARE SYSTEMS 

Expert systems differ from conventional computer 
programs in four critical aspects: goal, focus, approach, 
and output. The goal of conventional software is to 
implement algorithms, whereas expert systems seek to 
capture and distribute expertise. Typically, conventional 
programs focus on data (primarily numerical), take an 
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algorithmic data processing approach, and produce a 
calculated result. Expert systems, on the other hand, 
focus on knowledge (primarily symbolic), take a heuristic 
reasoning approach, and generate one or more decisions 
or analyses. (This distinction is a generalization and is 
drawn as a sharp contrast for clarity. Increasingly, knowl­
edge-based approaches are being integrated with conven­
tional data processing in hybrid software systems.) A 
symbolic, knowledge-centered approach to the character­
ization of the coastal ocean scene parallels that of the 
human-expert oceanographic analyst and offers poten­
tially significant advantages over numerical data-cen­
tered approaches to analysis and interpretation. 

Data versus Knowledge 
Data refers to fairly static, simple descriptive facts , 

whereas information refers to the reduction of uncertainty 
in a situation; knowledge refers to the capacity to correctly 
use data and information in the execution of intelligent 
behavior. 12 Consider the remote sensing of sea-surface 
temperature via satellite sensors (Fig. 1). Individual tem­
peratures (either image pixel or derived engineering unit 
values) could be classified as data. The association of tem­
perature values with specific geographic regions constitutes 
information, a synthesis of the two data sets. Knowledge, 
then, would refer to the ability to identify organized features 
such as fronts or eddies in a satellite image, the ability to 
predict the future evolution of such features on the basis 
of a time series of satellite images or personal familiarity 
with the region, and the ability to assess and exploit the 
tactical implications of such features . 

The process of identifying organized features such as 
ocean fronts or eddies and explicitly representing them 
as separate feature entities or objects transforms the 
reasoning from pixel-based numerical data processing (as 
in edge detection algorithms) to more abstract symbolic 
manipulation. For example, an elliptical eddy could be 
represented symbolically by a name and a set of associ­
ated parameters (e.g. , location of the center, length of 
major and minor axes, swirl velocity, etc.). The eddy 
feature object captures the information content of the 
individual sea-surface temperature values at the pixel 
level and abstracts it in a higher-level representation. This 
symbolic representation more closely parallels the man­
ner in which a human expert would conceptualize the 
information contained in the image. A symbolic represen­
tation allows expert knowledge of the likely propagation 
of such an eddy to be captured in rules that predict the 
future values of the various eddy parameters. 

A sample analyzed version of the image in Figure 1 
is shown in Figure 2, where the data-dense continuous 
gray-scale representation of the sea surface (often con­
sisting of up to 2048 x 1024 individual pixels) is replaced 
by feature lines that identify the significant horizontal 
temperature gradients in the image. In this example, 
gradients of the largest magnitude are shown in red and 
are viewed by the analyst as being potentially more 
operationally significant than the other gradients shown 
in black. By representing the original image as feature 
objects, the analyst reduces the volume of data to be 
considered while maintaining the essential informational 
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Figure 2. Sea-surface temperature gradient analysis of the 
infrared image in Figure 1. The original sea-surface imagery is 
replaced by an oceanographic feature analysis of the locations of 
the significant temperature gradients in the image. The gradients 
(red depicting a strong temperature difference and black a weak 
gradient) often represent the surface expression of the water mass 
features (e.g. , water mass boundaries, or fronts, and separated 
eddies) in the image. The complexity in the imaged water mass 
structure is evident by comparison with the mean climatological 
location of the 10°C sea-surface isotherm shown in green, which 
is often taken as the indicator of the northern boundary of the 
Tsushima current. The analyst captures the essential elements of 
this complexity in an oceanographic feature-oriented analysis, 
thus reducing the volume of data that must be handled in subse­
quent analyses and facilitating automated interpretation of 
the image. 

elements of the original image. The reduced data set is 
more easily manipulated and compared with other infor­
mation than the image-based representation. Analysis 
involves an information extraction and condensation pro­
cess that forms the basis for the analyst's interpretation. 
The original data are converted into an abstracted and 
condensed data set that takes on significant meaning. This 
representation draws upon the analyst's experience and 
previous examples. It is this valuable expertise (knowl­
edge or skill developed through experience) that expert 
systems strive to capture and distribute. 

