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QUEN: THE APL WAVEFRONT ARRAY PROCESSOR 

Developments in computer networks are making parallel processing machines accessible to an increas­
ing number of scientists and engineers. Several vector and array processors are already commercially 
available, as are costly systolic, wavefront, and massive parallel processors. This article discusses the Ap­
plied Physics Laboratory's entry: a low-cost, memory-linked wavefront array processor that can be used 
as a peripheral on existing computers. Available today as the family of QUEN processors, it is the first 
commercial parallel processor to bring Cray 1 computation speeds into the minicomputer price range. 

INTRODUCTION 

The QUEN is an implementation of the memory-linked 
wavefront array processor 1 (MWAP) technology devel­
oped at the Applied Physics Laboratory with indepen­
dent research and development funding. Based on the 
concept of waves of computation traveling through an 
array of processors,2 it was created to provide high­
speed solutions of numerically intensive computational 
algorithms. In its most general form, shown in Figure 1, 
the array is configured as an N-dimensional mesh of pro­
cessors, each operating as an independent unit that exe­
cutes instructions stored in its private, local program 
memory. Data for each processor are contained in mul­
tiport memories connected to the adjacent processor on 
its boundaries. Computation and data flow in the mesh 
are controlled with hardware synchronization structures 
(flags) in each multiport memory. 

Because each processing element in the array has a 
large memory in its data path, a simple linear array of 
processors can implement a wide range of data topolo­
gies. For example, the linear array can operate as a two­
dimensional array by implementing a column of the ar­
ray at each node, as shown in Figure 1, or it can oper­
ate as a three-dimensional array by implementing a 
vertical plane of the array at each node. Thus, linear 
MWAP arrays can be used for the high-speed computa­
tion of .many problems. 

QUEN is the trademark of Interstate Electronics Corp., 
Anaheim, Calif., for a family of MWAP'S being market­
ed for military applications and for commercial use as 
attachments to VAX/VMS host computers and SUN work 

stations. The members of this family of processors are 
differentiated by the number of processing elements in 
a system. The largest unit is a QUEN 64, providing 1.28 
billion floating-point operations per second. Two smaller 
QUEN 8 units, each providing 128 million floating-point 
operations per second, are installed at APL; one, in the 
Kossiakoff Center, is installed on the JHU/ APL computer 
network and is open for general use, and the other is 
installed in the Sonar Program Analyzer (SPAN) labora­
tory for use in sonar signal and image processing. 

QUEN MW AP ARCHITECTURE 
The QUEN MW AP is a high-speed programmable pro­

cessor consisting of a host computer interface and a lin­
ear array of processing elements interleaved with dual­
port memories (DPM'S). Figure 2 shows a system block di­
agram of the QUEN MW AP. It uses a multiple-instruction 
multiple-data architecture at its array architecture level, 
allowing both medium- and coarse-gain parallelism to be 
used at the array level. Each node in the processor con­
sists of a DPM and a horizontally microprogrammed 
single-instruction, multiple-data processing element, which 
enables parallelism in computations to be used at the pro­
cessing element. 

Each QUEN processing element provides fixed- and 
floating-point operations on both 32- and 64-bit data, with 
hardware-supported multiplication, addition, subtraction, 
and logic operations. The processor element also gives 
hardware support for floating-point divide and square­
root operations. The element uses 64-bit-wide instruction 

Figure 1. One-, two-, and three-dimensional MWAP configurations, showing dual-port memory (red) and processor elements (blue). 
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QUEN processor 

Figure 2. Basic QUEN system architecture, with dual-port 
memory (red) and processor elements (blue). 

words with five separate operation-code fields. This per­
mits simultaneous execution of a left and right DPM oper­
ation; a multiplier operation; an arithmetic unit operation 
such as addition or subtraction; and a conditional branch 
operation based on a loop counter or arithmetic test re­
sult, with loop counter and data address modifications. 
Instructions executed by the processing element are 
fetched from a local program memory over a separate 
64-bit bus. The fetch and execution of instructions are 
overlapped for efficiency, with zero instruction delay be­
tween the detection of a branch and the execution of the 
instruction at the branch address. This highly parallel 
structure in the processing element allows the overhead 

of array indexing, loop counting, and data input and out­
put to be performed simultaneously with up to two arith­
metic operations; in fact, the processing element can 
execute loops that consist of one instruction. (The instruc­
tion jumps back to itself until the loop counter expires.) 
This parallelism results in much faster execution of pro­
grams than with conventional architectures. Each process­
ing element can sustain computation rates approaching 
16 million floating-point operations per second. 

