
JAMES G. PALMER

COMPUTER SYSTEM ARCHITECTURES
FOR FUTURE NAVY TACTICAL SYSTEMS

The Navy relies on real-time embedded computers for the operation of radar, missile, and decision
support systems. Dramatic advances in computer technology offer possible solutions to the unique prob­
lems of future tactical systems. Candidate architectures based on the technology options are examined
and related to selected Navy projects.

INTRODUCTION

Since the introduction of computers as an integral part
of weapons systems, the performance of many Navy sys­
tems has depended on the processing capacities of their
embedded computers. Because of constraints on equip­
ment space, weight, and cost, many Navy embedded sys­
tems have been tailored to initial requirements, only to
find that long-term growth required costly redesign and
replacement of computer equipment. Computer technol­
ogy has progressed rapidly in recent years and consider­
ation of new Navy embedded computer system architec­
tures is warranted. Pressures are growing for substantially
increased processing power to solve critical problems in
real time, such as engagement-level sensor integration for
the NATO Anti-Air Warfare (AAW) System, the Coopera­
tive Engagement Program for the Battle Group AA w
Coordination Program, and numerous others.

The military shipboard environment also poses a ma­
jor challenge to the design of future high-performance
computer equipment. The severe shock, vibration, tem­
perature, and humidity that can occur during battle would
rapidly disable most commercial computers; military
equipment is built to environmental specifications to over­
come these problems. No equipment will survive local­
ized battle damage or a serious fire, however, and most
ships are not designed with sufficient redundancy to main­
tain system operation when local damage occurs to their
computer systems. The redundancy and flexible recon­
figllrability necessary to achieve survivability could now
be provided by improved data distribution techniques,
redundant processors, and distributed software tech­
niques.

Planned upgrades to the Navy's standard shipboard
computers offer substantial performance improvement
and compatibility with existing software (although con­
sideration of the standard computers in this article relates
primarily to the current versions of these computers).
Also, the Next Generation Computer Resources Project
is a program to standardize several computer system tech­
nologies for fleet use. Efforts toward an open architec­
ture for a backplane bus (i.e., local to a single chassis)
and local area network (LAN) are important to future
Navy systems. Similar technologies are being put to im­
mediate use by experimental and prototype development

226

projects such as the Automatic Identification System, the
Cooperative Engagement Program, and the NATO AA W

System.
The study reported here identifies some of the options

in computer system technology and associated issues for
Navy systems and focuses on the integration of promis­
ing technologies into computer system architectures that
are appropriate for meeting future needs of the embed­
ded computer systems. The study was originally oriented
to requirements for the NATO AAW System; the need for
highly flexible, adaptable architectures to accommodate
multinational needs applies to a more general set of Navy
problems, however.

GENERAL COMPUTER SYSTEM
REQUIREMENTS AND DESIGN GOALS

Requirements for Navy embedded computer systems
include system performance, physical constraints, and
the need for flexibility in applications to different com­
bat system configurations. The specific system require­
ments for any application are typically defined in a
corresponding system specification. The following are
generally important for any embedded system, however.

System Response Time. Requirements for system re­
sponse time must be met, and certain mission-critical tim­
ing requirements must be satisfied under all conditions,
regardless of other processing in progress. Response time
requirements drive the specifications for computer pro­
cessing power, interface throughput, and appropriate
control to support quick response without operator in­
tervention. Performance evaluation must be made on
the basis of threat scenarios that exercise the full range
of required response times and capacities.

Operational Availability/Survivability. The mission­
critical nature of many embedded applications means that
the computer system must be able to recover automati­
cally from the failure of any element or of any intercon­
nection of the computer system. The computer system.
design should provide for the maximum feasible avail­
ability and survivability. To offer survivability from lo­
cal damage, it is essential that multiple processors and
associated interconnections be physically distributed and
have alternate interconnection paths.

Johns Hopkins APL Technical Digest, Volume 10, Number 3 (1989)

Space and Weight. Designs must accommodate
deployment on ships that have small space and weight
margins or in even tighter constraints, such as on air­
craft or placement in existing shipboard enclosures.

Design Goals. In addition to the above critical require­
ments, the following system-level design constraints are
often imposed on the computer system:

1. Navy directives require that all future applications
software be written in Ada, the DoD standard program­
ming language.

2. The design should be adaptable to system varia­
tions and should maximize reuse of software among
these variations.

3. The design must provide for substantial growth
(e.g., a factor of at least two to allow for enhancements
during development and major additions through the
system life cycle).

4. The design must support flexible control without
requiring a unique program code for each tactical sit­
uation.

SOFTWARE ARCHITECTURE
CONSIDERATIONS

In developing a computer system architecture, the re­
quirements and design constraints of the software im­
pose critical, but often overlooked, requirements on the
computer equipment architecture. A few of the many
software ramifications are presented in this section.