Conventional versus Knowledge-Based 
Information Processing Systems 

Since knowledge-based systems focus on highly ab­
stracted symbolic reasoning rather than on numerical data 
processing, they can handle problems that would be 
difficult or impossible to address using conventional 
approaches. For example, knowledge-based systems can 
readily deal with uncertain, incomplete, and even incon­
sistent data. The problem of describing and predicting the 
coastal ocean scene is particularly appropriate to a knowl­
edge-based system analysis approach. Oceanographic 
data acquired in real time rarely resolve completely the 
full extent of the measured field; ocean prediction models 
cannot easily represent small-scale processes that are 
important in coastal regions when significant real-time 
data are lacking. The limited data sets and associated 
uncertainty in coastal oceanography would be difficult to 
handle using conventional data processing approaches. 
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Another feature of knowledge-based systems is their 
ability to formulate analyses (or beliefs) and to revise 
them as new information becomes available. This ability 
is critical when the goal is to develop and continuously 
refine an environmental scene description as local infor­
mation develops. The iterative analytical approach paral­
lels that taken by a human analyst in, for example, water 
mass analysis, shown in Figure 3. Human analysts are 
adept at reconciling the usefulness of new information in 
the context of both their expectations (often based on an 
understanding of the underlying physics) and previous 
experience. In the absence of information, the analyst 
might assume a coastal ocean region to consist of a single 
water mass, that is , one having internally uniform char­
acteristics. The initial field estimate is revised iteratively 
as evidence accumulates that substantiates or contradicts 
the initial assumptions. An autonomous analytical system 
such as OES would be able to emulate the human analyst's 
approach in interpreting a continuous stream of new data 
and updating the estimate of the local scene description 
as new information becomes available. 

Another benefit accruing from the symbolic nature of 
knowledge-based systems is the ability to provide an 
explanation of the decision-making process. This feature 
has high utility in the estimation of oceanographic fields 
where different estimates may have significantly different 
kinds of information supporting them. 13 Since the target­
ed user of OES in not an oceanographic expert, the ability 
to provide an explanative basis for the presented analysis 
is a critical requirement. Finally, knowledge-based sys­
tems differ from conventional software systems in the 
development approach. The algorithmic nature of con­
ventional systems lends itself to a linear or serial waterfall 
model for software development (Fig. 4). In such a 
model, the requirements are spelled out in detail in 
advance of code development, and testing occurs after 
the module development and integration have been com­
pleted. Knowledge-based system development, on the 
other hand, is well-suited to a spiral model (see, e.g. , Ref. 
14) of software development (Fig. 5). In this model, 
successively refined prototypes are cyclically developed 
and tested. A significant advantage of the spiral develop­
ment method is that it enables rapid development of an 
initial prototype using a limited subset of the problem­
domain knowledge as a proof of concept. The initial 
prototype is then used as a tool for acquiring additional 
domain knowledge and functional requirements for fu­
ture development. 

Given the superior utility of symbolic knowledge over 
conventional data, as well as the other advantages of 
knowledge-based systems just outlined, such systems 
seem promising. But although some successes have been 
achieved, attempts to universally apply knowledge-based 
system technology have met with mixed results. In fact, 
the president of one artificial intelligence company esti­
mated that only 10% of medium- to large-size expert 
systems eventually succeed. IS Knowledge-based or 
expert system technology, like much of artificial 
intelligence, has consequently suffered; early success 
has been overpromoted and has bred unrealistically high 
expectations. 
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Figure 3. Simple conceptual model for oceanographic water 
mass analysis frequently used by a human analyst. A. Without 
evidence (data or information) to the contrary, the analyst initially 
estimates the water mass characteristics in a region to be singular 
and uniform. B. After receipt of information indicating that two 
different water masses coexist in the region , the analyst attempts 
to locate the boundary between the water masses. C and D. The 
boundary location and shape are subsequently modified as the 
analyst reviews new information (e.g. , in situ measurement, satel­
lite imagery, ocean forecast data) and reconciles that with both 
personal experience in the specific geographic area and personal 
understanding of the dynamics (or physics) of water mass bound­
aries (or ocean fronts) in general. E. The oceanographic scene 
description becomes progressively more well defined as additional 
information and insight are gained. 

