
QUENTIN E. DOLECEK

QUEN: THE APL WAVEFRONT ARRAY PROCESSOR

Developments in computer networks are making parallel processing machines accessible to an increas­
ing number of scientists and engineers. Several vector and array processors are already commercially
available, as are costly systolic, wavefront, and massive parallel processors. This article discusses the Ap­
plied Physics Laboratory's entry: a low-cost, memory-linked wavefront array processor that can be used
as a peripheral on existing computers. Available today as the family of QUEN processors, it is the first
commercial parallel processor to bring Cray 1 computation speeds into the minicomputer price range.

INTRODUCTION

The QUEN is an implementation of the memory-linked
wavefront array processor 1 (MWAP) technology devel­
oped at the Applied Physics Laboratory with indepen­
dent research and development funding. Based on the
concept of waves of computation traveling through an
array of processors,2 it was created to provide high­
speed solutions of numerically intensive computational
algorithms. In its most general form, shown in Figure 1,
the array is configured as an N-dimensional mesh of pro­
cessors, each operating as an independent unit that exe­
cutes instructions stored in its private, local program
memory. Data for each processor are contained in mul­
tiport memories connected to the adjacent processor on
its boundaries. Computation and data flow in the mesh
are controlled with hardware synchronization structures
(flags) in each multiport memory.

Because each processing element in the array has a
large memory in its data path, a simple linear array of
processors can implement a wide range of data topolo­
gies. For example, the linear array can operate as a two­
dimensional array by implementing a column of the ar­
ray at each node, as shown in Figure 1, or it can oper­
ate as a three-dimensional array by implementing a
vertical plane of the array at each node. Thus, linear
MWAP arrays can be used for the high-speed computa­
tion of .many problems.

QUEN is the trademark of Interstate Electronics Corp.,
Anaheim, Calif., for a family of MWAP'S being market­
ed for military applications and for commercial use as
attachments to VAX/VMS host computers and SUN work

stations. The members of this family of processors are
differentiated by the number of processing elements in
a system. The largest unit is a QUEN 64, providing 1.28
billion floating-point operations per second. Two smaller
QUEN 8 units, each providing 128 million floating-point
operations per second, are installed at APL; one, in the
Kossiakoff Center, is installed on the JHU/ APL computer
network and is open for general use, and the other is
installed in the Sonar Program Analyzer (SPAN) labora­
tory for use in sonar signal and image processing.

QUEN MW AP ARCHITECTURE
The QUEN MW AP is a high-speed programmable pro­

cessor consisting of a host computer interface and a lin­
ear array of processing elements interleaved with dual­
port memories (DPM'S). Figure 2 shows a system block di­
agram of the QUEN MW AP. It uses a multiple-instruction
multiple-data architecture at its array architecture level,
allowing both medium- and coarse-gain parallelism to be
used at the array level. Each node in the processor con­
sists of a DPM and a horizontally microprogrammed
single-instruction, multiple-data processing element, which
enables parallelism in computations to be used at the pro­
cessing element.

Each QUEN processing element provides fixed- and
floating-point operations on both 32- and 64-bit data, with
hardware-supported multiplication, addition, subtraction,
and logic operations. The processor element also gives
hardware support for floating-point divide and square­
root operations. The element uses 64-bit-wide instruction

Figure 1. One-, two-, and three-dimensional MWAP configurations, showing dual-port memory (red) and processor elements (blue).

