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CLASSIFICATION OF RADAR RETURNS FROM THE 
IONOSPHERE USING NEURAL NETWORKS 

In ionospheric research, we must classify radar returns from the ionosphere as either suitable for fur­
ther analysis or not. This time-consuming task has typically required human intervention. We tested several 
different feedforward neural networks to investigate the effects of network type (single-layer versus mul­
tilayer) and number of hidden nodes upon performance. As expected, the multilayer feedforward net­
works (MLFN'S) outperformed the single-layer networks, achieving 1000/0 accuracy on the training set and 
up to 980/0 accuracy on the testing set. Comparable figures for the single-layer networks were 94.50/0 
and 92 0/0, respectively. When measures of sensitivity, specificity, and proportion of variance accounted 
for by the model are considered, the superiority of the MLFN'S over the single-layer networks is even more 
striking. 

INTRODUCTION 

Neural networks have many potential applications in 
signal processing. For example, Lippmann, I in an in­
troduction to computing with neural networks, describes 
several applications to signal processing. Gorman and 
Sejnowski 2 showed that neural networks can be used to 
discriminate with high precision between sonar signals 
from a mine and from a similarly shaped rock. Lapedes 
and Farber3 demonstrated the use of neural networks 
to predict points in highly chaotic time series. Boone, 
Sigillito, and Shaber4 showed that neural networks can 
perform as well as trained human experts in detecting 
certain nodules in radiological data. Other examples of 
using neural networks to perform signal-processing tasks 
can be found in the special section on neural networks 
in the July 1988 issue of the IEEE Transactions on 
Acoustics, Speech, and Signal Processing. 5 

We describe here the application of neural networks 
to a radar classification problem that normally would 
require human intervention. Networks were trained to 
discriminate "good" from "bad" radar returns from the 
ionosphere. Individual networks achieved an accuracy 
of 98070 when presented with data not used in the train­
ing set. We continue with a brief characterization of the 
radar system and how the signals were processed, de­
scribe the networks used for the discrimination tasks, 
and discuss implementation issues. We then present the 
results of our experiments with several different networks 
and an analysis of the classification strategy developed 
by the networks. 

THE RADAR SYSTEM 

The radar data used in our study were collected by 
the Space Physics Group of The Johns Hopkins Univer­
sity Applied Physics Laboratory. The radar system, lo­
cated in Goose Bay, Labrador, consists of a phased array 
of 16 high-frequency antennas, with a total transmitted 
power on the order of 6.4 kW and an antenna gain of 
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about 30 dBm at frequency ranges of 8 to 20 MHz. The 
radar returns are used to study the physics of the iono­
sphere at the E- and F-layers (100- to 500-km altitude). 
The targets, free electrons in the ionosphere, have small 
cross sections on the order of 10 - 30 m 2 • A typical num­
ber density of electrons would be on the order of 
108 1m 3

, and the total volume could be as large as 106 

m 3
• Additionally, the backscattering process is coher­

ent, and the backscattered signal is therefore proportion­
al to the square of the number density. The usual 
signal-to-noise ratio is in the 10- to 20-dB range, but it 
can be as large as 50 dB. A detailed analysis of the back­
scattering process can be found in Ref. 6. 

We now give a simplified version of the operation of 
the radar system. Our discussion does not precisely de­
scribe the radar operation at Goose Bay, but captures 
the essential features needed to understand the input to 
the neural network. (See Ref. 7 for a detailed descrip­
tion of the system and Ref. 8 for a description of the 
data analysis procedures.) 

The radar operates by transmitting a multipulse pat­
tern to the ionosphere. The receiver is turned on between 
pulses, and the target velocity is determined by measur­
ing the phase shift of the returns. 

If we denote the received signal from the pulse at time 
t by 

C(t) = A (t) + iB(t) , 

then the autocorrelation function (ACF), R, is given by 

16 

R(t,k) = E C(t + iT)C*[t + (i + k)T] , 
i=O 

where T is the pulse repetition period, k indicates the 
pulse number, and the * indicates complex conjugation. 
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For the Goose Bay radar, k lies between 0 and 16. From 
the ACF a number of physical parameters can be derived, 
most importantly, the Doppler velocity of the target. For 
a target moving with constant velocity, the phase of the 
ACF will show a shift proportional to the lag, k. 

Figure 1 shows typical ACF'S received by the radar. 
The two parts of the curve, real (black) and imaginary 
(blue), correspond to the complex ACF that results from 
the complex electromagnetic signal. The radar at its cur­
rent operating mode produces 25 of these 17 pairs of 
numbers every 5 s all year round. Thus, much work is 
required (now performed in part manually) to weed out 
bad ACF'S during radar data analysis. It is this task to 
which we applied neural networks. The 17 pairs of num­
bers, representing 17 discrete values of the real part and 
the corresponding 17 values of the complex part of an 
ACF, are the input to the neural networks. 