The single most common reason for the failure of 
expert system technology is the attempt to apply it in 
domains where it is not appropriate or not likely to suc­
ceed. In considering the application of knowledge­
based system technology, then, we must understand the 
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Figure 4. The algorithmic nature of a conventional software 
system lends itself to a linear waterfall software developmental 
approach. In such a developmental method the requirements are 
specified in advance, and system testing occurs after software 
module development and integration. 

characteristics of a problem domain where knowledge­
based system technology would be appropriate and 
successful. 

CHARACTERISTICS OF A DOMAIN 
SUITABLE FOR EXPERT SYSTEM 
TECHNOLOGY 

Slagle and Wick, 16 building on the work of Prerau, 17 have 
developed a taxonomy of essential and desirable domain 
characteristics for which the application of expert system 
technology would be likely to succeed. The characteristics 
can be classified into one of three groups: (1) the users and 
their management, (2) the task, and (3) the expert. 

Johns Hopkins APL Technical Digest, Volume 14, Number 2 (1993) 

Coastal Ocean Expert System 

Determine 
objective, 
alternatives, 
constraints 

Cost 

Evaluate 
alternatives, 
identify and 
resolve risks 

Time 

Figure 5. Knowledge-based system development is well-suited 
to the spiral model of software development, wherein successive 
prototypes are developed and tested cyclically as problem-domain 
knowledge is acquired. 

The Users and Their Management 

Of primary concern to the expert-system developer is 
the need for the customer to agree that the payoff is high. 
The customer must have realistic expectations of the 
system's scope and limitations. In particular, the user 
must recognize that an expert system might not always 
give correct answers and cannot be expected to be better 
than a limited version of the human expert. 

The Task 

Expert system development should target those prob­
lems where traditional methods are inadequate for per­
forming the application task. The task itself should be 
knowledge-intensive and heuristic, thus allowing the 
expert system to exploit the intrinsic strengths of knowl­
edge-based systems. The application should be definable 
and self-contained (i.e., limited in scope). Applications 
requiring commonsense reasoning should be avoided, 
since experience has shown that representing broad­
based commonsense knowledge has proved to be quite 
difficult and time-consuming. For example, it is common 
sense that successful gardens require "rich" soil. The 
exact characteristics of what is meant by rich depends on 
many elements, leading to a prohibitively complex 
knowledge domain concerning plants and soil chemistry. 
Expert systems require explicit knowledge. Furthermore, 
the task should be of the appropriate difficulty. It should 
have characteristics such that experts could develop a 
solution in a reasonable time (minutes to hours), whereas 
nonexperts could not achieve equally good solutions or 
would require much more time to do so. Finally, the 
problem domain of the task should be stable. That is, once 
the knowledge is extracted from human experts, it should 
be usable without substantial modification for an extend­
ed period of time. 
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The Expert 

An expert with considerable, explicit experience in the 
problem domain must actually exist. The strength of 
knowledge-based system technology is in its ability to 
capture expert knowledge, but such knowledge must 
exist in order to be captured. The expert must be com­
mitted to the project for its duration, must be cooperative, 
and must have good communication skills for the knowl­
edge to be captured. Other indicators of likely success 
include the degree to which the expert uses symbolic 
reasoning when performing the task and the extent to 
which the expertise can be transferred to another human. 
Finally, the expert's creativity should not be needed in 
solving the problem since creativity is poorly understood 
and nearly impossible to capture in a computer-based 
system. 

THE OCEAN EXPERT SYSTEM CONCEPT 

The OES concept evolved from a recognition of the 
difficulty that forward-deployed naval units might have 
in accessing and interpreting local oceanographic infor­
mation during littoral operations, and the potential that 
knowledge-based systems might have in improving that 
access. The OES is a knowledge-based system whose prin­
cipal function is the autonomous generation and contin­
uous updating of a description of the local environmental 
scene for use at sea by tactical decision makers. A de­
velopmental goal is to demonstrate that significant hu­
man-expert knowledge relating to the management and 
use of environmental information for the development of 
the local scene description can be captured in a knowl­
edge-based system. Such knowledge capture would make 

Table 1. Environmental field analytical procedure. 