198 fohns Hopkins APL Technical Digest, Volume 10, Number 3 (1989)

QUEN processor

Figure 2. Basic QUEN system architecture, with dual-port
memory (red) and processor elements (blue).

words with five separate operation-code fields. This per­
mits simultaneous execution of a left and right DPM oper­
ation; a multiplier operation; an arithmetic unit operation
such as addition or subtraction; and a conditional branch
operation based on a loop counter or arithmetic test re­
sult, with loop counter and data address modifications.
Instructions executed by the processing element are
fetched from a local program memory over a separate
64-bit bus. The fetch and execution of instructions are
overlapped for efficiency, with zero instruction delay be­
tween the detection of a branch and the execution of the
instruction at the branch address. This highly parallel
structure in the processing element allows the overhead

of array indexing, loop counting, and data input and out­
put to be performed simultaneously with up to two arith­
metic operations; in fact, the processing element can
execute loops that consist of one instruction. (The instruc­
tion jumps back to itself until the loop counter expires.)
This parallelism results in much faster execution of pro­
grams than with conventional architectures. Each process­
ing element can sustain computation rates approaching
16 million floating-point operations per second.

The DPM'S provide local data storage, synchroniza­
tion, and interprocessor communications. The proces­
sors connected in each side of the memory can access
(read or write) to the memory simultaneously. The two
memory ports, in a single DPM, operate asynchronous­
ly, allowing each processor to run independently and per­
mitting the array to be extended to any length. A new
memory operation can be initiated at each port of ev­
ery processor instruction cycle, matching the memory
bandwidth to the processor bandwidth. In addition, each
memory port performs address calculations, using an ad­
dress generator as shown in Figure 3. Each address
generator contains 16 independent register pairs and an
address modification circuit. In each pair, the base reg­
ister is loaded once, and the address register is modified
during each memory access by the value specified in the
base register. This modification can increment, decre­
ment, bit-reversed-address increment, or reset the address

.------------~ Host computer I~-------------,

I ~ Smart memory node -----~~I
Arithmetic unit

DPM
DPM Figure 3. QUEN node structure.

DPM~----~--~~~DPM

fohns Hopkins APL Technical Digest, Volume 10, Number 3 (1989) 199

Dolecek

register to the base address. All memory operation ad­
dresses are handled by this structure. Finally, each DPM

contains two flags by means of which each processing
element can control access to blocks of shared memory
through instructions that allow it to set or reset the flags
and hold instruction execution on the basis of flag tests.

The interface of the MW AP to the host computer pro­
vides bidirectional communication and control of the ar­
ray through the first and last DPM'S. Programs are
loaded into the array by placing the program code in
the first DPM and propagating the code to the appropri­
ate node. Computation is done by placing data in the
first (and possibly last) DPM and placing the array in the
run mode. These load and compute functions are con­
trolled by activating the array processing states described
in the boxed insert. In addition, the host controls com­
putations by access to the first and last DPM flags.

The foregoing description of hardware interconnections
and operation of the MW AP architecture obscures the cen­
tral MW AP concept of a computation wavefront travel­
ing down the array. Each node in the array modifies a
term in the wavefront, or transforms the wavefront in­
formation, and acts as a secondary source responsible for
propagation of the wavefront. Computation wavefronts
can be used to compute individual terms in a function,
recursions in an algorithm, or sequential algorithms on
the data in the wavefront. The concept is similar to a
wavefront traveling through water or air; as the wave
moves through the medium, it is modified by the medi­
um. For the MWAP, the medium is the memory contain­
ing the data. Thus, the MW AP processor can be conceptu­
alized as "smart" memory propagating a computation
from its input to its output, as shown in Figure 4.

MW AP PROGRAMMING
To obtain the optimum performance from any com­

puter, the program must always be designed to suit the
architecture of the computer, even on serial computers
such as the VAX machines, vector computers such as the
Cray 1, and parallel machines such as the NCube. That
is why a carefully written assembler code, which takes
into account the structure of the computer, can still out­
perform the code produced by the most sophisticated
compilers. What has changed with the advent of paral­
lel computers is the ratio between the performance of

Host computer -----,

x

f(x) g[f(x)] h (g [f(x)]}

Figure 4. Wavefront computation concept used in the QUEN.

Computation waves are modified at each memory node as they
propagate through the processor (circles represent smart mem­
ory nodes).

