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ASSOCIATIVE MEMORIES AND FEEDFORWARD 
NETWORKS: A SYNOPSIS OF NEURAL-NETWORK 
RESEARCH AT THE MILTON S. EISENHOWER 
RESEARCH CENTER 

Neural networks have been of interest to the Mathematics and Information Science Group of the Mil­
ton S. Eisenhower Research Center for a number of years. Early efforts, which concentrated on associa­
tive memories and feedforward networks, are summarized as well as current and future work. 

INTRODUCTION 
Unlike the traditional approach to artificial intelligence 

in which symbolic processing is the dominant mecha­
nism and little attention is paid to the underlying hard­
ware, neural networks do not distinguish between 
hardware and software. The program and data are in­
extricably intertwined in a fashion that simulates in some 
respects the operation of a living brain. In particular, 
neural networks "do their computing" by the activation 
and inhibition of nodes that are somewhat similar to the 
presumed operation of neurons, or nerve cells. One 
might say that neural networks are an attempt to use 
the brain, rather than the computer, as a model for the 
mind. 

One should not make too much of the analogy with 
biological systems, however. Rather, one should think 
of neural networks as inspired by neurophysiology and 
not as highly accurate simulations of the operation of 
a living system. Physiological plausibility is the key. Far 
too little is known of the detailed neurophysiology of 
individual neurons, let alone of their interconnections, 
to make any model of such a complex system much bet­
ter than a good guess. Just as differences are found both 
within and between brains as well as both within and 
across species, differences are found, some subtle and 
some gross, between the many versions of neural net­
works. In addition, researchers vary in their emphasis 
.of the importance of fidelity to biological systems: a psy­
chologist or biologist is likely to be more concerned with 
physiological plausibility than a researcher using neural 
networks for an application. 

Thus, no single model characterizes all neural net­
works, although some important classifications can be 
made. One involves the type of learning, namely, su­
pervised or unsupervised . Hopfield networks and feed­
forward networks are examples of supervised learning, 
and competitive learning networks are examples of un­
supervised learning. Another useful classification is func­
tionality. Hopfield networks act as associative memories 
recalling exemplars (i.e., learned patterns) upon presen­
tation of noisy or incomplete versions of the exemplars; 

254 

competitive learning networks can be used to detect in­
trastimulus correlations in the input without supervision; 
and feed forward networks learn to classify groups of in­
put vectors with output (or target) vectors. We are in­
terested in all three of these networks, but our research 
has concentrated on Hopfield-type and feedforward 
networks. 

A good overview and bibliography of current neural­
network technology, with some representative applica­
tions in the APL Fleet Systems Department, can be found 
in Ref. 1. The APL Space Department is developing 
recurrent, Hopfield-like networks and hardware im­
plementations of them, as discussed in Ref. 2, and a scal­
able architecture for the implementation of a hetero­
associative .memory that resulted from this work is 
described in Ref. 3. 

ASSOCIATIVE MEMORIES 

Hopfield Networks 
In a Hopfield network, the neurons (computing ele­

ments, nodes, or units) are simple bistable elements that 
can output either + 1 (on) or -1 (off). The network is 
fully connected; that is, each neuron is connected to ev­
ery other neuron except itself. Every neuron accepts in­
put from its environment and passes output back to its 
environment. The equations in Figure 1 define a Hop­
field network. 

In its simplest use, a Hopfield network acts as an as­
sociative memory. When a noisy version of a stored ex­
emplar is imposed or clamped to its initial state, it should 
eventually stabilize to the perfect exemplar. Hopfield 4 

showed that these networks can also be used to solve 
optimization problems, but this use will not be discussed 
here. 

Hopfield networks have remarkable recall capabilities 
but are characterized by low storage capacities. Suppose 
that the n-dimensional exemplars e I, e2

, • • • ,eP are to 
be stored in a Hopfield network. Now suppose the net­
work is presented one of the exemplars (uncorrupted), 
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• Each neuron is connected to every other neuron, but no self­
connections occur. 