Analytical process Description 

available to a deployed combatant important environmen­
tal analytical skills that otherwise would have had to be 
provided by a human expert. The OES does not negate the 
need for trained human analysts. Rather, OES is targeted 
at extending the availability of those skills autonomously 
and thereby providing a bridge from the expert to the 
nonexpert user. The functional goals for OES are to have 
significant environmental-scene developmental skills 
over a wide range of available environmental informa­
tion; to demonstrate autonomous real-time oceanograph­
ic feature recognition skills for those platforms having a 
continuous in situ measuring system; to provide a geo­
graphic rendering of the estimated scene description and 
significant events; and to provide interpretation and ex­
planatory assistance to the nonexpert user. 

The process by which the human analyst develops an 
environmental scene description is putatively straightfor­
ward. Relevant oceanographic data in the particular 
geographic area of interest are identified, quality-con­
trolled, and then merged with available supporting 
information to develop as complete a description of the 
oceanographic scene as possible. The scene interpretation 
process involves the extraction and review of task­
relevant subsets from the merged data sets. Review 
occurs in the context of the analyst's professional 
expertise and previous experience. The different steps 
in the analytical process, developed as a result of inter­
views with selected oceanographic analysts, are summa­
rized in Table 1. The specific human expert tasks 
relevant to OES development are to collect available 
information, quality check that information, extend 
where possible the individual data sets into regions 
not having good data coverage, develop a common 

Examples relevant to Ocean Expert System development 

Collect information Assemble relevant data 
that may be appropriate 
to the task 

Assemble relevant data for area (e.g., previous forecasts, recently 
acquired local data, climatologies, ocean model forecast data) 

Check 

Extend 

Adjust 

Compile 

Interpret 
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Evaluate quality of available 
data 

Extend the existing data 
through gaps in the data 
coverage 

Adjust individual data sets 
to a common reference 

Combine individual, adjusted 
data sets to a standard 
presentation 

Determine significance of 
the compiled, adjusted data 
sets 

Estimate noise and bias in local sensor data (e.g., ship track sea­
surface temperature [SST] data) 
Verify previous forecast with current data to identify anomalies 

Extend sea-surface temperature contours through data voids (e.g., 
satellite IR imagery) 
Combine separate SST track data to joined data set 

Interpolate bathythermographic temperature data to a reference 
depth surface (e.g., 200 m) 
Adjust ocean model forecast data with satellite IR imagery to accom­
modate for differences between image/forecast reference times 

Combine expendable bathythermographic and ocean forecast data 
to provide a single estimate of subsurface thermal structure 

Identify probable locations of high horizontal temperature gradients 
in the ocean region of interest 
Identify water mass boundaries or fronts 
Estimate sound velocity profiles within each water mass region 
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reference across the different data sets so that a unified 
set can be compiled, and then interpret the compiled 
information. 

Conceptual Design 

The OES embodies the human analytical process out­
lined in the preceding discussion and rests on a central 
concept: the interpretation of data obtained by local in 
situ measurements and data provided from off-board 
(nonlocal) sources in a context of the regionally expected 
climatologies, physical processes, and previous analyses 
for the geographic area in question. The provisional 
system design is shown in Figure 6. Local data include 
measurements of the ocean's vertical temperature or 
sound-speed profile that the ship obtains with expendable 
instruments and continuous measurements of tempera­
ture or other parameters at the sea surface or at depth 
using towed or hull-mounted sensor arrays. Off-board­
generated data include forecasted environmental fields 
provided by TESS, analyzed satellite imagery, atmospheric 

Coastal Ocean Expert System 

and oceanic forecast products, and interpreted data prod­
ucts relayed from other ships in the area. 

As data become available to the system, they are 
checked to determine their relevance and acceptability 
against established task-related and quality-assurance cri­
teria. Task-related criteria include relevance tests against 
specific user-defined tasks. For example, data in forecast 
fields not relevant to the local operational region would 
be culled out. The quality-assurance criteria include con­
sistency with both established climatologies and with the 
underlying physics that influence the processes occurring 
in the coastal environment. Information is weighted rel­
ative to its consistency evaluation and with regard to 
expectations derived from previously estimated environ­
mental scene descriptions. Data not meeting the evalua­
tion criteria are not completely rejected, but are stored as 
"unresolved" samples, allowing for future reexamination 
as new information becomes available. The embedded 
knowledge bases represent the core of the system and 
provide the context for both conventional data processing 
and reasoning within the OES system. 

