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EMBEDDED PARALLEL ARCHITECTURES 
IN REAL-TIME APPLICATIONS 

Within the past five years, parallel processing has rapidly emerged to the forefront of computer de­
sign. The number of processors that can be simultaneously used to work on a single task has grown 
dramatically. The reduction in physical size and power requirements due to increased levels of logic in­
tegration has been just as startling. Embedding a parallel processor into a real-time system to perform 
a single, dedicated task is now both technically and economically feasible. The potential of embedded, 
real-time, parallel processors will be explored through an example of an early prototype designed to filter 
targets from high-clutter noise in a surveillance system. 

INTRODUCTION 
The idea of inserting a computer into a system to per­

form a dedicated task repeatedly is about as old as the 
computer itself. Replacing a piece of special-purpose 
hardware with a computer provides one great advantage: 
the computer software can be reprogrammed quickly to 
fix a problem or to change its algorithm completely. It 
was not until the microprocessor was invented, howev­
er, that embedded computers grew in such numbers. To­
day, embedded computers are in everything, including 
military vehicles, commercial appliances, spacecraft, and 
automobiles. 

Embedded computer systems can be classified into two 
categories: those that operate in real time and those that 
do not. A real-time embedded computer is normally as­
sociated with a process that is time-critical. Tracking and 
identifying returns from a radar are good examples of 
real-time applications. An embedded microprocessor in 
a telephone-answering machine is an example of a non­
real-time application; although the phone must be an­
swered, the caller must wait until the answering machine 
is ready to record the message. A radar return will wait 
for no one. 

As the microprocessor has evolved from a simple 4-b 
(4-bit) calculator in the early 1970s to a 32-b desktop 
mainframe in the late 1980s, I the size and complexity 
of tasks that can be performed in real time have in­
creased phenomenally. Problems that used to require 
special-purpose hardware devices can now be solved with 
a programmable, embedded microprocessor. Many 
problems are so computationally demanding, however, 
that they cannot be computed by a single microproces­
sor within the time constraints involved. For such prob­
lems, the choices have been to build special-purpose 
hardware to perform the required processing, or to stop 
the project and let the problem await future technology. 

Within the past five years, some of that future tech­
nology has come of age in parallel processing. A paral­
lel processor provides many similar computing modules 
(or processors) within a single enclosure. Each proces-
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sor is given a small portion of the overall problem to 
solve. If one processor can execute a job in time T, then 
P processors can, ideally, execute the same job in time 
TIP. The basic idea behind parallel processing has been 
around since the early 1960s, but the maximum value 
for P of those days was limited because of the level of 
logic-device integration; 64 processors could be tied to­
gether if one had a large enough room and bank 
account. 2-4 

Today, advances in very large scale integration (VLSI) 

have reduced the physical size of a computing module 
and, in so doing, have increased P. A value of P = 100 
is quite common today, and some machines with P = 
65,536 have been built! 5 Various architectures have 
been created to interconnect and control such large num­
bers of processors as a single entity (see the appendix). 
Some architectures are quite flexible, allowing variable 
numbers of processors to be incorporated. With the in­
creased use of high-speed complementary metal oxide 
semiconductors (CMOS), computer systems that once re­
quired special environments and cooling techniques can 
now be placed in harsher environments and cooled with 
forced ambient air. 

As a result, real-time problems that previously had 
to be implemented in hardware or abandoned can now 
be implemented in an embedded parallel processor. Al­
though the cost is much more than the single-micropro­
cessor solution, it is still much less than the cost of 
designing and constructing special hardware. The par­
allel processor is not a panacea, however; many areas 
still require special-purpose hardware. But the amount 
of this hardware and the time and cost required to im­
plement it can be significantly reduced if used in con­
junction with a parallel computer architecture. 

By presenting an example of an early prototype, this 
article explores some of the issues involved in embed­
ding a parallel processor into a real-time system. The 
prototype implements a unique, backward-searching, 
nonrecursive algorithm called the retrospective filter, or 
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"retro," which is useful for extracting targets from high­
clutter noise in a radar installation. The parallel architec­
ture used is as unique as the algorithm; a special 
microprocessor called the "transputer" was used to pro­
vide a collection of expandable computing modules. Be­
fore describing the transputer and our example 
application, some problems associated with program­
ming real-time systems are presented. Many of the ideas 
introduced in the next section are later applied to the 
retro example. 

REAL-TIME CONSIDERATIONS 
The developer of an embedded real-time computer sys­

tem faces several issues,6 and when the computer sys­
tem involved is a parallel processor, some additional 
considerations must be addressed. In a real-time system, 
the processing requirements of a computer are directly 
related to the input rate of raw data to be processed. 
If, for example, a new piece of input data is avail~Dle 
on average every 4 ms, then the average time to process 
the data (Tp) must not extend past 4 ms or the process­
ing will fall behind. This input/ processing restriction is 
referred to as the real-time period (Trt ). 

The transfer rate of input/ output channels is also tied 
to Trt • All input data to be processed must be trans­
ferred into the computing module within Trt ; addition­
ally, all resulting output data must be transferred out 
of the computing module within Trt • These two restric­
tions on input time (Tin ) and output time (Tout) assume 
that input, output, and processing of data can occur si­
multaneously. In addition, little computing overhead 
should be required to perform this concurrency. 

To perform the concurrent input! output and process­
ing, the architecture must be capable of multitasking, 
which allows more than one thread of execution in a 
program to occur; a good analogy is a multiuser oper­
ating system in which every user is a different task in 
a complex program. One of the most important require­
ments in a multitasking system is its task-switching time, 
which is the time required to stop execution at one thread 
and start execution at another. In a real-time system, 
if the time required to switch tasks is a significant per­
centage of Trt , then considerable time will be wasted. 
Ideally, the task -switching time should be 1070 or less of 
Trt • 

Latency is another important consideration. The laten­
cy through a system is the time from when the sensor 
detects the signal to when the result of processing is avail­
able. For a single processing stage, the latency (1jatency ) 
is just the sum of Tin, Tout , and Tp. If several stages 
of processing are performed by different computing 
modules, then the total latency will be a function of the 
transfer and processing rates through each stage. Latency 
requirements are very system-dependent. For instance, 
a robotic-arm control system will require a small laten­
cy on the order of milliseconds, whereas a surface-ship 
surveillance system can withstand latency on the order 
of seconds. 