The DPM'S provide local data storage, synchroniza­
tion, and interprocessor communications. The proces­
sors connected in each side of the memory can access 
(read or write) to the memory simultaneously. The two 
memory ports, in a single DPM, operate asynchronous­
ly, allowing each processor to run independently and per­
mitting the array to be extended to any length. A new 
memory operation can be initiated at each port of ev­
ery processor instruction cycle, matching the memory 
bandwidth to the processor bandwidth. In addition, each 
memory port performs address calculations, using an ad­
dress generator as shown in Figure 3. Each address 
generator contains 16 independent register pairs and an 
address modification circuit. In each pair, the base reg­
ister is loaded once, and the address register is modified 
during each memory access by the value specified in the 
base register. This modification can increment, decre­
ment, bit-reversed-address increment, or reset the address 

.------------~ Host computer I~-------------, 

I ~ Smart memory node -----~~I 
Arithmetic unit 

DPM 
DPM Figure 3. QUEN node structure. 

DPM~----~--~~~DPM 
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register to the base address. All memory operation ad­
dresses are handled by this structure. Finally, each DPM 

contains two flags by means of which each processing 
element can control access to blocks of shared memory 
through instructions that allow it to set or reset the flags 
and hold instruction execution on the basis of flag tests. 

The interface of the MW AP to the host computer pro­
vides bidirectional communication and control of the ar­
ray through the first and last DPM'S. Programs are 
loaded into the array by placing the program code in 
the first DPM and propagating the code to the appropri­
ate node. Computation is done by placing data in the 
first (and possibly last) DPM and placing the array in the 
run mode. These load and compute functions are con­
trolled by activating the array processing states described 
in the boxed insert. In addition, the host controls com­
putations by access to the first and last DPM flags. 

The foregoing description of hardware interconnections 
and operation of the MW AP architecture obscures the cen­
tral MW AP concept of a computation wavefront travel­
ing down the array. Each node in the array modifies a 
term in the wavefront, or transforms the wavefront in­
formation, and acts as a secondary source responsible for 
propagation of the wavefront. Computation wavefronts 
can be used to compute individual terms in a function, 
recursions in an algorithm, or sequential algorithms on 
the data in the wavefront. The concept is similar to a 
wavefront traveling through water or air; as the wave 
moves through the medium, it is modified by the medi­
um. For the MWAP, the medium is the memory contain­
ing the data. Thus, the MW AP processor can be conceptu­
alized as "smart" memory propagating a computation 
from its input to its output, as shown in Figure 4. 

MW AP PROGRAMMING 
To obtain the optimum performance from any com­

puter, the program must always be designed to suit the 
architecture of the computer, even on serial computers 
such as the VAX machines, vector computers such as the 
Cray 1, and parallel machines such as the NCube. That 
is why a carefully written assembler code, which takes 
into account the structure of the computer, can still out­
perform the code produced by the most sophisticated 
compilers. What has changed with the advent of paral­
lel computers is the ratio between the performance of 

Host computer ..... -----, 

x 

f(x) g[f(x)] h (g [f(x)]} 

Figure 4. Wavefront computation concept used in the QUEN. 

Computation waves are modified at each memory node as they 
propagate through the processor (circles represent smart mem­
ory nodes). 
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QUEN PROCESSOR STATE DESCRIPTIONS 

Reset 
Causes all processing elements and DPM to go into the 

reset state; that is, address register zero for each DPM is set 
to zero and put in the increment by one normal addressing 
mode, while flag one in each left DPM is reset (enabling 
each processing element to access the memory to its right). 