Climatologies Knowledge Base 

Reevaluate 

Conventional 
climatology 

Allow 

Figure 6. Conceptual design for the Ocean Expert System (OES). The goal of the system is to produce a best estimate of the 
oceanographic scene description, given the information that might be available at any given time. Information external to the system is 
derived from local oceanographic and atmospheric measurements as well as from information communicated to the system from off-board 
sources. A key aspect of the OES is the integration of embedded knowledge bases that allow (1) the evaluation of available oceanographic 
information in a context of conventional algorithmic tests (such as statistical variability) in addition to previous experience in the area and 
(2) a physics-based representation of coastal dynamics that cannot easily be captured in a conventional computer-based system. The 
estimated scene description provides information concerning significant environmental events, the mapping of those events to the local 
area, and estimates of the larger-scale context within which the scene is to be interpreted. 
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Resident Knowledge Bases 
Several types of resident know ledge are provided 

within the OES: knowledge concerning the climatology of 
the region that might be related to the interpretation of 
regionally pecific locally generated and off-board-gen­
erated information, knowledge related to previous anal­
yses of the local scene, and knowledge related to coastal­
specific physical oceanographic and atmospheric pro­
cesses that have been shown to influence local water mass 
characteristics. 

The Climatologies Knowledge Base comprises a li­
brary of geographically oriented information about pre­
vious experience in the local region. Its organization re­
flects an implicit hierarchy from large spatial- and tem­
poral-scale (and essentially more statistically stable) 
characteristics to successively smaller-scale (and less sta­
ble) regional characteristics. Such knowledge consists of 
both conventional (primarily statistics-based) climatolog­
ical information and knowledge related to specific dy­
namical or physical processes that might at times (but not 
always) influence the observed environmental conditions 
of the local region. The Climatologies Knowledge Base 
will support a variety of consistency checks of the incom­
ing information over a broad range of physical scales. It 
is also central to the recognition of regionally specific 
environmental phenomena that could affect sensor or 
weapons performance and the extension of limited obser­
vational data sets to larger regions using feature analysis. 

The Conventional Climatology Knowledge Base con­
tains information related to the expected environmental 
conditions in the area and parallels the type of informa­
tion found in conventional environmental decision-aid 
systems. Information in this knowledge base includes, for 
example, monthly mean environmental parameter values 
in the region of interest, the most frequently encountered 
(modal) values, and the associated variances. An example 
of a conventional climatological presentation is shown in 
Figure 7, which illustrates the mean surface temperatures 
in the Sea of Japan region. Additional knowledge bases 
include ocean bathymetry, coastline and coastal topogra­
phy databases, and meteorological databases. The con­
ventional climatology can also support initialization of 
the systems scene description in the absence of any pre­
vious analysis. 

The Variations Climatology Knowledge Base provides 
know ledge relating to first -order departures from the 
mean climatology. For example, the monsoonal atmo­
spheric cycle strongly influences the strength and direc­
tion of coastal currents in Southeast Asia (Fig. 8). Al­
though the monthly mean climatology suggests that the 
winter monsoon generally ends in late March, with the 
summer monsoon well established by late June, the actual 
onset of the seasonal monsoon will vary each year. The 
Variations Climatology Knowledge Base in the OES pro­
vides information supporting the recognition of expected 
significant variations in environmental conditions from 
the mean climatology for a particular region. Typically, 
these variations include regionally coherent, shorter-scale 
variations in conditions that may occur. This climatology 
supports additional data interpretation and quality-assur­
ance checks. Incoming information that is potentially 
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Figure 7. An extract from a "conventional climatology" showing 
the mean sea-surface temperature isotherms in the Sea of Japan. 
The isotherms (in degrees C) are shown to vary smoothly (an 
artifact of the large spatial- and temporal-scale averaging process 
used to obtain the mean isotherm values and locations) with little 
evident structure across the region . This common representation 
contrasts markedly with the structure shown in the Sea of Japan in 
Figure 1. Conventional climatologies, by their very nature, tend to 
underestimate the true complexity of the ocean's structure but are 
useful as input regarding initial estimates of a region's ocean­
thermal structure. (Adapted from Robinson, M. K., Atlas of the 
North Pacific Ocean Monthly Mean Temperatures and Mean 
Salinities of the Surface Layer, U.S. Naval Oceanographic Office, 
Washington, D.C., p. 26, 1976.) 

inconsistent with, for example, the Conventional Clima­
tologies Knowledge Base is examined for the presence 
and interpretation of these smaller-scale variations. In 
this way, information that might represent a real depar­
ture from the conventional climatology of a region, and 
which might have been discounted as being atypical in 
a conventional analytical approach, can be examined in 
a more realistic interpretative context within OES. 