• The activity of the ith neuron is a; = Ej W;jXj, where Xj is the 
output of the jth neuron (w;j is defined below). 

• The output of each neuron is X; = Fh (a;), where Fh is the 
hard limiter: 

[
+1 

-1 

a > 0 
a $ 0 

• The network connectivity is given by the weight matrix W = 
(w;j) of connection strengths. The weight matrix W is deter­
mined by an outer-product learning rule: Let e 1, e2 , ..• ,eP 

be p exemplars (or patterns) that the network is to learn. Each 
exemplar has n components, so the jth exemplar is ej = (e{, 
e~, ... , e~). Exemplar components can only take on the 
values ± 1. Then the weight matrix is given by the outer­
product sum 

P 

W = E (eS)TeS - pin, 
s=1 

Figure 1. A Hopfield network and defining equations. 

e'. Then, for synchronous updating, it is easy to show 
by using the equation that defines the weights (see Fig, 
1) that the activity ai of the ith neuron is 

p n 

ai = (n - 1 )ej + E ef E eJe; , 
s=1 j=1 
s;f!, j;f!i 

(1) 

where Si is the signal and Ni is the noise. 
The output of the neuron is obtained by applying the 

hard-limiter function, Fh(x). Thus, if sign (Ni ) = sign 
(Si), or if ISil > INil, Fh(aJ = ej; that is, the net­
work recalls the ith component of e'. When the net­
work is presented with an exemplar, perfect recall on 
the first iteration is desired. If the exemplars are stochas­
tically independent, then the noise term will have a mean 
of zero and a variance a2 of (n - 1) (p - 1), and, for 
large nand p, will follow a normal probability distribu­
tion. For this distribution, 99.50/0 of the probability lies 
within 3 standard deviations of the mean. To ensure that 
the signal term Si satisfies I Si I ;::: I Ni I with a probabil­
ity of 0.995, 

I Si I = (n - 1) ;::: 3 -J (n - 1 )(p - 1) (2) 
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where T denotes vector transpose and In is the n x n iden· 
tity matrix. The effect of the term pin is to zero all self­
connections. 

• Recall can be either synchronous or asynchronous. 

Synchronous dynamics: 

Let e = (e1, e2 , ••• ,en) denote a noisy exemplar. 

Then the initial output (at iteration 0) of each neuron is 

X;(O) = e;, i = 1, 2, ... ,no 

Then iterate until convergence: 

i = 1,2, ... ,n, 

where t is the iteration number. 

Asynchronous dynamics: 

The x;(O) are defined as for synchronous dynamics. Then 
iterate until convergence. Let m be an integer chosen at ran· 
dom from the set [1, 2, ... ,n). Then 

and 

j = 1,2, ... ,n; j .,t. m. 

Thus, 

n - 1 ;::: 9(p - 1) , (3) 

so that for a high probability of correct recall, the num­
ber of neurons must be about 9 times the number of 
stored patterns; or, conversely, the number of stored pat­
terns must be no more than 11 % of the number of 
neurons. 

Now, consider a noisy version, e', of the exemplar 
e'. Suppose e' differs from e' in d elements. Then the 
expression for the activity ai becomes 

(4) 

where p = din, that is, the fraction of elements of e' 
that differs from e'. This equation is an approximation; 
the exact expression depends on whether or not ej 
agrees with or differs from ej. Thus, if e' differs from 
e' in 25% of its elements, then 

(5) 

and a resonably high probability still exists that the sig­
nal will exceed the noise. 
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Sigillito 

The neuron-to-stored-pattern ratio of 9 derived in 
Equation 3 is in one sense too pessimistic, but in anoth­
er sense it is more optimistic than is warranted. It is too 
pessimistic in that recall of the exemplar was required 
after only one iteration and with a very high probabili­
ty. But it is too optimistic in that the exemplars were 
considered to be stochastically independent vectors and 
the vector input to the network was one of the exem­
plars. Exemplars of practical interest, for example, faces, 
numerals, and alphabetic characters, could not be ex­
pected to be stochastically independent and, in fact, are 
highly correlated. In addition, the network would nor­
mally have to deal with noisy versions of the exemplars. 