Programming Language and Run Time
A system's programming language can have a major

impact on run-time performance, program development
cost, reuse of existing software, and maintainability over
the system's life cycle. Although the use of assembly lan­
guage can often give the best run-time performance, the
development and maintenance processes would be so in­
efficient that assembly language would be used only as
a last resort for small portions of programs that cannot
be implemented otherwise. Very few high-order languages
provide adequate code execution efficiency for real-time
applications. For the Navy standard computers, the Navy­
unique CMS-2 language has been used for real-time pro­
grams. It is the Navy's intent (and a DoD requirement)
that Ada fulfill real-time computing needs for future
mission-critical systems. The Ada Language SystemlNavy
is now available for the Navy's ANIUYK-43 and ANIUYK-44

computers, with a multiprocessing version due in 1990.
Assessment of the run-time efficiency of UYK-43 and
UYK-44 code is in progress. For certain minicomputers and
microcomputers, rapid progress in the implementation of
various Ada compilers has resulted in acceptable real-time
products for many applications. For very time-critical real­
time applications, some Ada run-time performance prob­
lems remain. Certain run-time features are optional or
are stated ambiguously in the Ada specification, which
hinders progress in achieving critical run-time goals. For
effective Navy use of Ada, the optional features must be
supported, and the conventions for the unspecified task­
ing characteristics should be defined consistently. Such

fohn s Hopkins APL Technical Digest, Volume 10, Number 3 (1989)

COMPUTER PROCESSING LOAD ANALYSIS

The required computer processing load is a primary fac­
tor in determining the computer system architecture for a
system. The processing load is the instruction execution rate
required by the computer system to perform all required
functions within specified system time constraints. It is dif­
ficult to determine accurately the required processing load
without implementing the required program in the target
language on the selected target computer system; however,
it becomes necessary to estimate processing requirements
at various stages of system development.

Processing load requirements of programs or subpro­
grams can be expressed in various ways, such as millions
of instructions per second (MIPS), floating-point operations
per second (FLOPS), or as a percentage of a known com­
puter CPU capability. Use of FLOPS is relevant for programs
that are primarily mathematical. Use of millions of instruc­
tions per second can be misleading because of variances in
machine instruction efficiencies and methods of instruction
time measurement. The percentage of processing load of
a specific CPU is a useful metric when comparing programs
targeted for the same computer and language, but conver­
sion of estimates to other target computers can introduce
inaccuracies.

For real-time programs, the averaging of required pro­
cessing over some time period (typically 1 s) may mask short­
term response requirements in the 1 to 10 ms range. Ac­
curate analysis therefore requires that the processing load
be examined over the critical time intervals of the target sys­
tem. Also, use of multiprocessor subsystems to handle a
common load via task sharing must account for the limita­
tions of load balancing that can practically be achieved.

On the basis of several existing and planned Navy tacti­
cal embedded systems (e.g., NATO AAW, Aegis 2000, and
Cooperative Engagement Capability), it appears that the pri­
mary need is for computer system capacity in the range of
5 to 50 million instructions per second. There is also a need
for fewer systems with computationally intensive applica­
tions to operate in the range of 50 to 200 million instruc­
tions per second, such as antisubmarine warfare sonar
processing and electronic warfare/electronic warfare sup­
port measures processing. Architectures in this study will
therefore concentrate on solutions that can be easily con­
figured for the range of 5 to 50 million instructions per sec­
ond, with possible incorporation of additional processing
capabilities to extend performance to the 200 million in­
structions per second range.

improvements are under consideration for revision to the
Ada standard.

System Adaptability
One of the architectural goals for many computer sys­

tems is to provide adaptability to subsystem variations
without major impact on the bulk of the computer hard­
ware or software. System-unique features that can be
processed in a "front-end" processor can avoid impact
on other software throughout the system. A design ap-

227

Palmer

proach that isolates the device-specific processing from
device-independent processing can often be used to
achieve maximum configuration adaptability. Figure 1
shows a software design that incorporates such layered
design concepts.

Prototype designs indicate that significant benefits ac­
crue to so-called loosely coupled systems, whereby the
processing of elements is primarily via message passing,
thus keeping the use of shared data to a minimum. Es­
tablishment of a controlled message dictionary to define
messages within and among systems then becomes an
effective means of management and process coordi­
nation.

Subprogram Partitioning
Clear partitioning of functional elements is an essen­

tial element of good system design; the same principle
applies to software. Although large programs in single
computers can be partitioned by design convention to
achieve functional separation and well-defmed interfaces,
partitions are rarely maintained consistently throughout
the life-cycle evolution of the program.

The use of separate processors within computer sys­
tems to create well-defined program partitions can sim­
plify the logical as well as the developmental and control
aspects of the system design. For very large systems (e.g.,
C 3 systems), there may be acquisition advantages to in­
crementally developing, testing, and deploying subsys­
tems versus one large development. Carrying this concept
too far, however, can result in fragmentation and inter­
facing inefficiency; therefore, optimal partitioning is a
critical aspect of the computer system architecture.

It is important that the design goals related to parti­
tioning be identified and followed consistently, allow­
ing exceptions only when merited. The following is a set
of processor partitioning guidelines:

1. Associate subprograms with clearly defined func­
tions, grouping one or more subprograms per processor.

Processing node

Application processes

Communication
system

independent
messages

Device-dependent
message Device-independent

message

Direct control

Other nodes

Device-dependent translators

LOW-level protocols

Interface hardware

Connected systems

Figure 1. Software layering concepts.

228

2. Minimize interprocessor interface loads and
response-time requirements; minimize shared data, and
design for routine message-passing interface versus high­
priority interrupts where possible.

3. Limit projected processing load per central process­
ing unit (CPU) to 50%; provide for adequate performance
and initial growth reserve.

4. Isolate device-dependent processing to separate
processors where feasible; simplify development and
maintenance of system variants.

5. Distribute local bus usage (where applicable) to ac­
commodate peak and average loads; provide for adequate
response time and growth.

ARCHITECTURE OPTIONS
Computer system architecture encompasses both equip­

ment and software aspects of computer system design.
The physical (equipment) aspects include the processor
technology to be used; the processor interconnection tech­
niques; and the configuration of selected computers, in­
terconnection equipment, and computer system
peripherals.