200

QUEN PROCESSOR STATE DESCRIPTIONS

Reset
Causes all processing elements and DPM to go into the

reset state; that is, address register zero for each DPM is set
to zero and put in the increment by one normal addressing
mode, while flag one in each left DPM is reset (enabling
each processing element to access the memory to its right).

Pause
Causes each processing element to go into the pause state;

that is, each element stops normal execution.

Load
Causes each processing element to go into the load state,

wherein each element attempts to load the information from
the left DPM, using address register zero, into the element's
control random access memory. This process will not start
until flag one in the left DPM is set. Also, if the element is
in the load state and the host issues a run command, the
element will not go into the run state until the load has been
completed.

Run
Causes each processing element to go into the run state;

that is, each element starts normal execution.

a good and a bad computer program. The ratio is not
likely to exceed a factor of two or three on a serial ma­
chine, whereas factors of ten and more are common on
parallel computers. 3

We have implemented application programs on the
QUEN MW AP in many areas, including image processing,
signal processing, scientific computation, and artificial
intelligence. Each program was written in the C language
or Fortran language using subroutine calls for QUEN

computations. The QUEN subroutines were written in the
QUEN language, which resembles the C language. The
QUEN assembler and linker were then used to obtain fIles
for loading into the QUEN processor. A subroutine call
from the host language then loaded the program fIle into
the QUEN, and computations were done by QUEN calls
to send and receive data from the processor. For all ap­
plication programs, the performance improvement over
using a VAX 11l78O-Class computer alone was not less than
a factor of 50. Speed improvement factors of several
hundred were obtained for problems implemented with
wavefront propagation.

PROGRAMMING METHODS
There are two basic methods for programming data

flow through the MWAP: the block method, in which a
problem is partitioned into computational blocks pro­
cessing at each node, and the cascade method, in which
a stream of data is sent to the MW AP, propagated
through each processor node, and returned to the host.
Any computation can be done on the MW AP using the
block method. If the computation time in each process­
ing element is equal to or significantly greater than the

fohns Hopkins APL Technical Digest, Volume 10, Number 3 (1989)

data input! output time, the method will be effective and
will improve the performance of the host machine. The
cascade method achieves the highest use of MWAP hard­
ware resources and the highest computation speed, since
data are being passed and processed concurrently. It in­
cludes programming the MW AP as a systolic array, a
data-flow array, and a wavefront array. It is more dif­
ficult than the block method because a cascade-type al­
gorithm must be found for the computation. This type
of algorithm does not exist for all computations and is
not usually obvious when it does exist. Thus, ultrahigh­
speed computation has a price.

As an example of the block method of MW AP

programming, consider the parallel canonic-form digi­
tal filter shown in Figure 5. The data are passed (pipe­
lined) down the array to all except the last node.
Computations begin in each node once all the nodes have
received the correct number of data points. After all
computations are complete, the results are passed to the
last node, which sums the results and sends the com­
pleted output to the host.

Contrast this with the cascade method, shown in Fig­
ure 6. Here, the MW AP receives a stream of data, which
goes to the first node in the array. This node transforms
the data and passes the result to the next node. Each
node in turn receives the output of the previous node,
transforms the data, and sends the result to the next
node. The final result exits the last node to the host com-

Signal flow graph

QUEN: The APL Wavefront A rray Processor

puter. During node computations, the data are simulta­
neously transformed and passed. We have improved
performance by matching the topology of the algorithm
to that of the MWAP, with each node implementing a
stage in the digital filter.

The cascade method can also be used to implement
systolic algorithms on the MWAP. Nodes are assigned
and synchronized to pump computations rhythmically
through the array in equal time slots. For a digital fil­
ter, this can be done by expressing the filter as a differ­
ence equation:

Yo

Y\

Y2

N

Yz = E BkZ -kX z -
k=O

Writing the first four time terms for N = M = 3,

= BoX o
~

= BOX\ + B\XO (A\ yo)

= BOX 2
~ ~ + B\X\ + B2X O- (A \ Y\ + A 2 Yo)

/ /
X wave Ywave

BX wave - - AYwave

.. Y(k)

Figure 5. Parallel canonic filter im-
Y(k) plementation on the QUEN. (Z- i im­

plies X is delayed i times; A and C
are filter coeffic ients.)

