
1. ROBERT BUCHANAN 

AUTOMATIC TARGET RECOGNITION ON THE 
CONNECTION MACHINE 

Automatic target recognition (ATR) is a computationally intensive problem that benefits from the abilities 
of the Connection Machine (CM), a massively parallel computer used for data-level parallel computing. 
The large computational resources of the CM can efficiently handle an approach to ATR that uses paral­
lel stereo-matching and neural-network algorithms. Such an approach shows promise as an ATR system 
of satisfactory performance. 

INTRODUCTION 
This article describes a two-part approach to automat­

ic target recognition (ATR). The fIrst part uses stereo-pro­
cessing algorithms to produce a three-dimensional rep­
resentation of a target, and the second uses the associa­
tive memory and pattern-recognition properties of neural 
networks to identify or classify targets. 1 This approach 
shows much promise because three-dimensional represen­
tations of objects capture more useful information and 
require less storage capacity than a series of two-dimen­
sional representations. The three-dimensional representa­
tions are incomplete and somewhat distorted, however, 
because of hidden surfaces, occluded details, and noise 
in the input image data. Still, classifiers based on neural 
networks provide some robustness and fault tolerance 
to compensate for some of the defects of the three-di­
mensional representations. Together, the two technolo­
gies show promise as an ATR system of satisfactory per­
formance. 

The ideas for using stereo processing with neural net­
works for ATR came from Michael W. Roth and Robert 
L. Kulp of APL. Roth is the principal investigator of an 
independent research and development project aimed at 
performing ATR, and Kulp and 1. Robert Buchanan are 
co-investigators. Although large serial-processing com­
puters cannot perform the computations required for this 
approach within the time constraints involved, large par­
allel-processing computers such as the Connection Ma­
chine (eM) can. 

Parallel processing is the application of multiple pro­
cessors to the execution of an algorithm. 2 The com­
bined data-processing abilities of multiple processors can 
significantly shorten the execution time of many pro­
grams. The improvement in execution time for parallel 
processors over serial processors is a function of the ar­
chitecture of the computer and the parallelism inherent 
in the events and data structures of the algorithm. 

THE ALGORITHMS 
Stereo Matching 

Digital images are usually rectangular arrangements 
of picture elements, commonly called pixels. Each pixel 

208 

encodes some information about the objects represented 
in the image, and the encoded information is usually the 
intensity of reflected radiation. One goal of stereo pro­
cessing is the computation of an elevation map from the 
intensity information in a stereo pair, which is a pair 
of digitized views of the same scene captured at the same 
range but from different horizontal positions. From the 
differing information in each view, a three-dimensional 
representation of the scene can be constructed. One use­
ful representation is an elevation map, which indicates 
the elevations of objects and their components in the 
scene. The stereo-processing algorithm derives elevation 
information from the apparent shifting of objects in the 
scene, depending on whether they are viewed from one 
horizontal position or the other. The perceived shift of 
an image component is related to the elevation of the 
component; higher features are shifted more than lower 
features. Features of objects in the image are detected 
by their edges. A discontinuity in the intensity of reflect­
ed radiation usually occurs at the edges of objects or 
where objects partially occlude one another. The follow­
ing steps are used to compute an elevation map: 3,4 

1. Detect the edges in each view of the stereo pair, 
generating an edge map of each view. 

2. While holding one edge map stationary (assume 
it is the edge map generated from the image data col­
lected by the left eye), slide the other edge map over the 
stationary edge map. At each shift note the -positions at 
which edges match in the two edge maps. A shift value 
at which many edges match in a neighborhood is likely 
to be the appropriate elevation for the neighborhood. 
The number of edge matches in a neighborhood is the 
local support score for the current shift value in that 
neighborhood. 

3. Determine the local support score for each shift 
value by counting the number of edge matches in a 
neighborhood around each edge match. 

4. For each pixel in the image at which an edge match 
was detected, the shift value with the maximum local 
support score is defIned to be the appropriate elevation. 

5. The pixel positions at which no edge matches were 

fohn s Hopkins APL Technical Digest, Volume 10, Number 3 (1989) 



detected derive an elevation from their neighbors' eleva­
tions through an interpolation scheme. 