For stochastically independent vectors, analysis indi­
cates that Hopfield networks have good recall capaci­
ties as long as p :5 0.14n . When the exemplars are not 
stochastically independent, the analysis becomes intrac­
table, and one must resort to experiment. Consider a 
network that is taught to recognize subsets of the 10 
digits from 0 to 9, which are represented as binary vec­
tors of length 120. They are depicted in Figure 2 as 12 
x 10 arrays so that their structure is easily discernible. 
A black square represents + 1 and a white square rep­
resents - 1 in the vector representation. 

A Hopfield network was taught the fjrst five digits 
(0 to 4), and its recall performance was measured as a 
function of noise in the exemplar. Figure 3 illustrates 
a typical recall sequence starting with a noisy version of 

Figure 2. The 10 exemplars used to 
train the Hopfield networks. 

Figure 3. Recall of the exemplar "2" 
from a noisy version; asynchronous 
dynamiCS were used. 
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the exemplar "2." The noise parameter r is the fraction 
of bits in error; it was varied from 0 to 0.40 in incre­
ments of 0.05. For each of the five exemplars, 10 noisy 
versions for each value of r were used, and the perfor­
mance on recall was averaged over the 10 trials. The 
results are shown as the black line in Figure 4. The 
recalled vector was considered correct if it differed by 
no more than 5 of the 120 bits of the corresponding ex­
emplars. Good recall performance was found up to r 
= 0.25; thereafter, recall performance degraded rapid­
ly. This result is not surprising because 250,10 noise results 
in a significant degradation of the exemplar. 

The network was then taught the sixth exemplar, that 
is, the digit "5," and the experiment was repeated. Re­
call performance was greatly degraded (red line of Fig. 
4). Even without noise, the network could only recall 
830,10 of the exemplars correctly. This result was due 
largely to problems with the digit "2"; the high degree 
of correlation between the "2" and the "5" prevented 
the network from ever correctly recalling the "2," even 
with r = O. As noise was added, performance degraded 
rapidly. Clearly, for these exemplars, the effective ca­
pacity of the network is about 5, which is only 4.2% 
of the number of neurons. Although this number is 
somewhat dependent on the exemplars (e.g., a network 
trained on six exemplars not including both the "2" and 
the "5" probably would have perfonned better), this val­
ue confirms the results of many experiments; that is, for 
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Figure 4. Average recall error as a function of average input 
error for a Hopfield network with 120 neurons. Two cases are 
illustrated: five learned exemplars (black) and six learned ex· 
emplars (red). 

correlated exemplars, good recall performance requires 
that p not exceed 6% to 70/0 of the number of neurons. 

An Optimal Hopfield Network 

The storage capacity of a Hopfield network can be 
greatly increased if the learning rule of Figure 1 is 
replaced by a learning rule that minimizes the squared 
error E: 

p n n 

E E E (ef - E wlke%)2 . 
2 5=1/=1 k=1 

(6) 

The equations that govern these networks are given in 
Figure 5. 

Experiments were conducted with the 10 digits of Fig­
ure 2. All 10 digits were used as exemplars to be learned 
by the network. Recall performance of the network was 
tested as discussed in the preceding paragraphs. The 
results, again averaged over 10 different noisy exemplars 
for each r value, are shown in Figure 6. For compari­
son, the recall performance of a standard Hopfield net­
work is included in the figure. The vastly improved 
performance of the optimal Hopfield network over that 
of the standard Hopfield network is evident. 