MWAP algorithm map

Signal flow· graph

X(k)~ ••• ~Y(k)
/

BOi + B 1iZ - 1 + 8 2iZ - 2

1 + A1iZ - 1 + A2iZ - 2

X(k)

n

H(Z) II H i (Z)
i= 1

~
• •• ~Y(k)

MWAP algorithm map

Johns Hopkins A PL Technical Digest, Volume 10, N umber 3 (1989)

Figure 6. Cascade canonic filter
mapping to the QUEN. (Z -i implies X
is delayed i times; A and B are filter
coefficients.)

201

Dolecek

We see that the systolic digital filter can be implement­
ed using four propagating wavefronts: a wavefront of
inputs X propagating to the right, a wavefront of in­
puts Y propagating to the right, summations of BX
propagating to the right, and summations of A Y
propagating to the left.

This systolic computation can be done on the MW AP ,

since data can flow in either direction in the array and
timing can be imposed using the node flags. The result­
ing computation flow is shown in Figure 7. Time in the
figure is the number of instructions it takes to read two
data items, write two data items, and compute the
AX + B summation. The entire set of operations re­
quires two instructions in the MWAP. Noting that every
other time cycle must be idle to permit computation and
feedback of the BY summation terms in synchroniza­
tion with the AX summation terms, the systolic im­
plementation computes a result every four instruction
cycles, or 2 million results per second.

The cascade method can also be used to implement
wavefront algorithms. Here the nodes in the array re­
quire only assignment of computing tasks, since com­
putation at each node takes place only when all required
data for the node are available. Implementation of the
digital filter with a wavefront algorithm is shown in Fig­
ure 8. The same computations and wave fronts are used
as in the systolic algorithm, but idle time for synchroni­
zation is not required. Thus, the wavefront method is
twice as fast as the systolic method.

Figure 7. Systolic computation of
a digital filter.

2

6 -

7 - -

8

9 - -

10

11

FAST FOURIER TRANSFORM
Much of the current revolution in the application of

digital signal processing is a result of the ability to map
signals into the frequency domain efficiently. The basic
equation for the discrete Fourier transform (DFT) is de­
fined as

N-l

X(m) = E x(k) W~k , (1)
k=O

where m = 0, 1, . . . ,N - 1, and W N = exp(- j .
27r/N).

Direct computation of this transformation, for N =
4196, requires about 10 min on a machine such as the
IBM 7094; by contrast, the same transformation using a
class of algorithms known as the fast Fourier transform
(FFT) requires about 2.5 s, and one using the MWAP re­
quires less than 0.75 ms.

The key to FFT'S is to reduce or eliminate the redun­
dancy in the DFT equation. The cyclic nature of W;;;k
creates this redundancy (see Fig. 9) and is reduced by
dividing the sequence into smaller ones. One strategy,
the decimation-in-time approach, divides the sequence
into odd and even sample sequences. An N-point se­
quence can then be transformed by combining the DFT'S

of these two NI2 sequences:

Y wave - -

12 - - - - - - - - - - -

202 Johns Hopkins APL Technical Digest, Volume 10, Number 3 (1989)

Xo T = 1 T = 1 T = 1 Yo T = 1

BoXo

T = 1 T = 1

QUEN: The APL Wavefront Array Processor

Y2 = B2 XO + B1 Xi + BOX2
- (A 2 Yo + A1 Y1)

Sum ~ Reverse AY wave

Forward E wave ~ ~ Forward Y wave ~
Figure 8. Wavefront propagation for a digital filter.

Figure 9. Cyclic nature of the exponential function W'lJk (see
Equation 1) in the Fourier transform.