Computer Technology Options
Critical system requirements driving the selection of

Navy embedded computers are processing speed (instruc­
tions per second), response-time constraints, interface
characteristics, extensibility to meet growth needs, com­
patibility with the Ada language, commonality with other
systems, reliability, survivability, and cost.

For Navy ships, the Navy standard UYK-43 and UYK-44

computers provide rugged, reliable service; they are sup­
ported routinely in the Navy's logistics and maintenance
training programs. The UYK-43 is a 32-bit computer that
can be configured as a single or dual CPU multiproces­
sor to provide 2.25 or 4.5 million instructions per second,
respectively. I The UYK-44 is a smaller 16-bit minicom­
puter that is rated at approximately 0.9 million instruc­
tions per second. 2 Each computer also includes
fast-response, multiple-channel input/output capabilities.
Performance upgrades are in development for both the
UYK-43 and UYK-44, which will increase the useful life of
these computers. Validated Ada compilers for the UYK-43

and UYK-44 are now available for general use.
The widespread use of certain commercial minicom­

puters (e.g., Digital Equipment Company's vAX) has led
to licensing agreements for production of militarized ver­
sions of these computers. Since the processing power of
single-board microprocessors is now equivalent to many
minicomputers, the introduction of vendor-unique mini­
computers is not an effective approach for future Navy
tactical systems.

Board-level computers based on 32-bit microproces­
sors such as the Motorola 680203 or Intel 80386 are be­
ing adopted extensively in the United States and in NATO

countries for commercial, industrial, and military appli­
cations. Very-large-scale integration techniques have
yielded major improvements in the performance-to­
weight ratio, yielding 4 to 6 million instructions per sec­
ond from current single-board microcomputers. Single­
board computer performance is rapidly increasing as evi-

Johns Hopkins APL Technical Digest, Volume 10, Number 3 (1989)

denced by recently announced microprocessors in the 10
million instructions per second range. Board-level com­
puters are being militarized and embedded into combat
systems (e.g., the AN/SPS-48C search radar and Mk 74
Tartar Fire Control System). With the availability of low­
cost, single-board computers, the clustering of multiple
boards on a high-speed bus provides even greater pro­
cessing power. By carefully designing to minimize bus
contention, a cluster of five microcomputer boards on
a backplane bus can now achieve processing on the or­
der of 20 million instructions per second. By adopting
an industry standard backplane bus (e.g., VMEbus, Mul­
tibus II, or Futurebus) for communication within a pro­
cessing cluster, the resulting open architecture will
accommodate upgrades of processors as growth requires.
The significant reduction in the number of replaceable
card types for microprocessor-based computers poten­
tially simplifies logistics support and maintenance over
computers requiring a larger number of card types. Real­
time executives and efficient high-order languages now
exist for most microprocessors. Several validated Ada
compilers are now available for the M68020 family, and
run-time performance is approaching that of other lan­
guages commonly used for real-time systems.

Several companies have developed "super-micro"
computers based on multiple-microprocessor parallel ar­
chitectures. By providing a central task scheduler for
typically 10 to 30 microprocessors, a multiple-instruction­
stream, multiple-data-stream (MIMD) parallel architecture
is achieved as exemplified by the Transputer and Con­
vex computers. Ada compilers being developed for such
machines will offer true concurrent real-time processing
in the future.

For some applications, another effective form of par­
allel processing uses a single-instruction-stream, multiple­
data-stream (SIMD) architecture (e.g., Goodyear's milita­
rized Associative Processor). Operations on data arrays
can be performed very rapidly; detailed analysis of can­
didate applications, however, is important to determine
how the mix of parallel versus sequential operations will
affect overall efficiency. MIMD and SIMD technologies can
perform in the 20 to 200 million instructions per second
range, which may be applicable to certain classes of
problems.

Processor Interconnection Options
The method of interconnecting processors and system

elements is a key aspect of computer system architecture.
Significant requirements for interconnection methods are
speed of data transfer (bandwidth), response time of
transfer (latency), ability to reconfigure to alternate paths,
susceptibility to electromagnetic interference, weight and
space of cables, and commonality of protocol and equip­
ment. Often a combination of interconnection methods
is desirable within a system.

Point-to-point methods can provide high-speed, dedi­
cated channels with guaranteed access (except in cases of
failure). Weight can be minimized by using serial or fiber­
optic techniques rather than parallel cables. Reconfigu­
ration requires redundant cable paths with electronic or
mechanical switching.

Johns Hopkins APL Technical Digest, Volume 10, Number 3 (1989)

Computer System Architectures for Navy Tactical Systems

To provide communication within a chassis, several
commercial standards exist for high-speed local (back­
plane) buses. A local bus provides a flexible method of
interfacing board-level computers, memories, and inter­
face cards within a single chassis, with the option to recon­
figure dynamically in case of failure. Although bus speeds
of 10 MB/s and higher are commonplace, care must be
taken in system design to avoid overloading the bus. 4

The VMEbus and Multibus II are buses that are candi­
dates for Navy applications. Although the VMEbus is used
in more applications, Multibus II has the advantages of
interprocess message handling and dynamic reconfigura­
tion over the VMEbus. The IEEE 896.1 (Futurebus) has been
selected as a future Navy bus standard; since the Future­
bus standard is still evolving, however, it is not yet avail­
able for Navy use.