Use of a parallel processor in an embedded real-time 
system adds two more considerations to the list. The pri­
mary one is load balancing, which provides a means to 
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distribute the computing task evenly among all of the 
processors present. A good load-balancing algorithm is 
imperative if all of the processing power available is to 
be fully used. Otherwise, one processor may be provid­
ed with too much work while all others remain idle. The 
other consideration is scalableness. Ideally, the number 
of processors provided should be scalable with the re­
quirements of the system. If the requirement on maxi­
mum input rate should increase, then the number of 
processors required in the system should be allowed to 
increase with few restrictions. The change in the num­
ber of processors should be made easily, either at com­
pile time or run time. At compile time, a constant 
representing the number of processors can be increased; 
at run time, the number of processors can be dynami­
cally detected before the program is loaded. 

Theoretically, if the input rate increases linearly, the 
number of processors should scale linearly, too. Linear 
scaling does not always occur, however, because the ap­
plication's algorithm may not scale linearly; for exam­
ple, the retro scales to a squared term. 

THE TRANSPUTER 
The transputer, developed by Inmos Limited of 

Bristol, England, in 1984, is the generic name of a fam­
ily of devices designed for constructing parallel-process­
ing systems based on the multiple-instruction multi­
ple-data (MIMD) loosely coupled architecture 7,8 (see the 
appendix). The transputer resulted from a British govern­
ment initiative to compete with the United States and 
Japan in supercomputer and fifth-generation architec­
tures. The name "transputer" is derived from the com­
bination of the words transistor and computer. Devel­
opers at Inmos believe the transputer (or transputer-like 
devices) will become the basic building block of parallel 
processors in much the same way that transistors became 
the basic building block of today's semiconductor tech­
nology. 

A transputer is a complete, single-chip, computing 
module. A single transputer contains a central proces­
sor, on-chip local memory, programmable external­
memory interface, optional special-purpose peripheral 
interfaces, and high-speed serial communications chan­
nels called links. Transputers are interconnected with 
these links; each link provides a full-duplex, point-to­
point communications path between two transputers. 
Transputers can be interconnected in a variety of net­
works to satisfy the requirements of a given application. 
One article on transputers aptly defined them as "com­
puter Lego.,, 9 

To help program the transputer, Inmos developed a 
language called "occam." IO Occam allows a program­
mer to define a problem as a set of concurrent process­
es interconnected by channels. Processes communicate 
through message exchanges over these channels. A con­
current program simply becomes a collection of process­
es, channel interconnections, and message protocols. An 
abstract occam program can then be assigned to exe­
cute on a transputer array through a mapping opera­
tion that assigns processes to transputers and channels 
to links. 
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Selection of the transputer for these investigations was 
based on price, availability, and ease of interconnection. 
A single transputer module consisting of the transputer 
plus external memory costs about $1000. Boards con­
taining from one to eight transputers, each with 32 KB 
to 2 MB of local memory, are available from many ven­
dors (Fig. 1). A variety of networks can be created sim­
ply by interconnecting links into the desired topology. 

The transputer is also ideal as a computing module 
for embedded real-time parallel processing, particularly 
when applied to signal processing and conditioning. 11-14 

Because it is so highly integrated, it requires little physi­
cal space; hundreds of transputers can be easily insert­
ed into a system. The CMOS logic of the transputer allows 
it to run fast while using low power; a single transputer 
running at 20 MHz requires only 100 rnA at 5 V. Thus, 
many transputers can be powered by a conventional 
switching power supply and cooled with inexpensive 
forced air. 

The internal architecture of a transputer can be 
described by exploring the features of the standard, 
floating-point transputer, the T800 (Fig. 2) . In the fol­
lowing sections, keep in mind that all of these features 
are provided in a single 84-pin CMOS integrated circuit. 

Processor 

The T800 contains two processors: the scalar proces­
sor (called the 32-b processor) and the floating-point unit. 
Each processor is based on a stack architecture that oper­
ates in a manner similar to a Hewlett-Packard calcula­
tor using postfix notation for ordering operands and the 
operator (e.g., adding A and B is AB +). Both proces­
sors can operate concurrently, allowing the 32-b proces­
sor to compute an address for an operand while the 
floating-point unit performs a floating-point operation. 
For a 20-MHz device, the 32-b processor is rated at 10 
million instructions per second; the floating-point unit 
is rated at 1.5 million floating-point instructions per sec­
ond for single-precision (32-b) operations. A single T800 

is roughly equivalent to a DEC VAX 8600 in computation­
al performance or 2.5 times faster than an AN/ UYK-43, 

a common embedded military computer. 
The instruction set is encoded in a reduced-instruction­

set computer (RISC) format. The basic instruction is 1 B 
long and contains 4 b of operand and 4 b of data. Thus, 
16 basic instructions are available. Three of the basic 
instructions allow multiple operand fields to be con­
structed to extend the instruction set; the other thirteen 
support the most common instructions found in a pro­
gram (e.g., load, store, jump, add constant, and test). 
Each basic instruction executes in a single cycle. For a 
20-MHz processor, this cycle is 50 ns. 