The Variability Climatology Knowledge Base pro­
vides knowledge of specific small-scale, geographically 
coherent environmental features or processes within the 
area of interest, and relates those features to measurable 
parameters. Processes represented in the initial prototype 
system will include coastal upwelling, tidal mixing, re­
gionally specific winds events, and selected others. For 
example, Byun and Seungl 8 observed that the water con­
ditions off the southeastern coast of the Korean peninsula 
are locally sensitive to the prevailing winds (Fig. 9). 
Under the influence of southerly winds, cooler water 
moves in along the coast as a result of local upwelling 
and the advection of cool water from the north. The OES 

will examine available geomorphological, oceanograph­
ic, and atmospheric data for evidence of tendencies for 
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Figure 8. An example of the informa­
tion that might be contained in a "varia­
tions climatology." During the northwest 
monsoon (left), the Chang Chiang cur­
rent flows southwestward along the China 
coast. The flow reverses to the north 
(right) after the onset of the summer 
(southeast) monsoon. The southeast 
monsoon also sets up a cool counter­
clockwise Huanghai gyre (shaded area) 
between China and the Korean penin­
sula. (The Chang Chiang flow is repre­
sented by the blue arrows.) The Ocean 
Expert System contains the information 
in the Variations Climatology Knowledge 
Base to identify shorter-term variations in 
oceanographic conditions not resolved 
by conventional climatologies. (Adapted 
from U.S. Navy Marine Climatic Atlas of 
the World, Vol. II, Northern Pacific Ocean, 
U.S. Government Printing Office, Wash­
ington, D.C., pp. 365 and 367, 1977.) 

such locally generated phenomena and modify the eval­
uation of the incoming data and the resulting scene de­
scription accordingly. The ability to conduct a physics­
based evaluation of the environmental data permits iden­
tification of features not resolved by regional forecast 
models alone, improves the use of locally acquired data, 
and offers the prospect of extending the environmental 
scene description into contiguous areas in a physics­
based extrapolation not afforded by conventional analyt­
ical systems. 

The Symbolic Abstractions Knowledge Base provides 
for the representation of complex environmental features 
through feature models. Glenn et al. I9 have shown that the 
essential characteristics of complex oceanographic fea­
tures such as ocean eddies can be represented in compact 
form using feature models. Rather than explicitly map­
ping the characteristics of the feature in detail, the feature 
model captures the essential eddy characteristics (e.g., 

£ 
o z 
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shape, size, strength, and movement). The OES will extend 
the feature model concept to represent the feature's in­
fluence on the surrounding water mass properties as well. 
Feature models, then, can serve as an abstraction of 
mUltiple data sets into a single, compact representation, 
simplifying the tracking and mapping of those features 
while retaining the essential characteristics. Feature 
models serve as an information compression technique 
and as a tool to facilitate the rapid construction of a time­
dependent environmental scene description. 

The OES reasoning draws on additional knowledge 
bases as well. A Local Scene Knowledge Base contains 
the current version of the scene description. A Memory 
Knowledge Base provides access to previous scene 
descriptions to support time-dependent reasoning and to 
enable tracking the evolution of the environmental scene. 
A Process Knowledge Base contains knowledge concern­
ing significant oceanographic processes and features 
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Figure 9. The "variability climatology" 
provides information concerning specific 
time-dependent physical processes ob­
served in a particular geographic region, 
which may not be present permanently. 
Prevailing winds are shown by the red 
arrows. Off the coast of Korea during north­
erly summer winds (left), warm water is 
advected onto the coast from deep water. 
After the onset of southerly winds (right), 
surface water is advected off the coast, 
resulting in cooler water being upwelled 
from deeper depths (shown by the shaded 
area). The upwelling phenomenon repre­
sents a complex interaction between the 
prevailing (large-scale) winds and the 
smaller-scale coastal geometry. Upwelling 
is common in many coastal areas and 
must be represented in the coastal scene 
description process. (Adapted from Ref. 
18, p. 92.) 
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potentially relevant to the coastal ocean, but not yet 
associated with processes in the specific local region of 
interest. Should evidence be provided that such processes 
exist, the information would be added to the Climatol­
ogies Knowledge Base for future use. In this way the 
benefits of the extensive research literature on coastal 
processes and characteristics can be represented and 
exploited. 