XI (k) = x(2k)

k = 0,1, .. . , (N/2) - 1

X2 (k) = X (2k + 1) ,

yielding X(m) = XI (m) + WNkX 2 (m)
The division into odd and even sequences, shown in

Figure 10, is continued until the problem is reduced to
computing and combining a series of two-point trans­
forms called butterflies:

X = A + WNB

Y = A - WNB =r
A X

W~ ~
B Y

fohns Hopkins APL Technical Digest, Volume 10, Number 3 (1989)

To compute the FFr, the butterfly computation is
done NI2 times in each MWAP node as it computes one
column, or stage, of the FFr. As each node completes
its computation of a stage, the result is propagated to
the next node. Thus, for each Fourier transform, a wave
of computations flows down the array, starting with the
left-most node in the array and ending in the right-most
node. Because each node operates on a transform
wavefront once and is then free to accept a new
wavefront, multiple Fourier transform waves can be
traveling through the array simultaneously. Thus, a new
FFr can begin every NI2 butterfly-computation times
when log N nodes are used to compute the required
(NI2) log N butterflies per FFr.

The FFr illustrates a wavefront with changing shape
as it travels down the array. Each node modifies, or
transforms, the data in the wavefront and modifies the
order of the data, or the shape of the wavefront. The
changing of wavefront shape is handled by the address
generators in each node. Read and write sequences are
modified at each memory boundary. In Figure 10, each
node reads on the left from A(O), B(O) and then from
A(l), B(l), etc., but writes to the right in A(O), A(l) and
then in B(O), B(l), etc. Four address generator registers
are used at each node boundary to control the two com­
plex data buffers, A and B. This implements the cor­
rect data sequences for the computation.

The FFr also illustrates an important feature of MW AP

architecture-the ability to perform bit-reversed address­
ing. The algorithm requires that either the input or the
output sequences be reordered as shown in Figure 11.
The MW AP implements this reordering with reverse-carry
addition in the address generator. Here the address

203

Dolecek

X(O) ---

X(4) w1l~
X(2)

X(6) w1l><
X(1) Figure 10. Decimation·in·time FFT

X(5) w1l>< (N = 8).

X(3)

X(7) w1l><
Stage 1

Binary Bit-reversed Reverse-
address address carry

~ / addition

X(O) 000 000 ~ X(O) f- 000
+1

X(1) 001 100 ~ X(4) f- 100
+1

X(2) 010 010 ~ X(2) f- 010
+_1_

X (3) 011 110 ~ X(6) f- 110
+1

X(4) 100 001 ~X(1) f- 001
+1

X(S) 101 101 ~X(S) f- 101
+_1_

X(6) 110 011 ~X(3) f- 011
+1

X (7) 111 111 ~X(7) f- 111
+1

000

Figure 11. Generation of bit·reversed addresses using reverse·
carry addition.

generator modifies an address by adding the increment
value to the memory address, and the carry bit is
propagated from the most significant to the least sig­
nificant bit. The result is cyclic bit-reversed addresses as
shown in the figure. This addressing node is required
for FIT and other transforms. It can also be used to
generate cyclic addresses for implementing sorting, stack,
and feedback loop operations.

FRACTALS
Consider the iterative equation Z = Z2 in the com­

plex number plane. If Z begins as a number inside the
unit circle, it will iterate toward 0; any number chosen
outside the circle wlll iterate toward infinity; and any
number chosen on the circle will iterate to some other
number on the circle. Every equation of the form Z =
f (Z,C), where Z and C are complex numbers, poses two

204

A(O) A (0) X(O)

A (1) A (1) X(1)

8(0)
wg

A (2) X(2)

8(1)
W~

A (3) X(3)

A (2) 8(0)
wg

X(4)

A (3) 8(1)
W~

X(5)

wg W~
8(2) 8(2) X(6)

8(3)
W~

8(3)
W~

X(7)

Stage 2 Stage 3

questions. The first is: for all possible starting Zs and
a constant starting C, what happens when Z is iterated?
This is the Julia plane, named after Gaston Julia, a
French mathematician. The second question is: for all
possible Cs and a constant starting Z, what happens
when Z is iterated? This is the Mandelbrot plane, named
after Beniot Mandelbrot, a mathematician at IBM. Frac­
tals are a pictorial representation of either one of these
questions.