Alternative algorithms can be used to compute an ele­
vation map. In practice, additional processing steps are 
required to reduce noise, enhance contrast, and perform 
other image manipulations. 

Back Propagation 
Neural networks consist of a collection of neurons in­

terconnected in a topology via weighted links and an al­
gorithm for changing the link weights to encode infor­
mation in the network. The neurons are often called 
"units," which can be classified according to whether 
they receive stimuli from their environment (input units), 
express the network's response to stimulation (output 
units), or connect only to other units (hidden units). The 
topology of the links between units affects the learning 
abilities of networks. Each unit sums its inputs, which 
may come from the outside world in the case of input 
units or from other units in the case of hidden and out­
put units, and applies an "activation function" to gener­
ate an output that is propagated on the unit's outbound 
links. The algorithm used to update link weights and en­
code information is called the "learning algorithm." 
Neural networks are further discussed in the articles by 
Vincent Sigillito elsewhere in this issue. 

Back propagation is one of several neural-network 
learning algorithms; it is used to train neural networks 
with one or more layers of hidden units. 5 Hidden units 
have no direct connection to the outside world. All units 
compute an activation, which is a function of the sum 
of the units' inputs. A unit's input is the weighted sum 
of the outputs of the units to which the unit is linked. 
The use of hidden units and nonlinear activation func­
tions overcomes the limitations of other neural-network 
learning paradigms. The back-propagation learning al­
gorithm iteratively minimizes the mean square error be­
tween the actual output of the output layer and the 
desired output. 2,5 

The use of nonlinear activation functions is important 
in multilayer networks because a single-layer network 
with linear activation functions and appropriately chosen 
weights can perform the same calculations as any multi­
layer network with linear activation functions. The non­
linear activation function most commonly used is the sig­
moid function: 

f(x) (1) 

Layers of hidden units provide the necessary freedom 
for a neural network to develop an internal representa­
tion of the mapping between its inputs and its desired 
outputs. 

Figure 1 shows a section of a neural network. The 
back-propagation learning algorithm is described as fol­
lows: 

1. Initialize all link weights to random values. 
2. Present an input pattern to the units of the input 

layer and the desired output pattern to the units of the 
output layer. 

Johns Hopkins A PL Technical Digest, Volume 10, N umber 3 (1989) 

2 3 4 

o o o 
Figure 1. A section of a multilayer neural network. Units are 
depicted as circles, and weights are shown as lines connect­
ing units; Wij is the weight connecting unit i to unit j . 

3. Compute the actual outputs by using the sigmoid 
function given in Equation 1. 

4. Starting at the output nodes and working backward 
to the first hidden layer, adjust the weights according 
to the following equation: 

where 

wij (t) = weight connecting the output of unit i to the 
input of unit j at time t, 

n = learning rate (a constant usually between 
0.25 and 0.33), 

aj = error attributable to Wij , 

Xi = output of unit i. 

The error for output units is given by 

where Y j is the actual output of the unit and dj is the 
desired output. If a unit is a hidden unit, the equation is 

(4) 

where the difference between the desired output and the 
actual output is computed as the weighted sum of the 
error terms from all the units in the next layer to which 
unitj is connected. Activations propagate forward from 
the input to the output layer while errors propagate back­
ward from the output layer to the input layer. Steps 2 
through 4 are repeated until the values of the weights 
converge. 

Images and neural networks are both parallel systems, 
but they exhibit different types of parallelism. An image 
is a rectangular data structure of independent pixels. Few 
of the operations needed to implement the stereo-match­
ing algorithm require interaction other than that between 
nearest-neighbor pixels. Most of the operations treat each 
pixel independently. In contrast, a neural network con­
sists of an arbitrarily connected set of units, and nonlocal 
communication between units is required. The units are 

209 



Buchanan 

organized into layers, and slightly different operations 
are performed at each layer. A parallel processor able 
to calculate rapidly for both parts of this approach to 
ATR would require many processing elements (' 'massive 
parallelism" to handle all the pixels in an image simul­
taneously) and a flexible interprocessor communications 
network (nearest-neighbor grid-pattern communications 
for image processing and arbitrary pattern communica­
tions for neural networks). The eM provides these fea­
tures. 