METHODS 
The networks we used are known as feedforward net­

works, which comprise an input layer of identical pro-
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cessing units (neurons), an intermediate or hidden layer, 
and an output layer. All units in any given layer are con­
nected to all units in the layer above. There are no oth­
er connections. Input units do not perform computa­
tions, but serve only to distribute the input to the com­
puting units in the hidden layer above. Units in the hid­
den layer have no direct connections to the outside 
world, but after processing their inputs, pass their results 
to the units of the output layer. In a process called train­
ing, the network is given selected input examples and 
the corresponding desired output response (or target). 
The connection weights are changed, using a learning 
algorithm called back propagation, until the output er­
ror is minimized in a least-squares sense. The procedure 
is discussed more fully in the article by Sigillito elsewhere 
in this issue. 

After training has been completed, the network's per­
formance is evaluated on a different set of ACF'S. This 
set, which has no data in common with the training set, 
is called the testing set. For both sets, the "gold stan­
dard" classification of each ACF was made by Simon P. 
Wing, who is expert in this classification task. 

8 
Time lag 

12 16 

Figure 1. Typical ACF'S. The four 
pairs of curves in the first column 
are good returns, the four pairs in 
the second column are bad returns. 
The black curves represent the real 
part , the blue curves the imaginary 
part. 
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IMPLEMENTATION 
The ACF of a radar return is described by the 17 dis­

crete returns, as discussed previously. Since each discrete 
return is composed of a real and an imaginary part, 34 
values per ACF result. These 34 values serve as input to 
the network. Each input was normalized to the range 
[ - 1, 1]. The number of hidden nodes was varied from 
o (no hidden layer) to 15. Since our networks are cur­
rently used to classify the inputs into only two classes 
(good and bad), only one output node was needed. This 
node outputs a 1 for a good return and a 0 for a bad 
return. In general, good returns are indicated by well­
defined signals, which are evidence of the presence of 
some type of structure in the ionosphere. Bad returns 
can be caused by the absence of identifiable structure 
(the signal passes through the ionosphere); by incoher­
ent scattering (signals are reflected from too many struc­
tures, resulting in phase cancellation); by the absorption 
of radar pulses; and by interference from other trans­
mitters. Bad returns are more diverse than good ones. 
That difference is reflected in the network's behavior, 
which we now discuss. 

RESULTS AND DISCUSSION 
We trained the networks with a training set of 200 

returns (101 good, 99 bad). Networks having 0, 3, 5, 
8, 10, and 15 hidden nodes were used. We refer to net­
works with no hidden units as perceptrons and those with 
hidden units as multilayer feedforward networks 
(MLFN'S). It is well known that MLFN'S can learn more 
complex mappings than can perceptrons. 9 We used the 
perceptrons to give us a basis for quantifying the addi­
tional power obtained by having hidden nodes in this 
problem. Note that if the output node of the percep­
tron simply outputs its input, then the output error to 
be minimized in the training process is 

(1) 

where TP is the target (here, the correct classification, 
i.e., good or bad) associated with the pth input vector; 
OjP is the output of the jth input unit when the pth in­
put is clamped to the input layer; wlj is the strength of 
the connection between the jth input unit and the out­
put unit; ni is the number of input nodes; and np is the 
number of training input/target pairs. (For more details 
of this process , see the article by Sigillito elsewhere in 
this issue.) 

Equation 1 is similar to that which is minimized when 
a linear regression is applied to the training set, except 
that the regression coefficients are now found by an iter­
ative steepest-descent method (i.e., back propagation) 
rather than by inverting a correlation matrix. 

Figure 2 shows learning curves on the training set for 
two perceptrons and for a typical MLFN with five hid­
den nodes. The perceptrons differed only in that one 
used a linear transformation for its output function 
(identity function) and the other used the sigmoid trans-
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Figure 2. Network learning curves for the linear perceptron 
(black), the nonlinear perceptron (blue), and a typical MLFN 
with five hidden nodes (red). 

formation (1/1 + e- X
) for its output function. All 

MLFN'S used this sigmoid transformation. The learning 
curves began at values of 38070 to 58% correct, and all 
moved to above 80% correct after 25 presentations of 
the training set. All nearly reached their final values by 
100 presentations. The black curve in Figure 2 represents 
the linear perceptron, which eventually converged to 
87.5% correct. The blue line represents the nonlinear per­
ceptron, which eventually converged to 94.5% correct. 
The red curve represents an MLFN with five hidden 
nodes; it, and the other MLFN'S used in this study, even­
tually converged to 99.5% to 100% correct. It is clear 
that the MLFN'S are superior to the perceptrons in learn­
ing the classification task. 