Mandelbrot fractals were obtained on the QUEN by
computing the number of iterations required for the
complex function to go to infinity:

Z = Z2 + C ,

where C = X + iY, and X and Yare the coordinates
of an image pixel.

We of course did not wait for the numbers actually
to go to infinity, but to some escape value T. If Z es­
caped within some number of iterations N, the X, Y pixel
was assigned a color representing the number of itera­
tions required for escape. If not, it was assigned the color
black.

The algorithm is deceptively simple. Only a few in­
puts are required: the origin coordinates for the image,
the increments for X and Y, the number of pixels- to
compute in X and Y, and the maximum number of iter­
ations, N. But the problem requires massive computa­
tion and results in large output number sets. For
example, a typical 400 x 400 pixel image, with N set
at 1000 or more, results in 160,000 output data points
and requires Z to be computed and tested hundreds of
millions of times. This can be seen in the Fortran-like
code fragment below:

FOR 30 I = 1,400
Y = Y + Yinc

FOR 30 J = 1,400
Z = complex (0,0)

fohn s Hopkins APL Technical Digest, Volume 10, Number 3 (1989)

10

x = x + Xinc
C = complex (X, Y)

FOR 10 k = 1, N
Z = Z*Z + C
If «REAL (Z)**2 + IMAG(Z)**2).GT.T)

GOTO 20
continue

Set pixel color black
Go to 30

20 Set pixel color for value k
30 continue

The problem is not only computation bound, it also
cannot be formed as a parallel algorithm using many
processors to compute and test the function Z. The im­
age can, however, be generated on the MW AP using the
following block programming method:

1. The host sends origin coordinates, increments,
and N to the first node.

2. Each node passes this information to the next
node, with the X origin offset by 50 increments.

3. The first node computes 50 points in X, includ­
ing color transformation, and writes the results to its
right. It then sets a ready flag to the right. Each succes­
sive node repeats this process and copies the results of
the previous node to the right when it receives a ready
flag from the left. It then waits for a clear flag from
the right.

4. The last node releases a 400-pixel X scan to the
host and sends a clear flag to the left.

5. Each node increments Y, and steps 3 and 4 are
repeated until the image is complete.

This procedure computes one-eighth of the image in
each MWAP node and requires 21 MWAP instructions. The
code segment below illustrates how the host uses MW AP

from the Fortran language:

Call QUENINIT (MANDEL)
Read X, Y, IncX, Inc Y, N
Call QWRITE (X, Y, IncX, IncY, N)

FOR 20 I = 1, 400
Call QREAD (xdat)

FOR 10 J = 1, 400
10 Plotdata(l,J) = xdat (J)
20 Continue

Call Plot (Plotdata)

The fractal shown in Figure 12 was done on a Micro­
V AX II work station, with N set to 10,000. It required
over 4 h to compute using the Micro VAX II alone. Us­
ing the MWAP, the image was generated in 2.5 min.

FEATURE EXTRACTION FROM IMAGES
In some fields, we still cannot write mathematical

equations that accurately describe processes of interest.
If you were asked to describe the picture shown in Fig­
ure 13, you would probably say that it looked like a
group of lines with a herringbone pattern in the back­
ground. This observation is easy for you, yet almost im-

f ohns Hopkins A PL Technical Digest, Volume 10, N umber 3 (1989)

QUEN: The A PL Wavefront Array Processor

Figure 12. Mandelbrot fractal computed on the QUEN proces­
sor and displayed on a MicroVAX II work station.