Connection Machine Architecture 
The eM is a massively parallel computer used for 

data-level parallel computing. 6 A characteristic used to 
describe many parallel-processor architectures is the 
number of processing elements in the design. The eM 

is called massively parallel because it may contain 65,536 
physical processing elements. It is an example of single­
instruction multiple-data design architecture, which is the 
label given to vector and parallel processors that oper­
ate by executing a single instruction stream on multiple 
operands. 

The eM is simple, regular, and scalable, and may be 
configured with 16K, 32K, or 64K physical processors 
(where K = 1024). It is an attached processing device 
connected to a serial computer called the front-end pro­
cessor, which broadcasts an instruction stream to all the 
eM processors simultaneously. The single-instruction 
multiple-data design of the eM dictates that all of its 
processors execute the same instruction simultaneously. 
Up to four front-end processors connect to the eM. 

Front-end processors require a special interface circuit 
board to connect to the eM through the NEXUS, which 
is a software switch that attaches the appropriate eM 

processor resources at the request of a front-end pro­
cessor. The front-end processors may attach a subset of 
the physical processors rather than all of the processors. 
Figure 2 is a block diagram showing the main compo­
nents of the eM. 

Each physical processor of the eM has 64 Kb of mem­
ory (a eM with 64K processors has 512 MB of memory). 
The processors implement a bit-serial design: theyoper­
ate by reading a single bit of each of the current instruc­
tion's operands, computing a single-bit result, and writ­
ing the result to memory. Operations on data structures 
occupying more than 1 b of memory are carried out as 
a series of single-bit operations. Thus, a 32-b addition 
is executed as a series of 32 single-bit operations. This 
manner of execution does not burden programmers be­
cause programming language statements, even at the 
relatively low level of the eM parallel instruction set, are 
automatically broken into bit-serial operations by the eM 

microcode. 
A eM with 64K processors operating on 32-b oper­

ands executes the equivalent of 10 billion operations per 
second, which is equivalent to the combined performance 
of approximately 10,000 VAX 111780 minicomputers. The 
performance of a eM on floating-point operations, how­
ever, suffers from the bit-serial design. A floating-point 
operation might expand into more than a thousand bit­
serial operations requiring significant time for comple­
tion. Because floating-point arithmetic is fundamentally 

210 

Local area network 

Processing 
elements 

SEQ.1 

Processing 
elements 

FEP = Front-end processor 
SEQ = Sequencer 

Processing 
elements 

Processing 
elements 

Figure 2. Block diagram of the CM. NEXUS is a software switch 
that attaches the appropriate CM processor resources at the re­
quest of a front-end processor. 

important in scientific and engineering computations, 
floating-point coprocessors are provided (one for every 
32 bit-serial processors) to support single-precision 
floating-point operations. Floating-point coprocessors 
able to handle double- and single-precision floating-point 
formats are under development. With the current float­
ing-point coprocessors, a eM can execute 4 billion 
floating-point operations per second on single-precision 
data. Computational throughput is one of the strengths 
of the eM. 

Another strength of the eM is its interprocessor com­
munications. Two styles of communications are provid­
ed: an n-dimensional grid and a hypercube routing net­
work called the router network. The n-dimensional grid 
communications, sometimes called NEWS grid (for north, 
east, west, and south), are optimized for nearest-neigh­
bor communications with a regular pattern. Use of the 
NEWS grid for communications requires computation of 
the axis or axes of the grid along which data communica­
tions will take place, whereas use of the hypercube router 
network requires only that the address of the destination 
processor be computed; the path used to route data traf­
fic to the destination is computed by special processors 
called "routers" on each eM microchip. The routers 
operate a packet-switched network responsible for ac­
cepting message traffic from processing elements and 
delivering that traffic to its destination. 

The wiring pattern is a 12-dimensional hypercube; 
each router is connected to other routers by 12 wires, 

Johns Hopkins APL Technical Digest, Volume 10, Number 3 (1989) 



which allow bit-serial communications. Thus, each router 
is separated by no more than 12 wires from any other 
router. Hypercubes have the topological property that 
many other network designs can be mapped onto them. 
For example, hypercubes of lower dimension, as well 
as rings and trees, can be mapped onto hypercubes of 
higher dimension. This property adds to the flexibility 
of the CM interprocessor communications paradigms. 
The router network can handle 3 billion bits of message 
traffic per second. 