Additional instructions and registers are provided to 
handle multitasking at the hardware level. A set of 
registers is provided to maintain two queues of process­
es ready to execute on the 32-b processor. These registers 
support a two-level, preemptive, time-sharing operating 
environment. Two timers and instructions for inter­
process communications are provided to allow process­
es to wait until a future time is reached or until an 
input! output operation is complete. This hardware sup-
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Figure 1. Board configured with four transputers, each with 
1 MB of local memory. Boards containing multiple transputers 
are available off the shelf from a variety of vendors. 

processing 
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Figure 2. Block diagram of a TBOO transputer. The TBOO contains 
a scalar-processing floating-point unit, on-chip memory, extemal­
memory interface, and serial-link interfaces, all on a single chip. 
In this figure, RAM is random-access memory, DMA is direct 
memory access, PIS is parallel-to-serial converter, and SIP is 
serial-to-parallel converter. 

port for multitasking reduces or eliminates the require­
ment for a run-time executive, as is traditionally required 
by other microprocessors. With hardware support 
providing task-switching times on the order of micro­
seconds and not milliseconds, the software engineer can 
freely specify concurrency in a program without worry­
ing about performance penalties and the relation of task­
switching times to a real-time processing requirement. 
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Memory 

A small (4-KB) memory is provided on-chip and is 
confi~red as conventional random-access memory. The 
?n-ChIp memory supplements the three stack registers 
III the processor by providing storage for intermediate 
results; its access time approaches that of the registers. 
Normally, high-level language compilers use this area as 
stack space for dynamic variables. The user may also 
place frequently accessed global variables or small 
buffers in this memory to reduce load/store times. If 
the application code is small enough, the user's code may 
also be placed in this memory. 

To supplement the on-chip memory, a programma­
b~e, 32-b, external-memory interface is available to pro­
vIde a full 32-b address and data bus. This interface can 
expand the memory size of the T800 to 4 GB. Both ex­
ternal memory and memory-mapped peripheral devices 
can be mapped into this · external-memory space in a 
fashion similar to other microprocessors. The memory 
interface is programmable, however, and thus allows the 
user to connect either static or dynamic memory devices 
of various speeds. Dynamic memory refresh is provid­
ed automatically by the interface. To connect the T800 

to an external memory, a few latches are all that is nor­
mally required. 

Links 
Four link interfaces are provided to interconnect with 

other transputers. Each link interface provides a full­
duplex, asynchronous, 20-Mb/s serial channel. For large 
buffers (500 B and up), the link throughput is 1.75 MB/s 
in one direction (unidirectional) and 2.35 MB/s if trans­
ferring in both directions (bidirectional). Each link is sup­
ported by two direct memory access controllers a 
parallel-to-serial converter, and a serial-to-parallel c~n­
verter. All eight direct memory access units can operate 
concurrently with processor instruction and data fetches. 

Although the link speeds are high for a serially en­
coded data stream, they are low when compared with 
other interconnection media (e.g., the shared bus). This 
transfer rate is perceived by most technology spectators 
~o .be the main disadvantage of the architecture, although 
It IS the chief advantage. As processors are added to a 
system using a shared-bus network, the requirement for 
connections (and throughput) between the processors 
grows, but the available bandwidth of the bus remains 
fixed. Eventually, a limit is reached as a result of the 
bus's throughput and its arbitration mechanism. The ad­
dition of more processors will not decrease the execu­
tion time for a task. Because a link is a dedicated 
connection between two transputers and not a shared 
resource, the addition of more transputers to a system 
not only increases processing power but also adds to the 
total aggregate throughput of the interconnection net­
work. For example, a network of 50 transputers using 
all four links has an aggregate transfer potential of 
940 MB/s. If 100 transputers are used, the aggregate in­
creases to 1820 MB/s. 

Besides providing the main facility for intertransputer 
communications, the links are used to load the parallel 
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program. On power-up or reset, a transputer remains 
idle, listening for a message to arrive over one of its links. 
When a message arrives, it is loaded into a specified 
memory location and is then executed. The program con­
tained in this first message sends copies of itself to the 
other links (minus the one from which the message was 
received) to initialize all other transputers in the network. 
Because the size of the first message is limited the load­
ing process proceeds in stages (e.g., loading ~d execut­
ing a simple bootstrap program, followed by loading and 
executing the application processes for each transputer). 

This link function eliminates the need for read-only 
memory in each computing module. During software de­
velopment, a host computer outputs a file from a sec­
ondary storage device through an adapter to one of the 
root node's links. For embedded operation, this file can 
be stored in read-only memory along with a small load­
er program and placed in a specially configured root 
node. Using the read-only memory only as a storage de­
vice allows the program to execute faster (the processor 
routinely fetches instructions or data not from read-only 
memory but from random-access memory). Addition­
ally, when a program change is required, only one set 
of read-only memory has to be replaced. Initialization 
across links is indispensable for software development 
on large parallel systems. 

THE PARALLEL RETRO 
The retro algorithm was developed at APL in the late 

1970s by Richard J. Prengaman. 15 It is a limiting filter 
that operates by examining all possible trajectories of 
a target in a backward-searching, or retrospective, man­
ner. Only those targets that have reasonable trajectories 
(e.g., straight line at constant velocity) are allowed to 
pass through the fIlter to an automated tracking system. 
The retro is also an estimation filter; it can provide ini­
tial estimates of velocity that can then be refined by a 
tracking algorithm. Use of the retro can significantly im­
prove the performance of a surveillance system, partic­
ularly in high-clutter environments. 

The retro has been used successfully in various situa­
tions with many different sensors. It has had only limit­
ed application, however, because of its computational 
demands; the amount of processing required grows as 
the square of the amount of input data. Early implemen­
tations concentrated on the surveillance of slow-moving 
targets (e.g., surface ships, boats, and helicopters). We 
have found that the velocity limit is a function not of 
the algorithm but of the sequential architecture in which 
it.was implemented. By applying parallel-processing tech­
mques, we have shown that the upper limit on velocity 
can be almost eliminated, making the algorithm suitable 
for a broader class of applications. 