Pause 
Causes each processing element to go into the pause state; 

that is, each element stops normal execution. 

Load 
Causes each processing element to go into the load state, 

wherein each element attempts to load the information from 
the left DPM, using address register zero, into the element's 
control random access memory. This process will not start 
until flag one in the left DPM is set. Also, if the element is 
in the load state and the host issues a run command, the 
element will not go into the run state until the load has been 
completed. 

Run 
Causes each processing element to go into the run state; 

that is, each element starts normal execution. 

a good and a bad computer program. The ratio is not 
likely to exceed a factor of two or three on a serial ma­
chine, whereas factors of ten and more are common on 
parallel computers. 3 

We have implemented application programs on the 
QUEN MW AP in many areas, including image processing, 
signal processing, scientific computation, and artificial 
intelligence. Each program was written in the C language 
or Fortran language using subroutine calls for QUEN 

computations. The QUEN subroutines were written in the 
QUEN language, which resembles the C language. The 
QUEN assembler and linker were then used to obtain fIles 
for loading into the QUEN processor. A subroutine call 
from the host language then loaded the program fIle into 
the QUEN, and computations were done by QUEN calls 
to send and receive data from the processor. For all ap­
plication programs, the performance improvement over 
using a VAX 11l78O-Class computer alone was not less than 
a factor of 50. Speed improvement factors of several 
hundred were obtained for problems implemented with 
wavefront propagation. 

PROGRAMMING METHODS 
There are two basic methods for programming data 

flow through the MWAP: the block method, in which a 
problem is partitioned into computational blocks pro­
cessing at each node, and the cascade method, in which 
a stream of data is sent to the MW AP, propagated 
through each processor node, and returned to the host. 
Any computation can be done on the MW AP using the 
block method. If the computation time in each process­
ing element is equal to or significantly greater than the 
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data input! output time, the method will be effective and 
will improve the performance of the host machine. The 
cascade method achieves the highest use of MWAP hard­
ware resources and the highest computation speed, since 
data are being passed and processed concurrently. It in­
cludes programming the MW AP as a systolic array, a 
data-flow array, and a wavefront array. It is more dif­
ficult than the block method because a cascade-type al­
gorithm must be found for the computation. This type 
of algorithm does not exist for all computations and is 
not usually obvious when it does exist. Thus, ultrahigh­
speed computation has a price. 

As an example of the block method of MW AP 

programming, consider the parallel canonic-form digi­
tal filter shown in Figure 5. The data are passed (pipe­
lined) down the array to all except the last node. 
Computations begin in each node once all the nodes have 
received the correct number of data points. After all 
computations are complete, the results are passed to the 
last node, which sums the results and sends the com­
pleted output to the host. 

Contrast this with the cascade method, shown in Fig­
ure 6. Here, the MW AP receives a stream of data, which 
goes to the first node in the array. This node transforms 
the data and passes the result to the next node. Each 
node in turn receives the output of the previous node, 
transforms the data, and sends the result to the next 
node. The final result exits the last node to the host com-

Signal flow graph 

QUEN: The APL Wavefront A rray Processor 

puter. During node computations, the data are simulta­
neously transformed and passed. We have improved 
performance by matching the topology of the algorithm 
to that of the MWAP, with each node implementing a 
stage in the digital filter. 

The cascade method can also be used to implement 
systolic algorithms on the MWAP. Nodes are assigned 
and synchronized to pump computations rhythmically 
through the array in equal time slots. For a digital fil­
ter, this can be done by expressing the filter as a differ­
ence equation: 

Yo 

Y\ 

Y2 

N 

Yz = E BkZ -kX z -
k=O 

Writing the first four time terms for N = M = 3, 
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Figure 5. Parallel canonic filter im-
Y(k) plementation on the QUEN. (Z- i im­

plies X is delayed i times; A and C 
are filter coeffic ients.) 
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Figure 6. Cascade canonic filter 
mapping to the QUEN. (Z -i implies X 
is delayed i times; A and B are filter 
coefficients.) 
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We see that the systolic digital filter can be implement­
ed using four propagating wavefronts: a wavefront of 
inputs X propagating to the right, a wavefront of in­
puts Y propagating to the right, summations of BX 
propagating to the right, and summations of A Y 
propagating to the left. 