Use of a two-dimensional communications grid is fun­
damental to the stereo-matching algorithm to be de­
scribed later, because images are usually two-dimensional 
data structures. An arbitrary interprocessor communica­
tions network is important to the neural-network algo­
rithm because the units of a neural network are randomly 
interconnected. Units do not necessarily have the same 
number of connections. 

Another strength of the CM design is its use of virtual 
processors, which exist when a physical processor s~b­
divides its 64 Kb of memory and repeats the same In­

struction on data in each memory subdivision. The ratio 
of virtual processors to physical processors is known as 
the vp ratio, currently restricted to powers of 2, but the 
restriction may be removed in the future. Although the 
memory of each virtual processor is only 64 Kb divided 
by the vp ratio, the slowdown in execution of inst~c­
tions is sublinear. This benefit arises from the physIcal 
processor decoding the incoming instruction once and 
then amortizing the cost of that decoding over multiple 
executions. For a Vp ratio of 1, each decoded instruction 
is executed only once. Higher VP ratios are beneficial in 
that the incoming instruction for each virtual processor 
does not have to be decoded. The peak performance of 
the CM is achieved when using high VP ratios. 7 

The virtual processor feature eases the job of the pro­
grammer by allowing the CM to effectively change its 
number of processors to fit a problem. The stereo­
matching algorithm can run on 8K physical processors 
but uses images digitized as 128 by 128 pixels (16K pixels, 
a VP ratio of 2), 256 by 256 pixels (64K pixels, a Vp ratio 
of 8), 512 by 512 pixels (256K pixels, a Vp ratio of 32), 
or any higher resolution as long as each virtual processor 
has enough memory to hold all the data associated with 
each pixel. The virtual processor feature allows the var­
ious image resolutions to be processed without changes 
to the stereo-matching algorithm (no changes to source 
code or object code are necessary). The neural-network 
algorithm may not require that the number of processors 
be a power of 2. For small networks, many thousands 
of processors may be left idle, whereas for large net­
works, the CM can increase its Vp ratio until enough vir­
tual processors are available to process the neural net­
work. 

In summary, the strengths of the CM are its high com­
putational throughput, the high bandwidth of its inter­
processor communications network, the flexibility of its 
interprocessor communications network, and its virtual 
processor feature. The CM provides a suitable base ?n 
which to experiment with problems too large to be easily 
implemented on serial processors, but it does require that 

fohns Hopkins APL Technical Digest, Volume 10, Number 3 (1989) 

Automatic Target Recognition on the Connection Machine 

parallel approaches to algorithms be developed. In many 
cases, parallel algorithms are easy to state. The greatest 
challenge is for algorithm designers to abandon the serial 
thinking that is second nature to them because of years 
of programming serial machines. 

Programming Model 
The programming languages of the CM reflect its 

hardware architecture. All the CM processors execute the 
same instruction at the same time. The general approach 
to programming the computer is to distribute homoge­
neous data across all processors so that each processor 
has data on which it can operate in parallel. Once data 
are distributed, a traditional serial program that operates 
on the data in one processor is written. Programmers 
have no need to program each processor individually or 
to program synchronization code to keep all processors 
in step, because a single-instruction stream generated o~ 
the front-end processor is broadcast to all processors SI­
multaneously. 

The CM is programmed in parallel extensions to some 
familiar serial languages. Parallel versions of Common 
Lisp, C+ + , and Fortran exist (they are called *Lisp, C*, 
and CM Fortran, respectively).8 Serial programs can still 
be expressed in these languages. The languages and their 
compilers do not convert serial code into parallel code 
for the CM; the responsibility for generating parallel code 
lies with the programmer, not the computer or its code 
development tools. In contrast, programming languages 
such as Vast Fortran are able to analyze serial "DO" 

loops and produce vector operations when permissible. 9 

Thus, to produce parallel code on the CM, a progr~­
mer must explicitly use the parallel extensions to the senal 
syntax. For data-parallel programs (programs in which 
the same operation is applied to a large amount of data), 
programming in a parallel language can be easier than 
programming in a serial one. 