Algorithm Basics and Computational Requirements 
The algorithm works by extracting a signal (8) from 

a combination of signal and noise [E E {8(x,y,z,t),N(t)}] 
through permutations on all events recorded in the 
retrospective memory during some past time period. A 
simple predictor of signal behavior (e.g., straight path at 
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a constant velocity) is used as the kernel algorithm for 
the permutations. Every new event is compared with all 
stored previous events to develop a velocity profIle rep­
resenting all potential trajectories of a target. If the predic­
tor of signal behavior is correct and old signals from the 
target are present, then the profIle will contain a peak 
that can be detected and compared with a threshold. If 
the peak is larger than the threshold, the event is classi­
fied as a target contact and sent out of the fIlter for fur­
ther processing. The event is then stored in the retro­
spective memory for comparison with future events, 
providing the basis for the retrospective search (Fig. 3). 

The efficiency of this algorithm in comparison with 
more traditional recursive (e.g., Kalman filtering) ap­
proaches was discussed by Bath. 16 In summary, for 
large densities of extraneous events, the nonrecursive so­
lution produces fewer ambiguities than the recursive so­
lution. By implementing a two-stage model using 
nonrecursive and recursive fIlters, the advantages of both 
approaches can be combined,17 although the approach 
requires an enormous number of computations. 

The ideal retro algorithm increases at a rate of O(n 2
), 

where 0 means on the order of and n is the number of 
past returns stored. To illustrate, consider the parameters 
for a hypothetical radar with a 4-s scan rate. With an 
input rate of 250 events per second, a radar with a 4-s 
scan rate will record 8000 events over 32 s or eight scans 
(the filter's depth). Events in the same scan are not per­
muted with one another but only with the other seven 
scans. Therefore, each new event must potentially be per­
muted with 7000 previous events. With an input rate of 
250 events per second, each permutation must be com­
pleted within 4 ms for the fIlter to keep up with real time. 
A total of 1,750,000 comparisons must be performed 
every second! If the input rate is increased to 500 events 
per second, 14,000 comparisons must be performed in 
2 ms for a total of 7,000,000 comparisons per second 
(doubling of the input rate quadruples the number of 
computations) . 

Limiting the Number of Correlations 
Past implementations relied on traditional sequential 

computer architectures to perform these calculations 
(e.g., a single Motorola 68020), but the number of ker­
nel operations required by the retro algorithm far ex­
ceeds the abilities of current sequential machines. Various 
techniques have been used to reduce the number of com­
parisons so that the algorithm may be implemented on 
these architectures. 

For example, one technique divides the retrospective 
memory into a series of range and bearing sectors of 
roughly equal areas. A linked list of events is maintained 
for every sector. When a new event is available, an as­
sumption is immediately imposed on its maximum ve­
locity before any calculations are performed. By using 
this maximum velocity, the scan rate of the radar, and 
the retrospective memory's depth, a search envelope is 
defmed. Past events lying within sectors partially or com­
pletely contained by this envelope are then used for com­
parison. This technique has the advantage of substan­
tially reducing the number of comparisons required. 
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Figure 3. Block diagram of a retro, where r is range, () is bear­
ing, t is time, and v is velocity. 

Only those events within a specified distance from the 
new event are used. Events outside the envelope are, for 
the most part, ignored. 

This technique has two distinct disadvantages. If one 
wants to track faster targets, the area of the envelope 
grows at a rate of O(n2

), where n is either the radius of 
the search envelope or the number of past events used 
for comparison. A larger envelope encompasses more 
events and increases processing requirements. The maxi­
mum radius of the envelope must therefore be carefully 
selected so that the sequential processor can perform the 
task. The second disadvantage occurs when the events are 
not uniformly dispersed over the sectors. If a large num­
ber of events occur in a small number of sectors, the num­
ber of comparisons has not been reduced; the processor 
will not finish the correlation before the next event is in­
put by the radar. This algorithm is thus prone to 
overflow. 

Locating the Parallelism 
Several ways of implementing the retro in many trans­

puters were tried. Some approaches mirrored the use of 
the linked lists, assigning a single processor to each 
range/bearing sector. These approaches suffered from 
a severe load-balancing problem; too many events in one 
sector would cause one processor to be overloaded while 
others were idle. Assigning one processor to a scan was 
also attempted, but this approach limited the maximum 
number of processors to the filter's depth. In addition, 
the use of spatial neighborhoods, not fixed as in the sec­
tors but dynamically changing, was envisioned, but the 
method of assigning neighborhoods and maintaining 
nonoverlapping regions was complicated and potential­
ly very time-consuming. 

The approach eventually implemented incorporates 
the neighborhood idea but uses time rather than loca-
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tion as its dimension. Instead of assigning events to a 
processor with a criterion based on physical orientation 
(e.g., sectors), new events are assigned to processors con­
taining previous events that have just occurred (i.e., time 
neighborhoods). A storage threshold is also used for load 
balancing to guarantee that a processor can always fin­
ish all computations before the next event is available. 
Thus, event storage is controlled by processing ability 
and current processor use. 

The network used to interconnect transputers is a sim­
ple pipeline with an end-around connection (Fig. 4). All 
transputers within the pipeline execute a copy of the par­
allel retro kernel. The end transputers require a slightly 
modified version to handle the end-around channel. A 
preprocessor interfaces to the front of the pipeline to 
provide input data; a postprocessor interfaces to the rear 
to scan for peaks in the velocity profIles. Both preproces­
sors and postprocessors are also implemented in trans­
puters. 

Cooperative Permutations 
Each transputer within the pipeline stores a number 

of past events N. It must be emphasized that each trans­
puter contains only a fraction of the total number of 
events stored in the retrospective memory. The sum of 
all events in all transputers corresponds to the complete 
retrospective memory in the sequential version. A brief 
description of how these events are stored is given in the 
next section. For this discussion, however, assume that 
each processor stores the same number of past returns. 