For system-wide (longer distance) interconnections, var­
ious LAN options are available. Communication among
many users is provided by LAN'S, using time or frequen­
cy division multiplexing of a common media-typically
coaxial or fiber-optic cable. As the number of system in­
terconnections increases, networks can offer advantages
over point-to-point, including fewer interfaces per sub­
system, less cable weight and space, flexibility for system
growth, and simpler casualty/survivability reconfigura­
tion; however, data transfer delays can be significantly
larger than point-to-point interconnections. Commercially
popular networks such as Ethernet may provide adequate
overall bandwidth; for some real-time applications, how­
ever, they do not offer adequate responsiveness (latency)
for high-priority transfers, although Ethernet performance
can be significantly improved by designs such as the
militarized triple Ethernet design for the Royal Nether­
lands Navy. Token passing bus and token passing ring
designs are intended to provide responsiveness to real-time
events and are becoming popular in industry (e.g., OM'S

Manufacturing Automation Protocol [MAP] and the Na­
vy's SAFENET I). Furthermore, very high speeds (100 MB/s
and higher) are achievable in fiber-optic-based networks
such as the proposed Fiber Distributed Data Interface
(FDDI) standard that is being adapted for Navy use (SAFE­

NET II). Prototype FDDI-based interface units are being de­
veloped for military use by companies such as UNISYS,

Martin Marietta, and Farranti. 5 Other networks for the
Canadian, United Kingdom, and German navies are also
being developed. All approaches need to be appropriate­
ly configured to provide casualty and survivability mode
operation.

OPTIONS FOR COMPUTER SYSTEM
CONFIGURATIONS

The development of a computer system architecture
for an embedded application involves configuring the
required computer(s), integrated by appropriate inter­
connection method(s), to support processing loads, in­
terface requirements, internal software tasking control,
casualty reconfiguration, and other system requirements
as summarized earlier. To analyze a cross section of ar­
chitectures, possible configurations were first represented
by generic configurations distinguished by the degree of
centralization versus distribution and by interconnection

229

Palmer

methods. Variants could then be compared on the basis
of alternative computers, specific interconnection sys­
tems, and casualty configuration options. Selected ex­
amples are discussed in this article.

Centralized Architecture
A highly centralized configuration that provides all pro­

cessing in a single large processor or in a tightly coupled
multiprocessor (e.g., dual CPU UYK-43) is shown in con­
figuration IA. Navy shipboard computers typically in­
terface with 4 to 10 or more other devices such as sensor
equipment, weapons equipment, other computers, oper­
ator interface equipment, and computer system peripher­
als (disk, tape drive, printer). In configuration lA, all
interfacing subsystems connect directly to the computer
by point-to-point interconnections. For smaller applica­
tions (less processing and/or input/ output capability), the
central computer could be replaced by the UYK-44 or
ANI A YK-14 (airborne-equivalent) computers. To provide

A VAILABILITY AND SURVIVABILITY OPTIONS

Achieving high system availability and survivability from
local battle damage is a critical requirement for Navy sys­
tems. The following are options for achieving high system
availability:

1. By designing components for extremely high reliabil­
ity and low mean-time-to-repair, high availability (percent
of time operational) is achieved. Extremely-high-reliability
components should be a goal; however, this approach does
not offer immunity to battle damage. Consequently, this
option alone is not sufficient.

2. Reconfiguration of multiple computers to bypass a
failed computer is a common approach to provide a fail­
soft capability (e.g., the Aegis Combat System and the
AN/ SYS-2 Integrated Automatic Detection and Tracking Sys­
tem use this approach). In some cases, this requires provi­
sion of spare computer capacity so that mission-critical
performance is maintained. Physical separation of proces­
sors is required to provide survivability; however, the ca­
pacity of remaining processors in the event of battle damage
may be inadequate.

3. Full redundancy of all critical computers and relat­
ed components permits rapid automatic reconfiguration
from a failed component to a ready spare and permits recon­
figuration to alternate equipment in the case of local battle
damage without loss of mission-critical performance. This
requires effective fault localization, a reassignment mecha­
nism, and avoidance of single-point failure modes.

Redundant interconnection among critical subsystems is
necessary to ensure connectivity if any single input! output
controller or cable fails. This redundant interconnection ap­
proach was adopted with Aegis for all computer interfaces.
Cable space and weight can become significant if point-to­
point parallel (versus serial) cable is used for this form of
redundancy.

230

for casualty reconfiguration with the centralized approach,
fully redundant input/ output and an option to switch to
either of the UYK-43 cpu's and associated input/output
controllers are indicated by alternate interconnection
paths. This configuration provides no survivability mode
in case of local battle damage.

To provide additional processing power and survivabil­
ity options, a second computer is required and must be
located in a separate space (configuration IB), supplying
up to 9 million instructions per second if the UYK-43 is
selected. This configuration uses point-to-point (parallel
or serial) channels. Backup input/ output channels are
again provided for all interfaces; interfaces for this op­
tion, however, require reconfiguration to the alternate
computer. To extend the approach to accommodate com­
binations of failed computers and interface channels can
require a complex array of switches or redundant con­
nections.

This configuration can be simplified by using a local
area network (LAN). One possible LAN configuration is
shown in configuration IC, using dual networks with
a network bridge or some form of internal network
reconfiguration for casualty options. The LAN connec­
tions require that either a network interface be built into
each subsystem (as shown) or that separate network in­
terface adapters be connected between subsystems and
the network. (Configuration IC shows a generic network
with no attempt to distinguish bus versus ring topolo­
gies.) The LAN option permits flexible channel selection
at each interfacing subsystem, independent of which
computer is connected to the subsystem.

A similar architecture may be achieved by using up­
graded UYK-43 or UYK-44 computers or militarized super­
minicomputers to attain better performance and growth
potential.