The three high-level languages of the CM-*Lisp, C*, 
and CM Fortran-extend the meaning and operation of 
serial functions such as addition or multiplication to 
work on parallel data or combinations of scalar and par­
allel data. The term "scalar" is used to refer to data 
stored on the front-end processor. It could be a single 
datum such as a floating-point number or character, or 
it could be an array of numbers stored on the front end. 
On the other hand, parallel data or "pvars" (short for 
"parallel variables") are distributed among the process­
ing elements in the CM. Any statements that mix scalars 
and pvars promote scalars to pvars by copying the scalar 
value to temporary storage in each virtual processor and 
then performing a parallel operation. . 

The best way to distribute data throughout the CM IS 
not always obvious. One of the challenges of working 
with the CM is determining ways of distributing problems 
to maximize the exposure of the data to the virtual pro­
cessors. 

IMPLEMENTED ALGORITHMS 

Stereo Matching 
Because the images of interest are square matrices 512 

pixels on a side and most of the operations necessary 

211 



Buchanan 

to do stereo matching require only nearest-neighbor com­
munications, it is convenient to map the image onto the 
eM as if the virtual processors were arranged on a square 
grid 512 processors on a side. The parallel algorithm will 
require 262,144 virtual processors, each dedicated to a 
single pixel. The stereo-matching algorithm described in 
this section performs the same operation on each pixel. 
The descriptions of the four steps of the algorithm are 
specific to performing stereo matching in a data-parallel 
style. On a serial processor these operations would be 
implemented as nested DO loops, which iteratively oper­
ate on each pixel. The time to execution of these loops 
would be 0(5122). [O(n) means proportional to n.] On 
the eM these same operations are computed in 0(1) 
time, 5 orders of magnitude faster. 

The algorithm steps and corresponding descriptions 
are given as follows: 

1. Detect the edges in each view of the stereo pair. 

The Canny edge-detection algorithm is useful for fmd­
ing edges in noisy images. It smoothes a raw image by 
convolving it with a Gaussian filter several pixels wide. 
The gradient of the intensity changes of the filtered im­
age is then computed. Edges are assigned at pixelloca­
tions where the intensity gradient is above a threshold 
computed from a measurement of the noise present in 
the image.1O This algorithm requires computation on 
data within each virtual processor and some nearest­
neighbor interprocessor communications. The output of 
the Canny edge detector is a 1 stored in a field in each 
virtual processor whose position corresponds to an edge 
in an image or a 0 where no edge is present. 

2. While holding one edge map stationary (assume 
it is the edge map generated from the image data col­
lected by the left eye), slide the other edge map over the 
stationary edge map. At each shift note the positions at 
which edges match in the two edge maps. 

This process iterates for some programmer-specified 
number of steps. The computations performed at each 
step are performed in parallel. Since a 1 signifies the pres­
ence of an edge, a logical "AND" of the left edges and 
the shifted right edges will indicate edge alignments. The 
result of this step is a field in each processor n bits wide, 
where each bit position containing a 1 signifies edge 
alignment at that shift. This process requires n nearest­
neighbor interprocessor communications across the 
square grid and n logical AND operations on fields 1 b 
long. Because the algorithm is implemented by using a 
virtual processor ratio greater than 1, many of these 
nearest-neighbor communications correspond to the 
movement of data within a single physical processor. 

3. Determine the local support score for each shift 
value by counting the number of edge matches in a 
neighborhood around each edge match. 

To determine the appropriate shift for each pixel, it 
is necessary to determine how well edges match over 
some small region of the image. Continuity and smooth­
ness constraints must be met. Regions in the image where 
many edges align are likely to be part of the same image 

212 

components and at nearly the same elevation. Each vir­
tual processor counts the number of edge alignments in 
a small square around itself at each shift of the edge 
maps. The result of this step is an array within each vir­
tual processor. Each array element indicates the number 
of edge matches found in a square about a pixel at each 
shift value. 

4. For each pixel in the image at which an edge match 
was detected, the shift value with the maximum local 
support score is defined to be the appropriate elevation. 

Each virtual processor examines the array of edge­
alignment scores and selects the greatest value. Con­
sistency requires that this value be related to the eleva­
tion of the pixel in the unprocessed image. 