When the sensor detects a new event, a return mes­
sage consisting of range and bearing fields is sent to the 
preprocessor. The preprocessor appends the return with 
an initialized velocity profile histogram. The histogram 
is then transmitted to the first transputer in the pipe­
line. The transputer compares this event with its N lo­
cally stored events and updates the bins and velocity 
profiles in the histogram corresponding to the comput­
ed radial and angular velocities. After all N events have 
been correlated, the histogram is transmitted to the sec­
ond transputer, which then proceeds to compare this new 
event with its N stored events. This process continues 
down the pipeline, forming a computational wave­
front. 18,1 9 After the histogram is processed by the last 
transputer, it represents the complete velocity profile of 
this event compared with all past events stored in all pro­
cessors. As a fmal step, the postprocessor scans the histo­
gram, assigning a quality to each velocity profile. The 
highest quality found is compared with a threshold. If 
this quality is greater than or equal to the threshold, a 
contact message is issued by the filter. 

To allow simultaneous input/ output and processing, 
three processes are multitasked in each transputer. Two 
input/output processes operate at high priority, inter­
rupting the retro process when data must be transferred. 
These processes require very little overhead because their 
main function is to initialize the direct memory access 
units to send or receive a message. Use of a pipeline al­
lows many events and their histograms to be in various 
stages of construction at any time. For example, while 
transputer TI is comparing event ei ' transputer To is 

Johns Hopkins A PL Technical Digest, Volume 10, Number 3 (1989) 

Embedded Parallel Architectures in Real-Time Applications 

Retrospective 
processors 

Preprocessor ~ Postprocessor ,.-- ----.. 
Fro~~ • ., .~ ... ~ • ., .~~ 
sensor l J tracker 

Figure 4. Network topology for transputers used in the paral­
lel retro algorithm. 

comparing event ei+2 and transputer T2 is comparing 
event ei- 2' Event ei+ 1 is in transit from transputer To 
to T1 ; ei-I is in transit from transputer TI to T2 • 

Memory Management Through Time 
Neighborhoods 

The events in each transputer are stored in a set of 
time neighborhoods. When used with a scanning radar, 
one neighborhood corresponds to one full scan. Each 
neighborhood is implemented as a single threaded linked 
list. A set of pointers and a counter are used to imple­
ment the neighborhood. Two additional pointers are 
used to mark the current neighborhood and the oldest 
neighborhood, and yet another counter is used to keep 
track of the number of events stored in all neighbor­
hoods. Figure 5 illustrates the basic data structure. 

The distributed memory is maintained by using a stor­
age token and a memory threshold. The presence of the 
storage token in a processor causes the event fields in 
a histogram message to be stored in the local retrospec­
tive memory at the end of the current neighborhood. 
The memory threshold limits the number of events that 
anyone processor can store and is the basis for load 
balancing in the system. When a processor reaches the 
limit set by the memory threshold, it assigns the storage 
token to the next processor in the pipeline. The storage 
token thus travels around the ring, determining which 
processor has available processing resources to perform 
permutations against this event. Additional housekeep­
ing devices periodically purge the oldest scan of events 
stored by all processors. 

In certain environments, the number of events input 
by the radar may exceed the total storage and process­
ing capacity of all processors. Previous sequential-archi­
tecture implementations dealt with this problem by 
purging the oldest scan of returns early. Then, the retro 
operated in a degraded mode using one less scan of data. 
If the environment became more severe, more than one 
scan might be deleted early. This condition is handled 
in the parallel algorithm by forcing a processor receiv­
ing a storage token to purge the oldest neighborhood 
if the storage threshold has already been reached. Thus, 
degradation is limited to a neighborhood being deleted 
(which is normally a small portion of a scan) and not 
the entire oldest scan. 

Load Balancing 
One of the most important aspects of parallel al­

gorithms is load balancing, which helps maintain simi­
lar computational loads on all computing modules of 
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Figure 5. Data structure for time 
neighborhoods. 
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a parallel architecture. Without load balancing, one com­
puting module may become overburdened with compu­
tations while all others remain idle, destroying the 
advantages of using a parallel architecture. 

As previously mentioned, load balancing is im­
plemented within the memory-management algorithm. 
The total number of events N that each processor main­
tains is used as a threshold on the processor's peak pro­
cessing ability; N is selected so that the processor can 
maintain real time (Trt ) without falling behind. Note 
that N is a function of the processing power available 
and not the size of the processor's local memory. 

As an example of how N is selected, consider that the 
parallel algorithm is first implemented on a single pro­
cessor. A calibration test is then performed to determine 
the relationship between processor computation time 
Tp and the number of events N stored in the local 
retrospective memory. The resulting data for a 20-MHz 
T414 transputer used in early implementations are given 
as follows: 

Number Correlation 
of returns time (ms) 

1 0.068 
2 0.082 
5 0.123 

10 0.192 
20 0.335 
50 0.755 

100 1.457 
200 2.858 
500 7.062 

The next step is to select the input rate of return from 
the radar, fin' A typical value for fin is 250 returns per 
second. Thus, Trt (= lIfin) is found to be 4 x 10-3 s. 
We also need the maximum number of events N total that 
will be stored in the retrospective memory across all pro­
cessors: 

(1) 

where Tscan is the scanning period of the radar and D 
is the number of scans of data stored in the retrospec­
tive memory (the filter's depth). 
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To calculate a rough estimate of N, we can use the 
inequality 

(2) 

Interpolating the data given in the preceding paragraph 
for the 20-MHz T414 transputer, we find that for Trt = 
4 X 10 - 3 s, N = 281 returns. Thus, if a processor is 
forced never to store more than 281 returns, it will al­
ways maintain the real-time input requirement. Given 
N, the total number of processors required in the pipe­
line P can be determined as 

P = iNtotallNl (3) 

The ceiling function is required because a nonzero re­
mainder increases the number of processors by one. In 
this case, one of the processors will be slightly underuti­
lized. For the hypothetical installation discussed earlier, 
N total = 8000, so P = 29. 