The Reasoning Process 

The OES is structured to support emulation of the 
human analyst's reasoning. It will produce three classes 
of analytical products: a significant events summary 
derived from local data, an environmental context based 
on off-board data extending beyond the local scene, and 
an estimate of the local scene representing the fusion of 
all available information. The system will develop and 
revise the environmental scene description as informa­
tion becomes available. Without anyon-scene or forecast 
data, the coastal scene description will substantially rep­
resent the data and know ledge in the climatologies and 
process-oriented knowledge bases. As on-scene informa­
tion and regional forecast data become available, the 
scene description will be revised. Consequently, the OES 

will be able to provide an estimated scene description on 
demand as well as the basis for that estimate. 

An object-oriented approach in knowledge represen­
tation and system implementation will allow the rapid 
association of different types of relevant, previously dis­
jointed data sets. A drop in measured sea-surface tem­
perature will be evaluated, for example, in the context of 
the ship's location and orientation with respect to the 
nearest coast, the likelihood of ocean frontal activity in 
the area, the local water depth, the atmospheric wind 
fields , and the time-history of previous sea-surface tem­
peratures in the area. The interpretation could be that the 
hip had entered a coastal upwelling zone that probably 

extends along the coast, or a local anomaly. The process 
of interpretation previously required a human analyst, 
who did not necessarily have all the relevant information 
conveniently at hand. The OES will allow such a process 
to be automated and will facilitate application of that 
interpretation to the tactical problem. 

RISKS AND CHALLENGES 

The need for forward-deployed naval units to access 
and interpret local oceanographic information during 
littoral operations, as well as the likely reduced availabil­
ity of trained analysts on platforms other than major 
combatants, suggests that the application of autonomous 
information-processing technologies may be valuable. 
Preliminary investigations into the approaches currently 
followed by human analysts further suggest that a knowl­
edge-based systems approach may be particularly appro­
priate. The road is not without challenges; the process of 
knowledge acquisition, the nature of the knowledge used 
in formulating an environmental scene description for 
tactical oceanography, and the need to refine that descrip­
tion over time must be managed. 
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Know ledge Acquisition 

Knowledge acquisition, commonly identified as the 
major bottleneck in the construction of a knowledge­
based system, can be defined as the process of extracting, 
structuring, and organizing knowledge from some source 
(usually human experts) so that it can be used in a com­
puter-based system. The central problem of knowledge 
acquisition is putting the knowledge into a form that can 
be processed by a computer. The selection of a knowl­
edge representation scheme that closely matches the 
expert's reasoning process will greatly facilitate not only 
the knowledge acquisition process, but the construction 
of a viable explanation facility as well. Initial interviews 
have been conducted with experienced Navy operational 
environmental forecasters and have resulted in the rea­
soning process defined previously. We intend to continue 
in an interview-based approach to knowledge acquisition 
in which operational forecasting experts will work 
through a broad range of specific problem situations with 
a knowledge engineer for the purpose of knowledge 
capture. 

Nature of the Knowledge Used 
for Oceanographic Scene Description 

The nature of the knowledge used in formulating and 
refining a coastal ocean environmental scene description 
poses numerous challenges. Multiple types of expertise 
are required, including knowledge of coastal oceano­
graphic processes, knowledge of regionally specific cli­
matologies, and knowledge relating to the reconciliation 
and integration of data at multiple resolutions, as de­
scribed previously. To obtain such knowledge, many 
human experts will probably be required. The integration 
of their knowledge into a single system will be a complex 
task. Further, the amount of oceanographic process 
knowledge potentially of interest to the system is quite 
large?O The regionally specific nature of the climatolog­
ical knowledge presents another challenge. We intend to 
focus initially on a specific geographic region as a test 
case while designing the system, but we will also ensure 
that the reasoning framework will be adaptable to differ­
ent coastal regimes. 