Back Propagation 
The heart of any back-propagation implementation 

is computing the sum of the weighted inputs to a unit 
and the sum of the weighted error terms to a unit. Be­
cause units may each have different numbers of input 
and output links, an implementation that iterates over 
the links to a unit must do some bookkeeping on the 
number of links for each unit. This requirement adds 
complexity to the implementation. The eM provides par­
allel scan instructions that execute efficiently and liberate 
the parallel back-propagation implementation from treat­
ing units differently on the basis of their number of in­
put and output links. 

Scans and their effects will be familiar to users of Ken­
neth Iverson's A Programming Language. 11 A scan al­
lows a binary associative operation to be applied to all 
the initial subsequences of a vector. The result is a vector 
whose elements are the result of applying the operation 
to the first element of the input vector, the result of ap­
plying the operation to the first two elements of the in­
put vector, and so on. The result of a plus-scan on the 
vector 1,2,3,4 is 1,3,6,10. 

The parallelism of the eM allows scans to be comput­
ed in O(log n) time, where n is the number of virtual 
processors. 12 Figure 3 illustrates a plus-scan on a 
hypothetical eight-processor eM. The symbol X repre­
sents the pvar being scanned and can have a different 
value in each processor. The symbol S (i,j) represents 
the result of the plus-scan, that is, the sum of the X's 
from processors i to j inclusive. The algorithm can be 
thought of as a loop that is executed log2 (number of 
virtual processors) times. In the body of the loop, each 
virtual processor sends the partial sum of X values it 
holds to a virtual processor whose hypercube address is 
a power of 2 greater than its own hypercube address, 
provided the destination virtual processor of the send 
operation exists. Because the number of processors is 
finite, a processor should not send off the hypercube. 

At the start of the scan, every virtual processor holds 
an X value, which can be thought of as the partial sum 
of one term. For the first step, each processor sends its 
partial sum to the virtual processor whose hypercube ad­
dress is 2° = 1 greater than its own. Each virtual pro­
cessor receiving a partial sum adds it to the partial sum 
it already holds. For the second step, each processor 

fohn s Hopkins APL Technical Digest, Volume 10, Number 3 (1989) 



Virtual processor number 

o 2 3 4 5 6 

Figure 3. Graphical representation of a plus-scan operation in 
log2(n) steps, where n is the number of virtual processors. X 
represents the pvar being scanned and can have a different value 
in each processor, S(i,j) represents the results of the plus-scan, 
and the arrows indicate the sources and destinations of the in­
terprocessor communications operations. 

sends its partial sum to the virtual processor whose cube 
address is 21 = 2 greater than its own. Again, each vir­
tual processor receiving a partial sum adds it to the par­
tial sum it already holds. These steps are repeated log2 
(number of virtual processors) times. In the end, each 
processor holds the sum of its original X value and the 
sum of all the X values from virtual processors whose 
hypercube addresses are less than its own. The partial 
results at each time step are shown in Figure 3. The ar­
rows indicate the sources and destinations of the inter­
processor communications operations. 

The plus-scan operation is a single program instruction 
even when programmed in the eM assembler language. 
Programmers do not program the loop described in the 
preceding paragraph; instead, the operations take place 
at the level of the eM microcode. 

The scan operation can start from either end of the 
hypercube addresses (0 to the limit of the number of pro-

A 

A utomatic Target Recognition on the Connection Machine 

cessors, or the limit of the number of processors to 0), 
and scanning along axes of the NEWS grid is also al­
lowed. The segmented scan is particularly useful to the 
back-propagation algorithm. A scan operation can be 
restarted at various processors in the hypercube, depend­
ing on the value of the segment pvar. Whenever the value 
" TRUE" is stored in a segment pvar, the scan restarts at 
that processor. Table 1 gives the inputs and results of 
a segmented scan. 

The relevance of segmented scans to back propaga­
tion will become apparent. A single virtual processor is 
used for each unit, and two virtual processors are used 
for each weight because a weight is simultaneously a fac­
tor on an input link for a unit and a factor on an out­
put link for a different unit. 13 The virtual processor 
feature of the eM should provide enough virtual pro­
cessors to simulate large neural networks with many units 
and links. 