Tuning with Input/Output Considerations 
To determine a more refined value for N, the in­

put/output transfer rate of the channels interconnect­
ing processors must be considered. Real time affects not 
only the number of computations each processor can 
perform but also the size and number of messages that 
can be transferred. To determine a refined value of N, 
the input/ output capacity of the parallel processor must 
be analyzed. 

To maximize the concurrency of input/ output and 
processing, three processes are multitasked: two processes 
perform input and output on the pipeline, and the oth­
er process executes the kernel algorithm. This arrange­
ment allows three histograms to be active in a processor: 
two in transit between stages of the pipeline and one in 
the process of being modified by the retro kernel. 

Two additional memory-to-memory transfers must be 
performed: one to move results from the kernel to the 
output buffer for transfer to the next pipeline stage, and 
one to move new data from the input buffer into the 
kernel's buffer. Thus, the input/output transfer rates of 
the external channels connecting the processors (Text) 
and of the internal channels connecting the buffers 
(Tint) must be measured. These rates are functions of 
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the hardware implementation and can be measured by 
using a simple benchmark program. The results for a 
20-MHz T414 using a 100Mb/s external channel and buff­
er memory mostly in internal 50-ns random-access mem­
ory are presented in Tables 1 and 2. 

To satisfy the constraints imposed by Trt , the follow­
ing input/output inequalities must be met (Eq. 4 is for 
the buffering processes, and Eq. 5 is for the kernel 
process): 

(4) 

(5) 

Use of the latter inequality instead of Equation 3 reduces 
the value of N by a small amount. Using our previous 
example, we find that N = 278 instead of 281; P re­
mains unchanged. 

Finally, the maximum latency through the pipeline, 
1Jatency, can be determined by 

1Jatency = P x (Text + 2 x Tint + Tp) + Text . 
(6) 

Table 1. Link-to-memory transfer rates of the T414 10-Mb/s link. 

Message size Transfer time Effective throughput 
(B) (ms) (MB/s) 

20 0.042 0.476 
40 0.079 0.506 
60 0.117 0.513 
80 0.153 0.523 

100 0.l90 0.526 
200 0.375 0.533 
400 0.746 0.536 

600 1.115 0.538 
800 1.485 0.539 

1000 1.855 0.539 

Table 2. Memory-to-memory transfer rates of the T414 internal 
(50-ns) memory. 

Message size Transfer time Effective throughput 

(B) (ms) (MB/s) 

20 0.015 1.333 

40 0.016 2.500 

60 0.016 3.750 

80 0.017 4.706 

100 0.017 5.882 

200 0.020 10.000 

400 0.025 16.000 

600 0.030 20.000 
800 0.035 22.857 

1000 0.050 20.000 

Embedded Parallel Architectures in Real-Time Applications 

Note that this delay is the maximum possible. If pro­
cessors store fewer than N events, then the value of Tp 
will be less than Trt • For our example using 29 proces­
sors, 1Jatency = 1.3 x 10 - 1 s. 

If the value of 1Jatency introduced is deemed excessive 
for the application, the delay can be reduced by con­
necting the processors with parallel pipelines. Figure 6 
illustrates a topology using four pipelines. The preproces­
sor has been modified to transmit all histograms to the 
four pipelines concurrently. The postprocessor then com­
bines all four histograms from the same return before 
performing target detection. Each pipeline has a front 
and back node with an extra channel. The back of each 
pipeline is connected to the front of the next to allow 
the storage token and unstored returns to circulate 
through a ring, as in the single pipeline. 

If x parallel pipelines with y processors in each are 
1JSed, then 1Jatency can be reduced to approximately 
Tlatency/x when y ~ 1. As y approaches 1, the increased 
processing at the postprocessor may degrade perfor­
mance over a configuration with fewer pipelines. Addi­
tionally, fan-in and fan-out may be constrained by the 
hardware implementation; for example, four pipelines 
are more easily handled in a transputer implementation 
than five pipelines. (Fan-in refers to the number of links 
coming into a unit, and fan-out refers to the number 
of links emanating from a unit.) 

Implementation 
The algorithm described in this article has been suc­

cessfully implemented and demonstrated to be practical 
with an array of 34 T414 transputers (Fig. 7). Thirty 
transputers were assigned to perform the parallel retro 
algorithm, one was used as a postprocessor to scan for 
peaks in the finalized histogram, and another simulated 
a radar, producing signals interlaced with uniformly dis­
tributed noise. The other two transputers provided in­
terfaces to the user: one interfaced to a terminal, and 
the other produced a color graphics display. The total 
processing power provided by the array was 340 million 
instructions per second. 

Retrospective processors 

Figure 6. Parallel pipelines that can be used to reduce latency. 
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Figure 7. Configuration of all transputer processes executing 
both the retro and supporting functions. 

Many simulated scenarios were tested. Figure 8 shows 
the graphics display from one of the tests. The region 
in the upper-left corner of the screen is a plan position 
indicator of all events, both signal and noise, from the 
entire test. The blue pixels represent noise, and the red 
pixels are signals identified by the filter. The region on 
the right is a load graph of the number of events stored 
per processor and thus the computational load for each 
transputer executing the retro kernel. The region in the 
lower left shows some of the scenario's parameters. 

PREDICTIONS FOR THE FUTURE 
During the two years of this investigation, the trans­

puter matured from the T414 to the TSOO. The T800 provid­
ed an on-chip, floating-point unit that improved 
floating-point computational rates by 2O-fold. More on­
chip memory was added (from 2 KB to 4 KB) to increase 
access to critical data and code. The link protocols were 
also refined, resulting in a doubling of the throughput 
rate. 