The fault tolerance of the optimal Hopfield network 
is shown in Figure 7. In the figure, the recall performance 
of the network is given as synaptic weights are cut (i.e., 
set to zero). In this experiment the exemplars were not 
degraded. The results were obtained by randomly set­
ting to zero 100 x r% of the weights as r was varied 
from 0 to 0.80 in increments of 0.05. It is rather remark­
able that the network could recall perfectly the 10 ex­
emplars with up to 60% of the weights set to zero. 
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Associative Memories and Feed/orward Networks 

• The learning rule for the optimal Hopfield network is based 
on minimizing the squared error E: 

• Differentiating E with respect to W;j results in the following 
iterative learning rule: 

Initially, set W;j to zero. 

For s = 1, 2, ... ,p, iterate until convergence: 

ASW;j = 1/(ef - Ek w ;kef)et 

i = 1, 2, ... ,n; i = 1, 2, ... ,no 

The learning rate parameter, 1/, is needed for numerical sta­
bility. A typical value of 1/ is 11n. 

Set the self-connection weights to zero: 

Wi; = 0, i = 1, 2, .. . ,no 

• The recall process can be either synchronous or asyn­
chronous. In either case the equations that describe the pro­
cess are identical to those given in Figure 1 for traditional 
Hopfield networks. 

Figure 5. The learning equations for an optimal Hopfield 
network. 
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Figure 6. Average recall error as a function of average input 
error for an optimal Hopfield network (black) and for a traditional 
Hopfield network (red). Both networks have 120 neurons, and 
both learned the 10 exemplars of Figure 2. 

BIDIRECTIONAL ASSOCIATIVE MEMORIES 
The bidirectional associative memory (BAM) in­

troduced by Kosk0 5 is the simplest form of a multilayer 
neural network. It is a two-layer neural network with 
bidirectional connections between the two layers; that 

257 



Sigillito 

40.-----.-----~-----.-----.----~ 

~ 
a. 

CI) E 30 
:0 

Q) 
x 

(5 
Q) 

Ci3 
Ci3 c.. 
.0-0 
E Q) 20 ::\= 
C ctI 
Q) ~ 
0> .... 
ctI>. 

~n 
~ ~ 10 

0 
Co) 

.~ 

OL-----~----~---=~ ____ ~ ____ ~ 
o 20 40 60 80 100 

Broken weights (%) 

Figure 7. Average number of bits incorrectly recalled per ex· 
emplar as a function of the percentage of weights broken (set 
to zero) in a 120-neuron optimal Hopfield network. The exemplars 
learned by the network are those of Figure 2. 

is, infonnation flows forward and backward through the 
same connections. The BAM behaves as a heteroassocia­
tive memory. Each neuron in a BAM receives inputs from 
all neurons in the other layer but none from neurons 
in its own layer, as shown in Figure 8. Thus, for the 
same number of neurons, it has about one-fourth the 
connections of a Hopfield network. 

Figure 9 shows the recall error in g as a function of 
the error rate in e obtained by numerical simulation. The 
simulations were done by using synchronous dynamics 
for a network with 100 neurons in the input layer and 
100 neurons in the output layer. The number of stored 
pairs of vectors was 10, and the results shown in Figure 
9 are the average recall errors for samples of 400 ran­
dom vectors. In the figure, the recall error is shown af­
ter the first forward flow of information and after the 
network has come to a steady state. 

Simulations were also carried out to study the per­
formance of a BAM for various values of p, the num­
ber of stored pairs of vectors. Figure 10 shows the recall 
error of a BAM with 100 input and 100 output neurons 
versus p for three levels of input noise. The errors are 
the average values obtained from samples of 400 ran­
dom vectors. A good recall is defined as one that has 
an error not larger than 1.00/0. For the case described 
in Figure 10, a good recall is obtained for p :5 10. 