Federated Architecture
To provide federation of subsystem control, assure

timely interface servicing of connected subsystems, and
relieve the processing load on the central computer, con­
figuration 2A shows computers dedicated to subsystem
processing in keeping with goals for a layered design.
This approach is commonly applied for independent sen­
sor or fire-control processing in combat systems. The
UYK-44 is typically used for applications not requiring the
capacity of the larger UYK-43 computer.

Configuration 2B adds redundancy for survivability.
Again, providing for survivable reconfiguration options
as shown in configuration 2B creates problems of logical
and physical switching complexity. Consequently, design
compromises that limit reconfiguration flexibility and af­
fect computer system load balancing are often necessary.
As the number of interconnected systems and subsystems
increases, it is particularly beneficial to simplify interfac­
ing and improve reconfiguration flexibility by using a
LAN, as shown in configuration 2C. These configurations
might use any mix of UYK-43 or UYK-44 computers, but
reconfiguration is simplified if only one computer type
is used.

Johns Hopkins APL Technical Digest, Volume 10, Number 3 (1989)

I

I

I

I

I

I

I

I

I
Display I
I I

Connected
systems

I
I

I
I
I I
I
I

I
I

Display I
I

Computer System Architectures for Navy Tactical Systems

CONFIGURATION 1 OPTIONS

Display I ~ periPheralsl

I I T 1 I III Connected
systems

I AN/UYK-43
J

I
I

computer

I I
I I

~ I r l
I

I Configuration 1 A. I
Central control with casua~ mode input/output. I y

Display I I Peripherals I
T ~ 1 I

Connected I I Connected
systems systems

I I
AN/UYK-43 I

I

I I I
computer

I I I

~ rl I
~

I 1 I

~ I
AN/UYK-43
computer

Configuration 1 B.
Dual UYK-43, survivable pomt-to-pomt option.

I Display I Display I r Peripherals ~ I Network I
bridge

I I I I T T I I
Connected I I I I I Connected

systems I T systems

I
I J I I AN/UYK-43 I
I

computer

I
I I

I I I

I I I I
I

I
I

I I I
AN/UYK-43 -
computer -

--- Primary elements
--- Casualty elements Configuration 1 C.

Central control,
survivable networked option.

fohns Hopkins APL Technical Digest, Volume 10, Number 3 (1989) 231

Palmer

232

Connected

Connected
systems

Connected

CONFIGURATION 2 OPTIONS

AN/UYK-43
1------; computer 1------;

~-~----~ ~----~

Configuration 2A.
Distributed subsystem control.

I---+---i AN/UYK-43 1--+-_--1
computer

AN/UYK-43
computer

Configuration 2B.
Distributed subsystem control, survivable point-to-point option.

Primary elements
Casualty elements

Configuration 2C.
Distributed subsystem control,
survivable networked option.

Connected
systems

Johns Hopkins APL Technical Digest, Volume 10, Number 3 (1989)

Distributed Multiple Microprocessors
The availability of high-speed local buses with com­

patible high-performance, single-board microcomputers
has led to clustering of microcomputers, shared memo­
ry, and cards for subsystem interfacing on single­
backplane buses using open-system (nonproprietary) ar­
chitectures. Configuration 3A illustrates a system that
uses a single cluster of 4 microcomputers and 10 inter­
face boards on a single local bus. In a relatively small
enclosure (approximately 2 ft3), a processing capacity
of 16 million instructions per second is easily achieved
with industry-standard microcomputers. Recently an­
nounced processors may at least double this perfor­
mance. In addition, each interface board can also include
a microprocessor to permit data conversions and front­
end processing for each device. Within the chassis, recon­
figuration to eliminate a failed processor or interface card
is possible. For major systems, a single bus may not yet
adequately support data-transfer volume or the number
of processors required. In addition, a single cluster is
not survivable in case of local damage.

The advantages of the multiple microprocessor ar­
chitecture can be realized without incurring bus over­
load by appropriate partitioning of the bus. Two or more
clusters of microcomputers can be configured with each
cluster on a separate high-speed local bus. Interconnec­
tion of processing clusters can be accomplished by any
of several methods. Configuration 3B illustrates a four­
cluster configuration with point-to-point connections
among selected clusters.

Interconnections between clusters and connection with
other combat system elements using a LAN (configura­
tion 3C) would not only improve reconfiguration flexi­
bility, but would significantly reduce the number of
individual input/output ports (circuit boards and soft­
ware) on the microcomputer clusters. The network would
accommodate additional system interfaces without point­
to-point cabling of each required data path. Standard
network interface adapters can be incorporated into the
processing cluster. To ensure that data transfers within
the computer system are responsive to timing needs,
selected point-to-point channels or an auxiliary network
reserved for high-priority use could be added if LAN per­
formance is not adequate to simultaneously support
latency requirements of all data transfers. All data paths
are redundant, including the use of multiple-network
data-transfer paths. Battle damage to the computer sys­
tem can be tolerated to the extent that redundant clusters
and input/output cables are physically separated.

By using current technology in microcomputers, back­
plane buses, and networks, it is possible to implement
a fully redundant computer system (every processor
spared) without imposing inordinate space and weight re­
quirements on the ship. Three or more clusters can be
packaged in a single cabinet. Additional microprocessors
can be incorporated into each cluster, and clusters can
be added to the network to provide extensibility for fu­
ture growth. Furthermore, bus-compatible and software­
compatible upgrades to microcomputers of higher per­
formance can be introduced as necessary.