The units and weights are assigned to virtual proces­
sors according to their layer number and whether a 
weight is an input or output weight. The input layer oc­
cupies virtual processors at the low end of the hypercube, 
then the hidden layer, and then the output layer. Within 
a layer, a unit is preceded by all of its input weights and 
followed by all of its output weights. Figure 4 illustrates 
how a simple network might be mapped. In the figure, 
fan-in weights refer to the number of links corning into 
a unit, and fan-out weights refer to the number of links 
emanating from a unit. 

Scans are used to copy the activation value of a unit 
to its output links, compute the weighted sum of the in-

Table 1. The source pvar, segment pvar, and result pvar of 
computing a segmented plus-scan. 

Source pvar 
Segment pvar 
Result pvar 

Hypercube address 
o 234567 

3 6 2 8 2 -1 2 1 
T F F FT TFT 
3 9 11 19 2 -1 

Output layer o Units 

Hidden layer 

Input layer 

B 

D Fan-in weights 

D Fan-out weights 

ODDOOOOOOOOOOOOOO 
fohn s Hopkins APL Technical Digest, Volume 10, Number 3 (1989) 

Figure 4. Mapping a neural network 
onto the CM. A. Block diagram of a 
simple neural network. B. Illustration 
of how the network's units and 
weights are aSSigned to the virtual 
processors of the CM; two virtual 
processors are used for every weight. 

213 



Buchanan 

puts to a unit, copy the error term from a unit to its 
input links, and compute the weighted sum of the error 
terms for a unit. The feed forward phase of a neural­
network cycle scans in the forward direction, and the 
back-propagation phase of the cycle scans in the back­
ward direction. The two phases are otherwise pro­
grammed similarly. 

To feedforward, each virtual processor representing 
a unit copies its activation to the virtual processors rep­
resenting the unit's output link weights. Each virtual pro­
cessor representing an output link weight also contains 
the hypercube address of the weight's twin (a virtual pro­
~essor that represents an input link weight correspond­
mg to the output link weight, since every output link is 
an input link for some other unit). Each virtual processor 
representing an output link weight sends the activation 
value it received via the copy-scan to its twin. Finally, 
a plus-scan is computed, which sums the products of the 
input link weights and the activation values previously 
sent. ~s a result, each unit has received a new input. 
The umts can calculate their new activation values in par­
allel. 

Figure 5 illustrates the feed forward process. This al­
gorithm has the advantage of simplicity because the bulk 
of the work is done in only three machine-level instruc­
tions. It is divorced from any consideration of the num­
ber of fan-in or fan-out weights of a unit. The algorithm 
also makes efficient use of the hardware because scans 
are computed rapidly and execution time is proportional 
to the logarithm of the number of virtual processors. 
B.ack propagation is computed similarly, except that the 
dIrectIOn of the scan is reversed and the quantities being 
scanned are the error terms. 

The neural network as mapped onto the eM forms a 
pipeline. For a network consisting of an input layer one 
hidden layer, and an output layer, two feed forward cy­
cles are required for an input to propagate its effects to 
the output layer; the same is true of error terms. The 
algorithm uses the pipeline to propagate two input pat­
terns and sets of error terms simultaneously. 

SUMMARY AND CONCLUSION 
Automatic target recognition requires large computa­

tional resources and therefore benefits from the compu­
tational abilities of parallel-processing computers such 
as the eM. The eM has a massively parallel computer ar­
chitecture that has been found to be applicable to a va­
riety of algorithms. Its large number of physical pro­
cessors and the virtual processor mechanism allow it to 
match the size of various problems to be solved. In ad­
dition, the eM provides two powerful methods of inter­
processor communication: a grid-based nearest-neighbor 
network and a hypercube-based router network. Both 
styles of communication are sometimes used in solving 
the same problem. 

The eM challenges programmers and algorithm 
designers to cast problems in parallel terms. Serial think­
ing imposed by programming on serial hardware and 
languages must be abandoned in favor of parallel think­
ing, which more closely describes the true behavior of 
natural phenomena. Parallel thinking yields new insights 
into algorithms, and the eM provides a computational 
engine for exploring algorithms and areas that are im­
practical on serial computers. 