Since then, transputer technology has advanced 
primarily in software and network areas. Originally, all 
programming had to be performed in occam; today, 
compilers exist for almost any common programming 
language (e.g., Fortran, Pascal, C, Basic, Modula-2, 
Prolog, Lisp, Forth, and Ada). Software tools are also 
emerging to provide better debugging and load-balancing 
support. Networks, originally configured through hard­
ware jumpers on a backplane, can now be configured 
by software through the use of link crossbar switches. 
Static networks, which specify the same topology for the 
life of a program, are being augmented by quasi-static 
networks that provide the optimal topology for differ­
ent phases of a program (e.g., raw data are loaded by 
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Figure 8. Photograph of " retrospection in parallel " graphics 
plot. This test scenario injected 250 noise events per second 
over a signal containing 20 tracks. Noise is displayed in light 
blue, and tracks from the filter are shown in pink. The proces· 
sor load graph reveals that all 30 processors were maintaining 
near-maximum event loads. 

using a tree, intermediate results are exchanged by us­
ing a toroid, and results are unloaded by using a tree). 
Dynamic networks, which allow hundreds to thousands 
of direct connections between transputers to be created 
and destroyed per second, are also being investigated. 

Within the near future, embedded parallel processing 
will find continued acceptance. The hardware technol­
ogy will continue to increase computational rates and 
input! output bandwidths by at least an order of mag­
nitude; VLSI and ultra large scale integrated circuits con­
taining 10 to 100 processing elements on a single chip 
will become more commonplace. Whereas architectures 
containing a total of 10 to 100 processing elements are 
common today, 1000 to 10,000 elements will be com­
mon tomorrow. 

To assist people in using this massive computing as­
set, computer-assisted software engineering tools will be 
developed to perform functions that are currently done 
by hand. Many of these tools will evolve from computer­
aided engineering tools used for circuit layout and simu­
lation because many operations in parallel-program de­
velopment are similar to circuit design (e.g. , mapping 
processes and channels to processors is very similar to 
routing circuit connections between chips to produce a 
printed circuit board). These new tools will provide in­
sight into locations of parallelism within a sequential pro­
gram, suggest usable network topologies, help configure 
the program for execution on the hardware, and fine­
tune the application during run time. 

Application areas for parallel architectures will con­
tinue to appear. Scientists and engineers will use paral­
lel processors to solve today's problems in record time 
and to provide the solutions to problems numerically un­
solvable today. Embedded systems using parallel pro-
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cessing will appear in all types of military platfonns (e.g., 
surface, subsurface, airborne, and spaceborne). We are 
just beginning to understand and select application areas 
for parallel processing that can use the processing rates 
available and provide system solutions where tradition­
al techniques are limited. 
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APPENDIX 

A TUTORIAL ON PARALLEL 
ARCHITECTURES 

To describe the differences and similarities between various parallel 
architectures, a loose set of definitions has been informally adopted 
by the computing community. The basis for these terms comes from 
a taxonomy defined by Flynn. AI Additional classifications have been 
developed by Feng, A2 Handler, A3 and most recently Skillicorn, A4 but 
Flynn's taxonomy continues to be used as the standard. 

Flynn described parallel architectures as a function of the location 
of parallelism in instruction and data streams. A stream could contain 
one source (single) or many sources (multiple) of instructions or data. 
Using all possible combinations, Flynn specified four different architec­
tures: single-instruction single-data (SISD), single-instruction multiple­
data (SIMD), multiple-instruction single-data (MISD), and multiple­
instruction multiple-data (MIMD). 

An SISD architecture is typical of today's sequential computer sys­
tems. An SISD machine is composed of a single processing unit attached 
to a local memory (Fig. AI). The local memory contains instructions 
for both the processing unit and data to be operated on by those in­
structions. SISD refers to the presence of a single instruction stream 
and single data stream between the processing unit and local memory. 

Parallelism within an SISD architecture is very limited. The internal 
organization of the processing unit may contain a pipeline to parallel­
ize instruction fetch, decode, and execution stages and may also con­
tain multiple functional units (e.g., adders, multipliers, and shifters) 
that can operate concurrently. Separate instruction and data memo­
ries may be available to improve memory bandwidth. An optional in­
putloutput processor may be attached to the local memory, allowing 
the processing of instructions and transfer of data to proceed concur­
rently, but all algorithm executions and data manipulations are still 
performed solely by the single processing unit. 

An SIMD architecture (Fig. A2) is composed of several processing 
units, each connected to a separate local memory containing all or part 
of a program's data. All processing units are under the control of a 
central control processor that feeds instructions from a central instruction 
memory to all processing units. Parallelism in computations is achieved 
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Figure A1. A single-instruction single-data (SISD) architecture. 
The term 1/0 denotes input/output. 

by allowing each processing unit to execute the same instruction but 
on different local data. Extra features can be added to the architec­
ture to allow processing units to communicate with one another and 
the control processor through a communications network. Addition­
ally, the control processor may inhibit the execution of an instruction 
by any processing unit through the use of an instruction-mask 
mechanism. 

The processing units of an SIMD architecture are usually much less 
complex than the control processor or processing units found in SISD 
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Figure A2. A single·instruction multiple-data (SIMD) ar· 
chitecture. 

or MIMD architectures, but because of their simplicity, many more can 
be provided. For example, the Goodyear Aerospace massively parallel 
processor (MPP) has 16,384 processing units, each capable of operat­
ing on a single bit of datum. A5 Likewise, the local data storage is 
usually quite small; each MPP processing unit has 1024 b of local data. 
The control processor is much more complex and will typically be a 
16- or 32-b sequential computer similar to a Motorola 68000 or 68020. 
A large instruction memory is usually provided as well. 