Johns Hopkins A PL Technical Digest, Volume 10, Number 3 (1989)

Computer System Architectures f or Navy Tactical Systems

RESULTS OF EMBEDDED
COMPUTER SYSTEMS AT APL

With the development of prototype computer-based
systems at APL, there is substantial evidence of the
above-cited benefits of open-system architectures. The
Fleet Systems Department has contributed to the com­
puter system design of major Navy systems since the
1960s; examples from past developments illustrate the
benefits and problems of selected computer system ar­
chitectures.

Since earlier Navy computers were relatively large and
expensive, designs were limited to central architectures,
with priority given to software techniques for optimizing
demanding real-time designs to run on limited comput­
ing resources. The advanced multifunction array radar
(AMFAR) developed at APL in the late 1960s included a ra­
dar control and automatic tracking system implemented
in a single computer. It served as the advanced develop­
ment radar for the Aegis AN/ SPY-I radar. Also, the Na­
vy's AN/ SYS-I Integrated Automatic Detection and
Tracking System began with an APL prototype. The AM­

FAR and SY~1 computer system designs are similar to con­
figurations lA and IB; they are characterized by highly
efficient, event-driven, real-time executives and by exten­
sive use of global data to minimize data transfers among
modules. For these and other Navy systems, the necessi­
ty for highly optimized software designs created difficul­
ties in software maintenance and limited the margin for
upgrade.

Navy combat systems have been developed and evolved
by integrating separate systems, each of which, when de­
livered, was within about 20010 of its processing capacity
limit (the margin required by Navy standards). With this
constraint, needs for major upgrades (requiring more than
the 20% growth reserve) can be accommodated by one
of two alternative design approaches. The first is to rede­
sign the existing system to accommodate additional com­
puting resources, which typically entails major recoding
of the existing program before developing the added func­
tion. Once a program is under formal Navy maintenance,
the cost of redesign, development, test, and documenta­
tion is often prohibitive. The second approach is to cre­
ate a new system for each major combat system upgrade,
preferably with minor impact to interfacing systems. This
approach leads to configurations similar to configuration
2A and has been used successfully by APL for prototypes
of the Shipboard Gridlock System 6 and Automatic
Identification System for fleet use. As additional require­
ments develop, however, the proliferation of separate fed­
erated systems creates problems of interconnectivity,
reconfiguration, and maintenance.

Recognition of the limitations of previous computer
system architectures has led to application of distribut­
ed multiple-microprocessor architectures such as config­
urations 3A through 3C. Most real-time computer-based
prototypes begun in the past three years in the Fleet Sys­
tems Department have adopted various elements of the
multiple-microprocessor architectures. One of the earli­
er examples is the dual Motorola 68000 microprocessor­
based Detection Data Converter (DOC) developed by the

233

Palmer

I

I

I

I

I

I

I

I

I

I

I

I

234

CONFIGURATION 3 OPTIONS

I Display I Display I I Peripherals I
Connected Multimicroprocessing cluster Connected

systems
INTF INTF

systems

I I INTF INTF
J I INTF - - INTF

I I INTF INTF I J INTF INTF -I ;--- l
MP1 - - MP3

I MP2 MP4 I
I Local bus I

I I
I Configuration 3A. I . .

Distributed multiple microprocessor, single cluster .

Display II Display I Peripherals

I
J I

Connected Connected
systems J LiNTF r---~ systems

INTF INTF INTF

~
- ~ -

~ MP1 - '"- MP2 MP1 I-- r-- MP4

r----- INTF - '"- MP3 MP2 I-- r-- INTF

t I- - INTF - - MP4 MP3 I-- r-- INTF I- f- r-H INTF INTF INTF INTF

INTF INTF

~
INTF - - INTF INTF I-- - INTF -
INTF - - INTF - --- INTF I-- - INTF !--

INTF - - INTF INTF r--- - INTF

~ MP1 - - MP2 MP1 I-- - MP4

INTF MP3 MP2 INTF

I
Connected

systems

~
t=
~

~

MP4 MP3

Configuration 38.
Distributed multiple microprocessor, survivable quad cluster.

Display II Display

I I I I
1 I

LAN ~ ~
r--- LAN - ~

MP1 - ~
MP2 - ~
MP3

LAN - ~
- LAN - r-

MP1 - r-
MP2 - r--

MP3

I

~ MP4 LAN

LAN

MP1

MP 2

MP3

MP4 MP1

MP2

MP3

MP4

Configuration 3C.

I Peripherals I Network I
bridge

-
-
-

-

r--

~

r--

r--

I j I
I

Connected
systems - MP4

~ -
-
-

r--

~

r--

r--

~
LAN r--- R
LAN r---

tj
MP = Microprocessor card
INTF = Device interface card

I

I

I

I

I

I

I

I

I

I

I
I

Primary elements
Casualty elements Distributed multple microprocessor,

survivable networked option. LAN = Local area network interface

fohn s Hopkins APL Technical Digest, Volume 10, Number 3 (1989)

Digital Systems Development Group at APL. The DDC

has subsequently been incorporated into the AN/ SPS-48C

search radar by lIT as an upgrade to their original de­
tection processor. Similar technology was applied on a
larger scale to provide multisensor range tracking and
display at the Barking Sands Missile Range. A total of
57 Motorola 68020 single-board microcomputers dis­
tributed over three radar sites and including backup
redundant processors make up the computer system for
the Automated Precision IFF Surveillance System. Sur­
face and air reports are received from three sites and then
are tracked, correlated, and displayed by the system as
shown in Figure 2. Far more processing power than any
previous Navy shipboard system in a fraction of the
space and cost was clearly demonstrated.