This systolic computation can be done on the MW AP , 

since data can flow in either direction in the array and 
timing can be imposed using the node flags. The result­
ing computation flow is shown in Figure 7. Time in the 
figure is the number of instructions it takes to read two 
data items, write two data items, and compute the 
AX + B summation. The entire set of operations re­
quires two instructions in the MWAP. Noting that every 
other time cycle must be idle to permit computation and 
feedback of the BY summation terms in synchroniza­
tion with the AX summation terms, the systolic im­
plementation computes a result every four instruction 
cycles, or 2 million results per second. 

The cascade method can also be used to implement 
wavefront algorithms. Here the nodes in the array re­
quire only assignment of computing tasks, since com­
putation at each node takes place only when all required 
data for the node are available. Implementation of the 
digital filter with a wavefront algorithm is shown in Fig­
ure 8. The same computations and wave fronts are used 
as in the systolic algorithm, but idle time for synchroni­
zation is not required. Thus, the wavefront method is 
twice as fast as the systolic method. 

Figure 7. Systolic computation of 
a digital filter. 
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FAST FOURIER TRANSFORM 
Much of the current revolution in the application of 

digital signal processing is a result of the ability to map 
signals into the frequency domain efficiently. The basic 
equation for the discrete Fourier transform (DFT) is de­
fined as 

N-l 

X(m) = E x(k) W~k , (1) 
k=O 

where m = 0, 1, . . . ,N - 1, and W N = exp( - j . 
27r/N). 

Direct computation of this transformation, for N = 
4196, requires about 10 min on a machine such as the 
IBM 7094; by contrast, the same transformation using a 
class of algorithms known as the fast Fourier transform 
(FFT) requires about 2.5 s, and one using the MWAP re­
quires less than 0.75 ms. 

The key to FFT'S is to reduce or eliminate the redun­
dancy in the DFT equation. The cyclic nature of W;;;k 
creates this redundancy (see Fig. 9) and is reduced by 
dividing the sequence into smaller ones. One strategy, 
the decimation-in-time approach, divides the sequence 
into odd and even sample sequences. An N-point se­
quence can then be transformed by combining the DFT'S 

of these two NI2 sequences: 

Y wave - -

12 - - - - - - - - - - -
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QUEN: The APL Wavefront Array Processor 

Y2 = B2 XO + B1 Xi + BOX2 
- (A 2 Yo + A1 Y1 ) 

Sum ~ Reverse AY wave 

Forward E wave ~ ~ Forward Y wave ~ 
Figure 8. Wavefront propagation for a digital filter. 

Figure 9. Cyclic nature of the exponential function W'lJk (see 
Equation 1) in the Fourier transform. 

XI (k) = x(2k) 

k = 0,1, .. . , (N/2) - 1 

X2 (k) = X (2k + 1) , 

yielding X(m) = XI (m) + WNkX 2 (m) 
The division into odd and even sequences, shown in 

Figure 10, is continued until the problem is reduced to 
computing and combining a series of two-point trans­
forms called butterflies: 

X = A + WNB 

Y = A - WNB =r
A X 

W~ ~ 
B Y 
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To compute the FFr, the butterfly computation is 
done NI2 times in each MWAP node as it computes one 
column, or stage, of the FFr. As each node completes 
its computation of a stage, the result is propagated to 
the next node. Thus, for each Fourier transform, a wave 
of computations flows down the array, starting with the 
left-most node in the array and ending in the right-most 
node. Because each node operates on a transform 
wavefront once and is then free to accept a new 
wavefront, multiple Fourier transform waves can be 
traveling through the array simultaneously. Thus, a new 
FFr can begin every NI2 butterfly-computation times 
when log N nodes are used to compute the required 
(NI2) log N butterflies per FFr. 