Initial knowledge acquisition interviews with experi­
enced naval forecasters have raised other questions. In 
particular, human analysts have historically been sta­
tioned on (and had primary support responsibility for) 
major command ships at sea such as aircraft carriers. The 
OES, on the other hand, is targeted for forward-deployed 
platforms such as submarines and antiair defense frigates 
where TESS and human analysts are unlikely to be avail­
able. Consequently, we are forced to mine knowledge 
from experts and apply the knowledge in areas other than 
where it has been developed and traditionally used. 
A final challenge is presented by the nature of the 
task knowledge. Initial interviews of expert analysts 
suggested that elements of both commonsense and cre­
ative reasoning in the human analyst's approach combine 
to refine the environmental scene description over time. 
These types of domain knowledge must be separated to 
help define the scope of the system's functionality. 
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Refining the Environmental Scene Description 
The location of future military operations cannot nec­

essarily be predicted in advance. Interviews with Desert 
Storm environmental forecasters highlighted the need for 
the OES to be able to refine its understanding of the coastal 
ocean environmental scene over time. Specifically, we 
must have a mechanism for accumulating evidence and 
refining analyses, estimates, and conclusions, as shown 
in Figure 3. Two theories of evidence and reasoning in 
the presence of uncertainty that are now used in artificial 
intelligence research seem promising: casual (or Baye­
sian belief) networks21 and Dempster-Shafer theory.22 

A Bayesian belief or causal network is a directed 
acyclic graph in which each node represents a discretely 
valued propositional variable, and in which the direction 
of the arcs usually represents the direction of causality 
(i.e., each arc points from its cause to its effect). An 
adv~ntage of such a network is that it supports the prop­
agatIOn of the effects of new evidence on the beliefs about 
the values of the individual variables. The physical mech­
anisms influencing environmental modeling often in­
volve causal chains that can be reasonably mapped to a 
causal network. The historical data for an area would be 
the source of the initial values (prior probabilities) of the 
nodes in the network. Real-time incoming data would 
then be used as evidence and propagated through the 
network in a manner consistent with the axioms of prob­
ability theory, resulting in a refined scene description 
based on the available data/evidence. 

Dempster-Shafer theory, which can be viewed as a 
generalization of probability theory, is another method 
for evaluating the weight of evidence in support of 
multiple hypotheses. A belief interval can be computed 
for any hypothesis where the lower bound is a measure 
of how much belief we have committed to the hypothesis. 
The upper bound is a measure of how much belief we 
have committed to the negation of the hypothesis. The 
width of the interval is a measure of the uncertainty in 
our beliefs. Both Bayesian belief networks and Demp­
ster-Shafer theory are being investigated as potential 
formalisms for supporting the refinement of the environ­
mental scene description over time in view of accumu­
lating evidence. 

SUMMARY 
The accurate forecasting of oceanographic conditions 

for the coastal region (the coastal scene description) is 
inherently complex and demanding. The large-scale at­
mospheric and oceanic fields impose a background set of 
environmental conditions that are subsequently modified 
by a local region's smaller-scale characteristics. Recon­
ciling the relative influences between the differently 
scaled forcing processes historically required expert 
human forecasters who became increasingly proficient 
with time spent in a particular area as they "learned" 
vagaries of the local region. Unfortunately, human fore­
casters will increasingly be in short supply as the Navy 
faces the prospect of conducting operations in remote, 
nontraditional coastal areas of the world. A careful 
examination of the role that automation can play in 
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facilitating the coastal ocean scene description process is 
appropriate. 

The Laboratory is well positioned to contribute to the 
development of improved tools based on information 
technology to support the coastal ocean scene description 
process. The feasibility of using knowledge-based com­
puter decision aids in a complex decision-making envi­
ronment has already been reported.23 The Ocean Expert 
System represents a transition of that enabling technol­
ogy to the oceanographic environment. Work is rapidly 
progressing toward the demonstration of an initial pro­
totype OES capability for a few selected coastal areas 
within the Mediterranean Sea by the end of 1993, as part 
of the Navy's Exploratory Development Tactical Ocean­
ography Program. Upon successful completion of that 
effort, the prototype system will be extended to a more 
general coastal environment and tested to determine its 
capabilities in the autonomous environmental scene de­
scription process for different large-scale forcing areas. 
Should this technology transition prove successful, a 
more automated process for generating the local, coastal 
time-dependent scene description can be provided to the 
operator at sea. 
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