The superiority of the MLFN'S over the two percep­
trons becomes more apparent when they are each test­
ed against data not in the training set. This new set, the 
testing set, was composed of 150 returns, of which 123 
were good and 27 were bad. (Bad returns were much 
less common in the data than were good returns.) The 
linear perceptron was able to correctly classify 90.67% 
from the testing set; the nonlinear perceptron, 92%. The 
MLFN'S averaged greater than 96% correct, with a range 
from 94% to 98%. (Figure 3 shows the worst case; the 
best case; the average over 10 different starting networks 
for 3, 5, 8, 10, and 15 hidden-node MLFN'S; and a 
I-standard-deviation band around the average.) 

Further analysis showed clear differences in sensitivi­
ty and specificity of the various network types. Sensi­
tivity is a measure of accurate detection of a good return 
when a good return was in fact present. The sensitivity 
of the linear perceptron was 95.9% (it correctly classi­
fied 118 of 123 good returns); that for the nonlinear per­
ceptron was 98.4% (121 of 123); and that for the best 
MLFN'S was 100%. Specificity is a measure of how well 
the networks correctly classify bad returns. The speci­
ficity of the linear perceptron was only 66.7% (it cor­
rectly classified 18 of 27 bad returns); that for the 
nonlinear perceptron was 63 % (17 of 27); and that for 
the best MLFN'S was 88.9% (24 of 27). The worst MLFN'S 
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Figure 3. Percent correct classification of MLFN'S on the 
training set as a function of the number of hidden nodes. The 
middle curve is an average of results for 10 MLFN 'S with 
different initial weights. The dashed lines on either side of 
the average are 1-standard-deviation bands. The dotted curves 
indicate the best and worst performance of the ten networks 
for 3, 5, 8, 10, and 15 hidden nodes. 
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Figure 4. Sensitivity versus false alarm rate for a linear per­
ceptron. False alarm rate is the probability of predicting a 
good return when a good return is not present. Sensitivity 
is the probability of predicting a good return when a good 
return is present. 

had a sensitivity of 1000/0 and a specificity of 66.7%. 
Thus, the worst MLFN did as well as the best perceptron. 

The results are captured in the receiver operating 
characteristics (ROC) curves of Figures 4 and 5. Each 
curve shows the hit rate (sensitivity) as a function of the 
false alarm rate (l minus the specificity). The ROC curve 
of the MLFN is far closer to that of a perfect discrimi­
nator than is that of the perceptron. This conclusion is 
elaborated in Figures 6 and 7, in which sensitivity, speci­
ficity, proportion of variance accounted for, and per­
cent correct are shown as functions of the good/bad 
threshold * for both the linear perceptron and the best 
MLFN. For a threshold of 0.5, the MLFN accounted for 
83.8% of the output variance; the percept ron account­
ed for only 49.1%. 

*Inputs that produce outputs less than the threshold are classified as 
bad; those that produce outputs that are equal to or exceed the threshold 
are classified as good. 
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Figure 5. Sensitivity versus false alarm rate for the best 
MLFN . False alarm rate is the probability of predicting a good 
return when a good return is not present. Sensitivity is the 
probability of predicting a good return when a good return 
is present. 
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Figure 6. Sensitivity (green), specificity (blue), proportion of 
all cases correct (red), and proportion of variance in output 
accounted for by the network (black) as functions of the 
good/bad threshold. These results are for the linear per­
ceptron. 
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Figure 7. Sensitivity (green), specificity (blue), proportion of 
all cases correct (red), and proportion of variance in output 
accounted for by the network (black) as functions of the 
good/bad threshold. These results are for the best MLFN . 
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CONCLUSIONS 

We have demonstrated that classification of radar 

returns is a task for which neural networks are very well 

suited. Further, neural networks with hidden nodes sub­

stantially outperformed those without hidden nodes. The 

improvement in performance extended to both sensitiv­

ity and specificity measures; MLFN'S outperformed per­

ceptrons, and perceptrons performed as well as a 

multiple linear regression analysis in their ability to dis­

criminate between good and bad returns. 

The original goal of our research was to demonstrate 

that neural networks would operate at a level of perfor­

mance high enough to be a real aid in the automation 

of the classification task. That goal was clearly met. It 
would, however, be useful to ascertain whether a neu­

ral network could also be used to determine the cause 

of a bad return (e.g., absence of identifiable structure, 

incoherent scattering, absorption of radar pulses, inter­

ference from the transmitters). On the basis of our ex­

perience we believe that MLFN'S should be useful in such 

an error analysis. 
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