The requirements for a Cooperative Engagement Capa­
bility had been evolving since battle group coordination
concepts were formulated in 1975. At the heart of the
problem was the need for a high-capacity, electronic­
countermeasures-immune data link and substantial com­
puter processing capacity on each participating ship. Anal­
ysis showed the benefits of a computer-controlled direc­
tional data-transfer system among ships of a battle group.
The requirements for a prototype system, including link

Kokee
Peak

Makaha

Oahu

Kokee
Peak

Makaha
Niihau

Computer System A rchitectures j or Navy Tactical Systems

control, multiship/multisensor data fusion, and automatic
gridlock of both track and selected detection-level data,
posed a formidable computer processing task. The de­
sign that evolved is an expandable configuration of five
clusters of microcomputers (Fig. 3) similar to configura­
tion 2B that provides the required processing power and
growth reserve. As shown in Figure 3, a primary bus
serves processors for track management, display control,
and gateways to four other buses, which serve the sensor
interfaces, gridlock, and track update functions, with one
bus for expansion. The system includes a message-passing
method that provides a common applications program
view for transfer across the VMEbus and between buses
using the point-to-point gateways. The entire computer
system, including peripherals and interactive maintenance
panel, is housed in a 4-ft-high ruggedized enclosure. The
prototype computer program and associated computer
equipment are being developed by several groups in the
Ship Systems Branch at APL.

In 1987, a consortium of six NATO nations agreed to
undertake jointly the concept development of a revolu­
tionary short-range anti-air defense system for their re­
spective navies. The NATO AAW System, as now defined,
includes advanced sensors of several types (radar, in-

Video display
terminal

Optional

... - NTDS

Video &} To
1 1I.!!::::.:.:.::~=j~~~~~~~~~~====::sweeps NTDS
'- consoles

Video &}TO
1 1I~~~~!l--------------------------:';-~ sweeps SPA
'- repeaters

~ _______ IRIG-B
t ime ref.

Surface Tracking
Subsystem

Display
Subsystem

Video) To
.....,;;~ __ ...!-------~~~triggers displays

I/OC-OX = InpuVoutput channel/data extraction
NTOS = Naval Tactical Data System
GPIB = General purpose interface bus

IFF = Identification, friend or foe
IIOC = InpuVoutput controller
BOSS = Barking Sands Operations Support Systems

Figure 2. Automated precision IFF Surveillance System phase 1111 configuration.

Johns Hopkins APL Technical Digest, Volume 10, Number 3 (1989) 235

Palmer

Bus Touch
Read-only-

controller screen memory
board

Data
extract

Sun display
controller

Gateway Gateway Gateway
Track

management

Primary bus

rJ) rJ)

:J :J
.0 .0

~ ~
ca ca
"0 "0
C C
0 0

~ u
Cll

rJ) rJ)

c '5 0 a. °en '5 c
ca 0
a. :;:,
x :J

UJ a.
.E

Growth

rJ)
:J

.D

~
ca
"0
C
o
u
Cll
rJ)

Cll
cu
"0
a.

::>

rJ)

:J
.0

~
,------,.~

c
o
u '---_ ~
~
u o

,------,. '0
~

DDS = Data Distribution System
CDS = Combat Direction System
INTF = Device interface card

Figure 3. Configuration of prototype Cooperative Engagement Program hardwareo

frared, electronic warfare support measures), a high­
performance short-range missile, a control system to per­
form multisensor integration, hard kill/soft kill coordi­
nation, and an automatic reaction to threats based on
doctrine defined in the Combat Direction System. To
be effective, the computer system must perform substan­
tially more sophisticated tracking and control processes
than past systems in a fraction of the time. There is also
a need to accommodate Combat Direction Systems and
other interfacing systems of various navies, as well as
to provide for substantial future growth and casualty
reconfiguration.

One of the computer system architectures studied in
depth by the international government team is the dis­
tributed multiple-microprocessor architecture similar to
configuration 3C. An experimental subset was assem­
bled at APL that consisted of three clusters of M68020
microcomputers interconnected by a triply-redundant
LAN developed by the Royal Netherlands Navy. The
goals of the experimental system were to examine the
adequacy of the computer system architecture to satisfy
the projected requirements and to investigate possible
software design concepts for improving adaptability to
national system variants.

At the individual processor level, the key issue was
the performanc~ of programs written in the Ada lan­
guage for the currently available microprocessors. The
Ready Systems' RTAda compiler was selected on the ba­
sis of run-time performance of compilers for the M68020
in late 1987. Numerous benchmarks were run to assess
Ada performance with the M68020. The most wide­
spread benchmark for Ada programs is the set of bench­
marks from the Performance Issues Working Group,
which is valuable in comparing the performance of var­
ious Ada compilers because it includes computational,
logical, and task-control-oriented programs.

Since multisensor integration potentially poses a large
processing load in the NATO AA W System, a candidate
Kalman fIlter algorithm was implemented in both C lan­
guage and Ada, providing a basis of comparison for ex-

236

isting sensor integration programs that have been written
in the C language. The results showed that, for the com­
pilers compared, the Ada implementation is compara­
ble to the performance of one of the more efficient C
compilers; this is in contrast to benchmarking with ear­
lier versions of Ada compilers, which resulted in sub­
stantially less efficient code than other compilers.

Although it is expected that even higher-performance
microprocessors will be used for the fmal NATOAAW Sys­
tem, the excellent performance of current processors, such
as the M68020, with most recent versions of off-the-shelf
Ada compilers has been comparable to processors using
the more commonly used C compilers. On the basis of
these fmdings, the use of Ada with state-of-the-art
microprocessors is considered a feasible building block
for the NATO AAW computer system.