OPTIMAL ASSOCIATIVE MEMORY 
Although the BAM has a larger memory capacity than 

a Hopfield network per number of connections, it still 
has relatively low memory capacity and small basins of 
attraction for the stored patterns. We have investigated 
two-layer networks in which the single integer-element 
BAM weight matrix is replaced by a pair of continuous­
element matrices that give the best mapping, in the least­
squares sense, for both the forward and backward direc­
tions. We refer to this network as an optimal associa­
tive memory (OAM) (Fig. 11). The OAM is a two-layer 
network that, on the basis of experiments, has a larger 
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• Every node in the bottom layer is connected to every node 
in the top layer, and, similarly, every node in the top layer 
is connected to every node in the bottom layer. No intralay­
er connections exist. 

• The activity of the ith unit is a j = Ej WjjXj , where Xj is the 
output of the ith unit. 

• The output of each unit is Xj = F h (a j ), where Fh is the hard 
limiter: 

[
+1 

-1 

a > 0 
a :5 0 

• The learning rule that determines the connection strength 
matrix, or weight matrix W = (Wjj ), is the outer-product 
learning rule: Let (e1, g ' ), (e2, g 2), . .. ,(e P, gP) be p pairs of 
exemplars or patterns that the network is to learn to associ­
ate. The e-type exemplars have n components, and the g-type 
exemplars have m components. All components are bipolar, 
that is, either + 1 or - 1. Then, the n x m weight matrix is 
given by the outer-products sum 

P 
W = E (eS)TgS , 

s=' 

where T denotes vector transpose. 

• As is the case with Hopfield networks, the recall process can 
be either synchronous or asynchronous. We have used only 
synchronous recall in our work. Let e = (e" e2, .. . ,en) and 
9 = (9" 92, ... ,9m) denote noisy exemplars of the e- and 
g-types, respectively. The initial output of the network is 

x/e) (0) = ej, i = 1, 2, ... ,n, 

X/ g) (0) = 9j, i = 1, 2, . .. ,m. 

Then iterate until convergence: 

i = 1,2, ... ,n, 

and 

i = 1, 2, ... ,m. 

Figure 8. A BAM and defining equations. 
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Figure 9. Average recall error as a function of average input 
error for a BAM with 100 input and 100 output neurons after the 
first forward flow (red) and at steady state (black). The number 
of stored pairs of vectors is 10. The output error is the average 
over 400 random vectors. 
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Figure 10. Average recall error for a BAM as a function of the 
number of stored vectors for the following input noise levels 
(%): 0 (black), 10 (blue), and 20 (red). The BAM has 100 input and 
100 output neurons, and the results are averages for samples 
of 400 random vectors. 

memory capacity and larger radii of attraction than a 
BAM with the same number of neurons in each layer, but 
twice as many connections. 

We performed numerical simulations of the OAM to 
demonstrate its memory capacity and to compare it with 
that of the BAM. The initial values of the connection ma­
trices were all set to zero and were then modified by us­
ing the learning rules of Figure 11. 

Pairs of prototype vectors (eS, gS) were presented to 
the network until the connection matrices F and B con­
verged. Results for a network of 50 input neurons and 
50 output neurons are shown in Figure 12 and compared 
with those of the BAM. The number of iterations (presen­
tations of the prototype patterns) needed for convergence 
of the OAM matrices ranged from a few dozen to a few 
hundred (the number usually increases with the number 
of stored pairs of vectors). 

The BAM has good recall (for zero-noise input vectors) 
if the number of stored pairs of vectors is six or fewer. 
The OAM, on the other hand, has good recall for up to 
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• The forward and backward connection matrices (F and B) of 
the OAM are not transpose pairs, as is the case with a BAM; 

therefore, the number of connections in an OAM is twice that 
of a BAM with the same number of neurons in the two lay­
ers. As in the BAM, each neuron in an OAM receives inputs 
from all neurons in the other layer but none from neurons 
in its own layer. The operation of an OAM is identical to that 
of a BAM, except for the learning rule. As with the BAM, let 
(e 1, g1), (e2, g2), ... ,(eP, gP) be p association pairs of exem­
plars the OAM is to learn . 

• Learning is based on minimizing the two squared errors: 

E, = V2 1:s 1:j (gl - Ek bjk gf)2, 

Eg = V2 Es Ej (el - Ek fjkeZ> 2. 