In an MISD architecture, multiple processing units execute different 
instructions on the same data stream (Fig. A3). Each processing unit 
contains a separate local memory from which instructions are execut­
ed. Data to process are either available in a global memory or copies 
are provided in local data memories to reduce contention. One exam­
ple of this architecture's use is in signal processing. A single stream 
of raw sampled data may be processed differently to detect features 
(e.g., correlate in one processor, autocorrelate in another, and fast Fou­
rier transform in a third). 

Many algorithms have multiple data streams and/ or multiple instruc­
tion streams, but few have the single data and multiple instruction 
streams required to best use this architecture. An MIMD architecture 
can mimic MISD and also provide data parallelism. Thus, of the four 
classes, MISD has not found favor within commercial parallel systems; 
it is used mainly in very specialized applications. 

An MIMD architecture consists of processing units operating on mul­
tiple data streams with multiple instruction streams. Unlike the pro­
cessing units in an SIMD architecture, each MIMD processor is quite 
complex. Typically, the processor has a 32-b word size and can exe­
cute a wide variety of instructions (including floating point). A vector 
(as well as a scalar) floating-point unit may also be provided to per­
form repeated operations on arrays efficiently. Although not specified 
by Flynn, two different configurations for MIMD exist: loosely and 
tightly coupled. The coupling term specifies the connections between 
the processing units and memories and the method used for interproces­
sor communications. 

In an MIMD tightly coupled architecture, the processing units and 
memory modules are connected through a communications network 
(Fig. A4). Any processing unit may access data in any memory mod­
ule. Optional input/ output processors may also be present, which shuffle 
data between the memories and the real world. A guard mechanism 
must be provided in hardware and/ or software to prevent multiple pro­
cessing units and input/ output processors from accessing the same lo­
cation in a shared memory module at the same time. To alleviate 
congestion in this guard function, each processing unit may have pri­
vate access to a local memory that contains code and/ or data. This 
memory may be organized as random-access or cache memory. 

Processors communicate with each other by leaving messages in mail­
boxes. A mailbox is simply a set of locations in shared memory desig­
nated to contain messages from or for a processor. Messages are usually 
short and contain references to address pointers that specify the loca­
tion of data to be processed within the memory modules. 

An MIMD loosely coupled architecture, on the other hand, does not 
rely on shared global memory for communications. Each processing 
unit is coupled to a private local memory. An input/ output processor 
or direct memory access device is used to transfer data between the 
local memory and a communications network (Fig. A5). Dual-ported 
memories may also be used to interconnect two processing units in a 
loose fashion. As in the tightly coupled machine, a guard must also 
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Figure A3. A multiple-instruction single·data (MISD) ar­
chitecture. 

Figure A4. A tightly coupled multiple·instruction multiple-data 
(MIMD) architecture. The term 110 denotes input/output. 

Figure AS. A loosely coupled multiple-instruction multiple-data 
(MIMD) architecture. The term 110 denotes input/output. 
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be provided to prevent the simultaneous access of memory by two or 
more devices. Because a smaller number of devices are contending for 
the local memory, however, the guard function can be much simpler 
and operate much faster. 

Processors communicate by transmitting messages to one another 
over the communications network. Multiple direct memory access units 
may exist in a single processor to allow simultaneous conversations with 
other processors to take place. Because data may be stored in differ­
ent locations in each processing unit's local memory, messages must 
contain all data required for processing and not just references using 
pointers. 

Each MIMD configuration has a variety of advantages and disadvan­
tages. In loosely coupled systems, the main advantage tends to be easy 
expandability. Because the number of direct memory access units or 
input/output processors scales linearly with the number of processing 
units, the addition of more processing units is likely to result in a lin­
ear speedup in processing power, given that the network topology can 
handle the increased input/ output throughput. Thus, more powerful 
parallel processors can be constructed with this configuration. Other 
advantages include low memory access contention, better fault toler­
ance, and a higher aggregate input/output bandwidth when all chan­
nels in the network are considered. The chief disadvantage lies in the 
low input/output rates between computing units. Additional disadvan­
tages include input/output bottlenecks and the increased amount of 
memory required because each computing unit must maintain its own 
set of data and instructions. 

In contrast, tightly coupled systems have relatively high data-transfer 
rates between processors because memory modules are used for com­
munication. Additionally, data and instructions can be shared between 
processors, thus reducing the amount of memory required. This con­
figuration has a number of disadvantages, however, including memo­
ry access contention between multiple processors accessing a common 
memory, generally limited expandability in comparison with loosely 
coupled systems, lower number of main processors possible, and gener­
ally smaller parallel-processing systems. 

Communications networks may be implemented in a variety of to­
pologies, including single bus, multiple buses, rings, trees, meshes, 
toroids, hypercubes, and fully connected networks (Fig. A6). A6 The 
type of topology used depends on the number of processors provided, 
the bandwidth of the network connections, and the cost of the inter­
connection hardware. In contrast, the best topology for an algorithm 
is one that matches the communications patterns associated with a pro­
gram's parallelism. Many vendors try to make a network that is general 
purpose for a large number of users, whereas others try to provide 
a network that can be reconfigured for each user. 

Many implementations of theSe basic forms exist today. The SIMD 

architecture has traditionally supported the largest number of proces­
sors, although each processor is quite simple (e.g., a bit processor), 
whereas MIMD loosely and tightly coupled architectures have fewer pro­
cessors, but each is more sophisticated in nature. Loose coupling is 
currently more popular than tight coupling because it can support more 
processors and can have near-linear increases in speedup with the ad­
dition of processors. Many hybrids are appearing, however, which pro-
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Hypercube 

Figure A6. Some examples of topol­
ogies of communications networks. 

vide either SIMD/ MIMD modesA7 or loosely/ tightly coupled modes. A8 

As processor and network technology improves, the differences between 
all parallel architectures will most likely converge. 
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