The FFr illustrates a wavefront with changing shape 
as it travels down the array. Each node modifies, or 
transforms, the data in the wavefront and modifies the 
order of the data, or the shape of the wavefront. The 
changing of wavefront shape is handled by the address 
generators in each node. Read and write sequences are 
modified at each memory boundary. In Figure 10, each 
node reads on the left from A(O), B(O) and then from 
A(l), B(l), etc., but writes to the right in A(O), A(l) and 
then in B(O), B(l), etc. Four address generator registers 
are used at each node boundary to control the two com­
plex data buffers, A and B. This implements the cor­
rect data sequences for the computation. 

The FFr also illustrates an important feature of MW AP 

architecture-the ability to perform bit-reversed address­
ing. The algorithm requires that either the input or the 
output sequences be reordered as shown in Figure 11. 
The MW AP implements this reordering with reverse-carry 
addition in the address generator. Here the address 
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X(O) ---

X(4) w1l~ 
X(2) 

X(6) w1l>< 
X(1) Figure 10. Decimation·in·time FFT 

X(5) w1l>< (N = 8). 

X(3) 

X(7) w1l>< 
Stage 1 

Binary Bit-reversed Reverse-
address address carry 

~ / addition 

X(O) 000 000 ~ X(O) f- 000 
+1 

X(1) 001 100 ~ X(4) f- 100 
+1 

X(2) 010 010 ~ X(2) f- 010 
+_1_ 

X (3) 011 110 ~ X(6) f- 110 
+1 

X(4) 100 001 ~X(1) f- 001 
+1 

X(S) 101 101 ~X(S) f- 101 
+_1_ 

X(6) 110 011 ~X(3) f- 011 
+1 

X (7) 111 111 ~X(7) f- 111 
+1 

000 

Figure 11. Generation of bit·reversed addresses using reverse· 
carry addition. 

generator modifies an address by adding the increment 
value to the memory address, and the carry bit is 
propagated from the most significant to the least sig­
nificant bit. The result is cyclic bit-reversed addresses as 
shown in the figure. This addressing node is required 
for FIT and other transforms. It can also be used to 
generate cyclic addresses for implementing sorting, stack, 
and feedback loop operations. 

FRACTALS 
Consider the iterative equation Z = Z2 in the com­

plex number plane. If Z begins as a number inside the 
unit circle, it will iterate toward 0; any number chosen 
outside the circle wlll iterate toward infinity; and any 
number chosen on the circle will iterate to some other 
number on the circle. Every equation of the form Z = 
f (Z,C), where Z and C are complex numbers, poses two 
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questions. The first is: for all possible starting Zs and 
a constant starting C, what happens when Z is iterated? 
This is the Julia plane, named after Gaston Julia, a 
French mathematician. The second question is: for all 
possible Cs and a constant starting Z, what happens 
when Z is iterated? This is the Mandelbrot plane, named 
after Beniot Mandelbrot, a mathematician at IBM. Frac­
tals are a pictorial representation of either one of these 
questions. 

Mandelbrot fractals were obtained on the QUEN by 
computing the number of iterations required for the 
complex function to go to infinity: 

Z = Z2 + C , 

where C = X + iY, and X and Yare the coordinates 
of an image pixel. 

We of course did not wait for the numbers actually 
to go to infinity, but to some escape value T. If Z es­
caped within some number of iterations N, the X, Y pixel 
was assigned a color representing the number of itera­
tions required for escape. If not, it was assigned the color 
black. 