• The connection matrix F is obtained by letting the network 
connections, fij , evolve along trajectories that are opposite 
in direction to the gradient, aEglafij , of Eg. The learning rule 
that results is 

Here, t:.sfij is the change to be made in fij following a 
presentation of the input vector eS

, gt is the target output 
for neuron i of the output layer, and fit is the actual input 
to this neuron (i.e., flf = Ej fijel). 

• In matrix notation this can be rewritten as 

t:.SF = 'T'Jg (gS _ gS)eS 

• The same arguments apply to the backward 9 - e flow. The 
learning rule for the backward connection matrix is 

Figure 11. An OAM and defining equations. 

about 50 stored pairs (not shown in Figure 12). In other 
words, the memory capacity of the OAM is about 8 times 
larger than that of the BAM for the simulated network. 
For noisy patterns, the memory capacity of the OAM is 
about 3 times that of the BAM, as can be seen in Figure 
12. This research is covered in greater detail by Schneider 
and Sigillito. 6 

FEEDFORWARD NETWORKS 

Much of our current research is concerned with feed­
forward networks that use the back-propagation learn­
ing algorithm. Feedforward networks are composed of 
an input layer, one or more intermediate or hidden lay-
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Figure 12. Average output recall error as a function of the num· 
ber of stored pairs of vectors for a BAM (dashed lines) and OAM 
(solid lines) with 50 neurons in the input layer and 50 neurons 
in the output layer. The following input noise levels were used 
(%): 0 (black), 10 (blue), and 20 (red). The results were obtained 
by using random samples of 200 vectors. For the OAM, the aver· 
age recall error was zero at 0% input noise for the number of 
stored pairs of vectors shown. 

ers, and an output layer. All units in a given layer are 
connected to all units in the layer above. No other con­
nections exist (Fig. 13). (Many other connection topol­
ogies could be used. For example, all nodes at a given 
layer could be connected to all nodes at all higher lev­
els. Neither these fully connected networks nor other 
connection topologies will be considered here.) Input 
units do not perform computations but serve only to dis­
tribute the input to the computing units (neurons) in the 
hidden layer. Units in the hidden layer are not connect­
ed to the outside world, but after processing their in­
puts, they pass the results to the neurons in the output 
layer. 

In addition to the feed forward process just described, 
a back-propagation learning process is used: errors in 
the output are propagated backward from the output 
layer to the hidden layer and from the hidden layer to 
the input layer. In this learning process, the connection 
weights are modified so as to minimize the total error 
in the output of the network. 

Given a set I of input vectors, a set T of target vec­
tors, and an unknown map M:I-T, neural networks 
are used to learn an approximation Ma of M. Thus, 
suppose Is = (II, 12, ... ,JP) is a subset of I, and Ts 
= (T I

, T2, ... ,TP) is a subset of T. Then Ma is the 
mapping that results by teaching the network the p as­
sociations: Ii - T i, i = 1,2, .. . ,po The pairs (I i, T i) 
for i = 1,2, ... ,p are called the training pairs. During 
the learning phase, the network adaptively changes its 
synaptic weights to effect the map Ma and builds an in­
ternal representation of the mapping. For the network 
to learn arbitrary mappings, the use of hidden layers is 
essential. 7 

In one effort, feedforward networks were taught to 
perform a discrimination task that involved radar returns 
from the ionosphere. We did this work in collaboration 
with the APL Space Physics Group. The work is dis-
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cussed in the article by Sigillito et al. elsewhere in this 
issue. 