To support real-time performance needs and ease of
processor upgrade, it is desirable that a high-capacity,
industry-standard backplane bus be used to integrate
multiple microprocessors. The local backplane bus select­
ed for NATO AAw-critical experiments and the Cooper­
ative Engagement Program was the vMEbus, which
provides a reasonably fast (theoretically 40 MB/s) bus
and a wide variety of commercial boards to facilitate rap­
id prototype implementation. The lack of message­
passing features and rigid board configuration methods,
however, is viewed as a serious drawback that the Mul­
tibus II bus has overcome. Consequently, we are recom­
mending that these features be added to the Futurebus
standard, which the Navy has adopted for future
systems.

The focus of the experimental development relative
to data communications was the message-passing sys­
tem, which provides a common applications program
view for transfers within a processor, across each back­
plane bus, and across the LAN. Of particular interest is
the decoupling of program modules by the generation
of messages that can be concurrently transferred to all
receiver modules registered for the message. It is antici­
pated that substantial independence of module design

Johns Hopkins A PL Technical Digest, Volume 10, Number 3 (1989)

can be achieved by this technique, thereby facilitating
program development, maintenance, on-line data reten­
tion for rapid reconfiguration, and adaptability to sys­
tem variants. It appears that the added processing and
memory overhead required to support this concept can
now be accommodated by recent microprocessor tech­
nology.

The experimental NATO AA W computer system was the
fIrst (or one of the fIrst) Navy project(s) to integrate mul­
tiple real-time microprocessor clusters over a LAN. Al­
though conceptually simple, there are signifIcant technical
issues associated with real-time data distribution. Once
resolved, however, the benefIts promise a major break­
through in the design of combat systems and Navy soft­
ware. As stated earlier, benefIts include (1) extensibility
by adding clusters, (2) a flexible means of reconfIgura­
tion, especially for survivability from battle damage, (3)
less complex system development because of the reduced
number of interfaces to each computer, (4) the potential
for simultaneous access by all users because data are
provided on the network, and (5) the potential for a sys­
temwide data dictionary and associated control procedures.

SUMMARY AND CONCLUSIONS
Navy computer systems typically undergo substantial

evolution to accommodate changing needs over a life
cycle that may span 20 years. Advances in computer sys­
tem technology now pennit the use of industry-standard,
open architectures that can provide for substantial ex­
tensibility to satisfy future growth needs.

Open architectures imply the use of industry-standard
backplane buses versus vendor-unique bus designs, which
is essential to the smooth evolution of processors, mem­
ory, and interfaces for future upgrades or to solve un­
foreseen performance problems during development. In
most cases, careful system design, such as bus partition­
ing, will accommodate the performance limitations of cur­
rent standards. Later upgrade to higher-performance
buses (e.g., Futurebus) will better meet future needs.
Compatibility with industry standards appears appropri­
ate if alterations to withstand environmental constraints
are implemented.

The need for flexible reconfIguration, particularly for
local damage survivability, has led to complex methods
of point-to-point interconnection in past systems. As
combat system complexity increases, the only viable ap­
proach to adequate reconfigurability will be the use of
LAN'S to interconnect computers and ship systems. Many
options remain open. Numerous industry standards ex-

Johns Hopkins APL Technical Digest, Volume 10, Number 3 (1989)

Computer System Architectures jor Navy Tactical Systems

ist; SAFENET I and II are Navy adaptations of token
passing-ring standards.

Multiple high-performance processors coupled with ef­
fective underlying data communications techniques­
backplane buses and LAN's-offer the framework for a
breakthrough in the design of Navy software that could
greatly simplify the development and life-cycle evolution
of large systems. By suffIciently decoupling functions,
removing dependency on shared data, and providing tight
task synchronization, a level of modularity can be
achieved that has heretofore been unattainable. The pro­
visions of Ada packages and object-oriented design tech­
niques are compatible with these goals.

REFERENCES

1 AN/UYK-43 Technical Description, UNISYS (1987).
2 AN/UYK-44 Technical Description, UNISYS (1987).
3 MC68020 32-Bit Microprocessor User's Manual, Motorola, Prentice-Hall, Inc.

(1985).
4 James, J., "Performance and Programmability Considerations for VMEbus

Multiprocessors," in Proc. BUSCON East, DY-4 Systems Inc., pp. 225-239
(1987).

5 Marien, K., "Emerging Standards, Hardware and Software Light the Way to
FDDI," Compo Des., 51-56 (1989).

6 Miller, J. T., and David, E. W. G., " Battle Group Gridlock Demonstration,"
Johns Hopkins APL Tech. Dig. 2, 314-320 (1981).

ACKNOWLEDGMENT-The author acknowledges the technical contribu­
tions of Eric Conn, Robyn LeGrys, Larry Norcutt, and John Zouck.

THE AUTHOR

JAMES G. PALMER, supervisor
of the Computer Systems Develop­
ment Group in the Fleet Systems
Department, received a B.S.E.E.
degree in 1966 from Drexel Univer­
sity and an M.S. degree in numeri­
cal science in 1970 from The Johns
Hopkins University. Since 1966 he
has been employed at APL, work­
ing in the areas of radar control,
sensor integration, real-time systems
design, and software engineering.
His experience includes development
of radar control software for a pro­
totype of the Aegis AN/ SPY-I radar,
development of an experimental Ae­
gis sensor integration program, and

supervision of prototype system development for the Battle Group Anti­
Air Warfare Coordination and ATO AAW programs . In 1975, Mr.
Palmer participated in the Department of Defense Weapon Systems
Management Study. He has been an instructor at The Johns Hopkins
University G. W. C. Whiting School of Engineering.

237