The algorithm is deceptively simple. Only a few in­
puts are required: the origin coordinates for the image, 
the increments for X and Y, the number of pixels- to 
compute in X and Y, and the maximum number of iter­
ations, N. But the problem requires massive computa­
tion and results in large output number sets. For 
example, a typical 400 x 400 pixel image, with N set 
at 1000 or more, results in 160,000 output data points 
and requires Z to be computed and tested hundreds of 
millions of times. This can be seen in the Fortran-like 
code fragment below: 

FOR 30 I = 1,400 
Y = Y + Yinc 

FOR 30 J = 1,400 
Z = complex (0,0) 
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x = x + Xinc 
C = complex (X, Y) 

FOR 10 k = 1, N 
Z = Z*Z + C 
If «REAL (Z)**2 + IMAG(Z)**2).GT.T) 

GOTO 20 
continue 

Set pixel color black 
Go to 30 

20 Set pixel color for value k 
30 continue 

The problem is not only computation bound, it also 
cannot be formed as a parallel algorithm using many 
processors to compute and test the function Z. The im­
age can, however, be generated on the MW AP using the 
following block programming method: 

1. The host sends origin coordinates, increments, 
and N to the first node. 

2. Each node passes this information to the next 
node, with the X origin offset by 50 increments. 

3. The first node computes 50 points in X, includ­
ing color transformation, and writes the results to its 
right. It then sets a ready flag to the right. Each succes­
sive node repeats this process and copies the results of 
the previous node to the right when it receives a ready 
flag from the left. It then waits for a clear flag from 
the right. 

4. The last node releases a 400-pixel X scan to the 
host and sends a clear flag to the left. 

5. Each node increments Y, and steps 3 and 4 are 
repeated until the image is complete. 

This procedure computes one-eighth of the image in 
each MWAP node and requires 21 MWAP instructions. The 
code segment below illustrates how the host uses MW AP 

from the Fortran language: 

Call QUENINIT (MANDEL) 
Read X, Y, IncX, Inc Y, N 
Call QWRITE (X, Y, IncX, IncY, N) 

FOR 20 I = 1, 400 
Call QREAD (xdat) 

FOR 10 J = 1, 400 
10 Plotdata(l,J) = xdat (J) 
20 Continue 

Call Plot (Plotdata) 

The fractal shown in Figure 12 was done on a Micro­
V AX II work station, with N set to 10,000. It required 
over 4 h to compute using the Micro VAX II alone. Us­
ing the MWAP, the image was generated in 2.5 min. 

FEATURE EXTRACTION FROM IMAGES 
In some fields, we still cannot write mathematical 

equations that accurately describe processes of interest. 
If you were asked to describe the picture shown in Fig­
ure 13, you would probably say that it looked like a 
group of lines with a herringbone pattern in the back­
ground. This observation is easy for you, yet almost im-
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Figure 12. Mandelbrot fractal computed on the QUEN proces­
sor and displayed on a MicroVAX II work station. 

Figure 13. Feature extraction from gray-scale images using 
the QUEN (top, unprocessed; bottom, processed). 

possible for a modern digital computer. Part of the 
problem is that we do not yet fully understand the al­
gorithms of thinking. But part of the problem is also 
computation speed. The APL Strategic Systems Depart­
ment is applying the MW AP to image understanding us­
ing three techniques: pattern matching, cellular logic 
operations, and neural nets. 

In pattern matching, the inner product of pattern tem­
plate weights Wand image pixel vectors X are comput-
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ed, and a pattern is detected when a specified threshold 
is exceeded: W . X > T pattern is present. 

For example, suppose the center of the point template, 
shown in Figure 14, is moved around the image from 
pixel to pixel. At every position, we multiply every point 
of the image inside the template by the number indicat­
ed in the corresponding entry of the template and sum 
the results. If all image points inside the template area 
have the same value, the sum is zero. If not, the sum 
is different from zero and maximizes when the template 
is centered on a point feature. Thus, point features can 
be found by thresholding the inner product of the im­
age and template as the template is swept through the 
picture. This concept can be extended, by using differ­
ent templates, to detect various image features and can 
even detect transitions in the image by computing the 
two-dimensional gradient of the image. The MWAP has 
been programmed to perform template matching on im­
ages with up to 1024 x 1024 pixels using template sizes 
from 3 x 3 to 16 x 16. ~ 

Noise in images can be removed by cellular logic ftlters 
and by the augment and reduction operators. In a reduc­
tion operation, objects (pixels) are replaced by back­
ground elements if none of their immediate neighbors 
are objects. Conversely, augmentation causes back­
ground elements to be replaced by object elements if 
there are object elements in their neighborhood. A se- · 
quence of some number of reductions Q, followed by 
Q augmentations, removes "noise objects" of maximum 
dimension 2Q. The reverse procedure fills in object 
regions 2Q in size. These two procedures have been used 
on the image in Figure 13 to delete localized noise and 
connect vertical line segments. The result, shown in the 
figure, was computed and colored by the MW AP in less 
than 1 s. 