Figure 13. Feature extraction from gray-scale images using
the QUEN (top, unprocessed; bottom, processed).

possible for a modern digital computer. Part of the
problem is that we do not yet fully understand the al­
gorithms of thinking. But part of the problem is also
computation speed. The APL Strategic Systems Depart­
ment is applying the MW AP to image understanding us­
ing three techniques: pattern matching, cellular logic
operations, and neural nets.

In pattern matching, the inner product of pattern tem­
plate weights Wand image pixel vectors X are comput-

205

Dolecek

ed, and a pattern is detected when a specified threshold
is exceeded: W . X > T pattern is present.

For example, suppose the center of the point template,
shown in Figure 14, is moved around the image from
pixel to pixel. At every position, we multiply every point
of the image inside the template by the number indicat­
ed in the corresponding entry of the template and sum
the results. If all image points inside the template area
have the same value, the sum is zero. If not, the sum
is different from zero and maximizes when the template
is centered on a point feature. Thus, point features can
be found by thresholding the inner product of the im­
age and template as the template is swept through the
picture. This concept can be extended, by using differ­
ent templates, to detect various image features and can
even detect transitions in the image by computing the
two-dimensional gradient of the image. The MWAP has
been programmed to perform template matching on im­
ages with up to 1024 x 1024 pixels using template sizes
from 3 x 3 to 16 x 16. ~

Noise in images can be removed by cellular logic ftlters
and by the augment and reduction operators. In a reduc­
tion operation, objects (pixels) are replaced by back­
ground elements if none of their immediate neighbors
are objects. Conversely, augmentation causes back­
ground elements to be replaced by object elements if
there are object elements in their neighborhood. A se- ·
quence of some number of reductions Q, followed by
Q augmentations, removes "noise objects" of maximum
dimension 2Q. The reverse procedure fills in object
regions 2Q in size. These two procedures have been used
on the image in Figure 13 to delete localized noise and
connect vertical line segments. The result, shown in the
figure, was computed and colored by the MW AP in less
than 1 s.

The problem in extracting information from sonar im-
ages has been precisely stated by Michael Roth.

Pattern recognition of flxed patterns in stationary back­
grounds is a straightforward task for which numerous ef­
fective techniques have been developed. If the patterns or
the backgrounds are variable in either a limited or known

Figure 14. A layered neural-network
architecture for extracting image fea­
tures using both feedforward and
feedback connections on the QUEN.
Dots represent noise, straight and
curved lines represent patterns, and
shapes represent point objects.

Input
image

Layer 1
Cellular

manner, more complex techniques-such as those using
methods based on artiflcial intelligence-can be effective.
But if the patterns or backgrounds vary in an unlimited or
unknown manner, the traditional approaches have not been
able to furnish solutions. 4

Expert systems, to date, have been unable to solve the
feature extraction problem for sonar images, because
analysts have not been able to define an effective rule set.

A layered neural-network approach is being developed
to either solve the problem or yield effective rule infor­
mation for an expert system. The network, shown in Fig­
ure 14 uses feed forward connections to analyze images
and fe~dback connections to learn image characteristics
and features. The concept is simple: first "show" the
network a series of sonar images and their correct anal­
ysis, then determine how well the network learned the
solutions by showing it new images. Sonar image anal­
ysis requires the synthesis of information across many
images, each looking in a different direction for the same
segment of time. A single "snapshot" in the so~a: en­
vironment may consist of 50 images, each contammg 1
million pixels of multibit information. Thus, we have
a computation-bound problem of first magnitude, and
development to date has been limited by,the number and
size of images that can be processed in a realistic amount
of time.

We are currently programming the QUEN to perform
as a feedforward, feedback neural network in which each
layer is represented by a memory node in the array. Each
layer of the network will be able to contain up to 10,000
neural nodes, have full bidirectional links with the ad­
jacent layers, and handle both binary and multilevel data
repre~entations. The QUEN 8 will handle up to 8 layers;
the QUEN 16, when delivered to APL, will handle up to
16 layers. We estimate that either QUEN will perform 1
million iterations of the network per second.