Another project that was recently completed involved 
the use of a feed forward network to predict the onset 
of diabetes mellitus from clinical evidence. 8 This re­
search used the networks to classify female subjects into 
two classes (high or low probability of developing dia­
betes within 5 years) on the basis of eight clinical varia­
bles: number of times pregnant, plasma glucose 
concentration after 2 h in an oral glucose tolerance test, 
diastolic blood pressure, triceps skin-fold thickness, 2-h 
serum insulin, body mass index, age, and diabetes pedi­
gree function. The diabetes pedigree function was de­
veloped to provide a history of diabetes mellitus in 
relatives and the genetic relationship of those relatives 
to the subject. 9 It provides a measure of the expected 
genetic influence of affected and unaffected relatives on 
the subject's eventual diabetes risk. The network was 
trained on data from 576 subjects and was tested on 192 
different subjects from the same population. Perfor­
mance on the testing set reached a high of 84% correct. 
Multiple linear regression techniques that are the stan­
dard for epidemiological studies such as this performed 
at the 760/0 level. 

Several research projects are being pursued. One is 
motivated by Georgopoulos et al.1O at the JHU School 
of Medicine. They have developed a model of the mo­
tor cortex that simulates a monkey making a mental ro­
tation of an object in space before performing a learned 
sensorimotor task. The model is based on single-cell 
recordings from the motor cortex, and the analysis is 
primarily statistical in nature. We developed a model that 
makes many of the same predictions, but it is based on 
the output of a feedforward neural network. We are 
working with Georgopoulos and his colleagues to de­
velop a model to simulate projections from the motor 
cortex to the motor neurons themselves. 

Another project, inspired by the work of Qian and 
Sejnowski, II is concerned with using neural networks to 
predict the secondary structure of proteins on the basis 
of their primary amino acid structure. Qian and 
Sejnowski II produced results that were better than 
those obtained by using traditional methods, and later 
we, in collaboration with Harry R. Goldberg of the 
Department of Biophysics at the JHU School of Medi­
cine, obtained slightly improved results. Nevertheless, 
they were not good enough for practical use. We are 
exploring the use of recurrent networks to improve this 
work. 

Future work includes both applied and basic research. 
One applied project will be concerned with the use of 
neural networks to perform process control tasks in a 
manufacturing environment, and a second will be con­
cerned with the use of neural networks to perform in­
spection tasks. Both of these projects are in the planning 
stages. 

In basic research, we are investigating the properties 
of a particular class of recurrent networks that are can­
didates for modeling the dynamic development of hu­
man and animal cognitive maps. Interpretation of our 
early results suggests that our network exhibits behavior 
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• Let the vector I = (/" 12 , ••• ,In. ) denote input to the net­
work. The corresponding output 'that the network is to learn 
will be denoted by the vector T = (T" T2 , .•• ,Tn ). Here, nj 
is the number of input nodes and no is the num'ber of out­
put nodes. 

• The output , ofO) , of the ith input node is simply its input, 
that is, ofO) = 'i' 

• The activity of the jth node in the hidden layer (layer 1) is 

Figure 13_ A feedforward network and the defining equations. 

consistent with habit formation, goal selection, and sen­
sitivity to mismatches between an anticipated and actu­
al environmental event, even though it was not explicitly 
trained to show any of these behavioral traits. These 
results are especially promising because they support the 
possibility of developing cognitive control systems within 
a neural-network environment. 
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and the output of this node is 

op) = f(apl ), 

where 

f(x) = 1/(1 + e - X). 

• Similar equations apply to the output layer (layer 2): 

OJ2) = f(apl ). 

Here, the sum is over the nh hidden nodes. 

• The learning equations result from minimizing the squared 
error by using standard steepest-descent techniques: 

E = V2 Ej (Tj - Opl)2, 

where the sum is over the no output nodes. These equa­
tions are 

where 

OPl = (Tj - Opl )Opl (1 - OPl ). 

The constant TJ < 1 is a learning rate parameter, and the last 
term, ca1wj~2)(t) (a is a positive constant), is a momentum 
term that is used to suppress high-frequency fluctuations in 
the weights during learning. Similar equations govern the 
change to wY) : 

wjf ' )(t + 1) = W) ' l (t) + TJOPl O/Ol + a~wjf') (t), 

where 
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