REFERENCES 

I Roth, M. W., " Survey of Neural Network Technology for Automatic Target 
2 ~eco~tion," to be p~blished in IEEE Trans. Neural Networks 1 (1989). 

LIpovski, G. J., and Miroslaw, M., Parallel Computing, John Wiley and Sons, 
New York, p. 2 (1987). 

3Drum~eller, M., c.0nnection Machine Stereo Matching, V86-2, Thinking 
4 Machines CorporatIon, C~bridge, Mass. (Mar 1986). 

Drumheller, M., and POgglO, T ., "On Parallel Stereo," in Proc. 1986 IEEE 
International Con! on Robotics and Automation, IEEE Council on Robotics 

5 and Automation, San Francisco, pp. 1439-1448 (1986). 
Rumelhart, D. E. , and McClelland, J. L., eds., in Parallel Distributed Pro­
c~ing, Explorations in the Microstructure of Cognition, MIT Press, Cam­
bndge, Mass. (1986). 
~~s, .W. D. , 1!'e Connectio~ Machine, MIT Press, Cambridge, Mass. (1985). 
Thinking Machines CorporatIon, Connection Machine Model CM-2 Techni-

8 cal. S~mmary, J:IA87-4, Cam?ridge, Mass. (1987). 
Thinking Machines CorporatIon, Introduction to Data Level Parallelism 
TR86-14, Cambridge, Mass. (1986). ' 

9Pacific Sierra Research Corporation, Vast User's Guide, N-355- V, Los An­
geles (1984). 

A I I I I 

Figure 5. Computation of the parallel 
feedforward phase in three steps. 
A. Segmented copy-scan. B. Inter­
processor communications. C. Seg­
mented plus-scan. The dashed ver­
tical lines represent the segment 
boundaries for segmented scan oper­
ations, and the arrows represent the 
direction of scan operations or the 
sources and destinations of inter­
processor communications operations. 

214 

C 

QOOQOOOOQOOOQOOOO 
I~ I~ I~ I~ 

I~ I~ I~ 

ODDODDQDO DQDODQDO 
o Units D ID I 

Fan-in weights Fan-out weights 

Johns Hopkins APL Technical Digest, Volume 10, Number 3 (1989) 



JOCanny, J . F., "Finding Lines and Edges in Images," MIT AI Memo T2fJ , MIT 
Artificial Intelligence Laboratory, Cambridge, Mass. (1983). 

I I Iverson, K. E., A Programming Language, John Wiley and Sons, New York 
(1962). 

12Blelloch, G. , Parallel PrefIX VS. Concurrent Memory Access, Thinking 
Machines Corporation, Cambridge, Mass. (Oct 1986). 

I3Rosenberg, C. R. , and Blelloch, G., An Implementation oj Network Learn­
ing on the Connection Machine, Thinking Machines Corporation, Cambridge, 
Mass. (1986). 

ACKNOWLEDGMENTS-The author would like to thank Michael W. 
Roth and Robert L. Kulp of APL for their ideas on stereo processing and neural 
networks, which formed the basis of the parallel algorithms described in this ar­
ticle; Henry Dardy of the Naval Research Laboratory (NRL) for pennission to 
use NRL's Connection Machine; Etienne Deprit of NRL for access to his recur­
rent back-propagation neural-network code (which I modified to perform simple 
back propagation); Michael Drumheller of the Massachusetts Institute of Tech­
nology Artificial Intelligence Laboratory for discussions on programming the par­
allel stereo algorithms; and Robert Whaley of Thinking Machines Corporation 
for answering questions about the operation of the CM and help in debugging 
code. 

Johns Hopkins APL Technical Digest, Volume 10, Number 3 (1989) 

Automatic Target Recognition on the Connection Machine 

THE AUTHOR 

J. ROBERT BUCHANAN grew 
up in North Carolina, where he re­
ceived a B.S. degree in physics from 
Davidson College in 1983 and an 
M .S. degree in mathematics from 
North Carolina State University in 
1985. He joined APL in 1986 as a 
member of the A ssociate Staff 
Training Program. As a member of 
the Computing Systems Group, Mr. 
Buchanan's research interests in­
clude the application of parallel pro­
cessing to artificial intelligence and 
scientific and engineering comput­
ing. He is a member of the Mathe­
matical Association of America. 

215 