SUMMARY

The QUEN is a high-speed, multiple-instruction,
multiple-data MW AP for use as a peripheral on a host
computer or as a computation unit in a data processing

Point template

-1 -1 -1

-1 8 -1

-1 -1 -1

Layer 2 Layer 3 Output
Template N-nearest- features

logic noise matching neighbor
reduction object Hopfield

extraction network

206 Johns Hopkins APL Technical Digest, Volume 10, Number 3 (1989)

system. It is similar to systolic arrays such as the WARP

machine,5 but distinctive in its asynchronous linking
memories and hardware-implemented data-flow flags.
These features extend the capabilities of the QUEN be­
yond those of systolic processors, providing a higher
throughput rate for most algorithms, an expanded range
of algorithms that can be implemented, and easier
programming.

A wide range of problems has been implemented on
the QUEN at JHU/ APL and other universities. We have at­
tained respectable improvements in computation speed,
ranging from factors of 50 to several hundred in each
case.

Because the QUEN is so new, a compiler has yet to be
developed, which means that the user/programmer must
decompose applications across the array. It is a myth
that multiple-instruction, multiple-data machines are im­
possible to program. A coherent computational model
exists for the QUEN in the wavefront computation con­
cept, and a full set of software tools exists under
v AXlVMS for assembly, linking, and use of QUEN routines
from the C and Fortran languages. The tools are no
more difficult to learn than a new word-processor pack­
age. The QUEN becomes easy to use once people start
thinking in parallel.

REFERENCES

I Dolecek, Q. E. , Parallel Processing for VHSIC Systems, VHSIC Applications
Workshop, JHUlAPL, pp. 84-112 (1984).

2 Kung, S. Y., Lo, S. C, Jean, S. N., and Hwang, J. N., " Wavefront Array
Processors-Concept to Implementation," Computer 20, 18-33 (1987).

3 Hockney, R. W., and Jesshope, CR., Parallel Computers, Adam Hilger Ltd.,
Bristol, England (1986).

4 Roth, M. W., "Neural-Network Technology and Its Applications," Johns HOIr
kins APL Tech. Dig. 9, 242-251 (1988).

Johns Hopkins APL Technical Digest, Volume 10, Number 3 (1989)

QUEN: The APL Wavefront Array Processor

5 Annaratone, M., Arnould, E. , Gross, T. , Kung, H . T., Lam, M., et al., "The
WARP Computer: Architecture, Implementation, and Performance," IEEE
Trans. Comput. C-36, 1523-1537 (1987).

THE AUTHOR

QUENTIN E. DOLECEK was
born in Sioux Falls, S.D., in 1940.
He received a B.S. degree in elec­
tronics from the University of
Maryland in 1963. After two years
in the Navy, he received an M.S. in
acoustics and a D.Sc. in electronics
from the Catholic University of
America, in 1970 and 1980, respec­
tively. Dr. Dolecek began his pro­
fessional career in 1958 at the Na­
val Ship Research and Development
Center, where he participated in ear­
ly submarine radiated noise mea­
surements. In 1970, he moved to the
Submarine Self-Noise Group at the
Center, where he designed high­

performance signal-processing systems for at-sea measurements. He
joined APL in 1980, where he is a specialist in signal processing, sys­
tems analysis, and computer graphics.

Dr. Dolecek has been principal investigator and co-investigator on
a variety of Defense Department programs. He participated in the De­
fense Department's Very-High-Speed Integrated Circuit (VHSIC) pro­
gram, both in the system design and VHSIC insertion activities. He was
principal investigator for high-speed sonar processing algorithms, high­
speed bus structures for multiprocessing, and the memory-linked
wavefront array processor (MWAP). Inventor of the MWAP technolo­
gy, he led APL'S development of a prototype machine and transfer of
the technology to industry. His research activities are in digital design
and parallel algorithms.

Dr. Dolecek is a member of APL'S Principal Professional Staff and
is a section supervisor in the Signal Processing Group of the Strategic
Systems Department.

207