The problem in extracting information from sonar im-
ages has been precisely stated by Michael Roth. 

Pattern recognition of flxed patterns in stationary back­
grounds is a straightforward task for which numerous ef­
fective techniques have been developed. If the patterns or 
the backgrounds are variable in either a limited or known 

Figure 14. A layered neural-network 
architecture for extracting image fea­
tures using both feedforward and 
feedback connections on the QUEN. 
Dots represent noise, straight and 
curved lines represent patterns, and 
shapes represent point objects. 

Input 
image 

Layer 1 
Cellular 

manner, more complex techniques-such as those using 
methods based on artiflcial intelligence-can be effective. 
But if the patterns or backgrounds vary in an unlimited or 
unknown manner, the traditional approaches have not been 
able to furnish solutions. 4 

Expert systems, to date, have been unable to solve the 
feature extraction problem for sonar images, because 
analysts have not been able to define an effective rule set. 

A layered neural-network approach is being developed 
to either solve the problem or yield effective rule infor­
mation for an expert system. The network, shown in Fig­
ure 14 uses feed forward connections to analyze images 
and fe~dback connections to learn image characteristics 
and features. The concept is simple: first "show" the 
network a series of sonar images and their correct anal­
ysis, then determine how well the network learned the 
solutions by showing it new images. Sonar image anal­
ysis requires the synthesis of information across many 
images, each looking in a different direction for the same 
segment of time. A single "snapshot" in the so~a: en­
vironment may consist of 50 images, each contammg 1 
million pixels of multibit information. Thus, we have 
a computation-bound problem of first magnitude, and 
development to date has been limited by,the number and 
size of images that can be processed in a realistic amount 
of time. 

We are currently programming the QUEN to perform 
as a feedforward, feedback neural network in which each 
layer is represented by a memory node in the array. Each 
layer of the network will be able to contain up to 10,000 
neural nodes, have full bidirectional links with the ad­
jacent layers, and handle both binary and multilevel data 
repre~entations. The QUEN 8 will handle up to 8 layers; 
the QUEN 16, when delivered to APL, will handle up to 
16 layers. We estimate that either QUEN will perform 1 
million iterations of the network per second. 

SUMMARY 

The QUEN is a high-speed, multiple-instruction, 
multiple-data MW AP for use as a peripheral on a host 
computer or as a computation unit in a data processing 
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system. It is similar to systolic arrays such as the WARP 

machine,5 but distinctive in its asynchronous linking 
memories and hardware-implemented data-flow flags. 
These features extend the capabilities of the QUEN be­
yond those of systolic processors, providing a higher 
throughput rate for most algorithms, an expanded range 
of algorithms that can be implemented, and easier 
programming. 

A wide range of problems has been implemented on 
the QUEN at JHU/ APL and other universities. We have at­
tained respectable improvements in computation speed, 
ranging from factors of 50 to several hundred in each 
case. 

Because the QUEN is so new, a compiler has yet to be 
developed, which means that the user/programmer must 
decompose applications across the array. It is a myth 
that multiple-instruction, multiple-data machines are im­
possible to program. A coherent computational model 
exists for the QUEN in the wavefront computation con­
cept, and a full set of software tools exists under 
v AXlVMS for assembly, linking, and use of QUEN routines 
from the C and Fortran languages. The tools are no 
more difficult to learn than a new word-processor pack­
age. The QUEN becomes easy to use once people start 
thinking in parallel. 
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