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Abstract: This paper considers the problem of robust tracking controller design 
for a nonlinear plant in which the neural network is used in the closed-loop 
system to estimate the nonlinear system function. We introduce the conic sector 
theory to the design of the robust neural control system, with the aim of 
providing guaranteed boundedness for both the input-output signals and the 
weights of the neural network. The neural network is trained by the SPSA 
method instead of the standard back-propagation algorithm. The proposed neural 
control system guarantees the closed-loop stability of the estimation, and a good 
tracking performance. The performance improvement of the proposed system 
over existing systems can be quantified in terms of preventing weight shifts, fast 
convergence and robustness against system disturbance. 

 
 

1. Introduction  
 
Recently, there have been extensive research and significant progresses in 

the area of robust discrete time neural controller design for a class of nonlinear 
systems with specific nonlinear functions [1-6]. For example, a first-order 
approximation is applied in the convergence proof of [1-2] to deal with the 
nonlinear activation function. Variable structure and dead zone schemes have 
been introduced to design robust adaptive algorithms of neural network control 
systems to improve the tracking performance [3, 4, 5]. The well-known Persistent 
Exciting (PE) condition has been removed in the presence of disturbance [6]. On 
the other hand, Simultaneous Perturbation Stochastic Algorithm (SPSA) has been 
used recently as a model free control method for dynamical systems [7,8, 12,17].  

 
In this paper, we shall propose a SPSA based neural control structure and 

a general stability proof for a nonlinear input-output dynamical plant. The plant 
under consideration is nonlinear and the neural network is used in the system to 
estimate the nonlinear function in closed-loop. Conic sector theory [10, 11,13] is 
introduced to design the robust control system, which aims to provide guaranteed 
boundedness for both the input-output signals and the weights of the neural 
network. One of the main advantages of the conic sector approach is that it is 
model free.. The neural controller is superior to its conventional adaptive control 
counterpart in the sense that the later requires linear in parameters for system 
estimation. The neural network is trained by the SPSA algorithm in the closed-
loop to provide an improved training performance over the standard methods, 

such as the back-propagation algorithm, in terms of guaranteed stability of the 
weights, which in turn will yield good tracking performance for the dynamical 
control system. The main motivation for using the SPSA instead of the 
popular back-propagation algorithm is its excellent convergence property. The 
SPSA algorithm which was proposed by Spall [7] provides inherent drift-free 
parameter estimate through simultaneous perturbation of the weights.  

 
Because stability is the primary concern of a closed-loop system, 

instead of a direct convergence analysis in [8], we follow the traditional 
approach of adaptive control systems to provide a robust input-output (I/O) 
stability design and analysis for the SPSA-based neural control system, and it 
does not require the weights to converge to the ideal values [9-11,14,19]. We 
apply the conic sector theory to isolate the SPSA algorithm from the rest of 
the closed-loop system. Unlike the robust conic sector analysis for a pre-
trained neural network [16], we provide an on-line scheme for the robustness 
analysis of the neural control system. A special normalized cost function is 
provided to the SPSA algorithm to reject disturbance and solve the so-called 
vanished cone problem [11]. A two-stage normalized training strategy is 
proposed for the SPSA training with guaranteed I/O stability using the conic 
sector condition. The performance improvement of the proposed algorithm 
can be described in terms of preventing weight shifting, fast convergence and 
robustness against system disturbance.  
 
     

2. Control system and SPSA training algorithm 
 
A class of dynamical nonlinear plant, which has wide applications in 

robotics and variable air volume control systems [15,18], can be represented 
as an input-output form as follows: 

 

1 1 ,k k k ky f u ε− −= + +                                           (1) 

                                                                                                                                           
where  is the output, m

ky R∈ 1
m

kf R− ∈  is a dynamic nonlinear function, 

 denotes a bounded overall noise vector of the control system, and 

 is the control signal vector with unit time delay. The tracking error 

of the control system can be defined as: 

mR
mR

k ∈ε

ku ∈−1
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and where  is the measurement disturbance as defined in [7]. In the above 

equation, ∆  is a random directional vector, that is used to stimulate the 

weight vector simultaneously, c  is a sequence of positive number 

satisfying certain regularity conditions [7-8].  The random vector 

θε k

k ∈
pR

0>k

k∆  is 

generated via Monte Carlo according to conditions specified in [7] or [8]. If 

the ith element of k∆  is denoted as ∆ , then the sequence of r  is 

defined as 
ki

pRk ∈

* ,k ks y y= − k

1−

k

                                                                          (2) 

where   is the command input signal. Define the control signal as m
k Ry ∈*

*
1 1

ˆ ,k k k v ku f y k s− −= − + +                                                      (3) 

where  is the gain parameter of the fixed controller and  is estimate of 

the nonlinear function  by the neural network to be defined in section 3.  

vk 1
ˆ
−kf

1−kf
  

Then the estimation error vector of the neural network can be presented as               

1

1 1,..., .k
k k

r
 

=  
∆ ∆  

1 1
ˆ

k k ke f f ε− −= − +                                                                      (4) 
p

1

to train the neural network as shown in Figure 1. 

Plant

SPSA based
Network

*
ky ky

+

_
1

ˆ
−kf

Figure 1. Structure of the control scheme.  
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The output of a three-layer neural network can be presented as 

1 1 1
ˆ ˆ ˆ( , )w v
k k k kf H x ,θ θ− − − −=

n

                                                              (9) 

where the input vector  of the neural network is           i
k Rx ∈−1

1 1,1 1,2 1, 1 2[ .... ] [ .......] ,
i

T T T
k k k k n k kx x x x y y− − − − − −= = T           (10) 

1
ˆ vpv
k Rθ − ∈

v mp

 is the weight vector of the output layer, and θ  is the 

weight vector of the hidden layer of the neural network with 

wpw
k R∈−1

ˆ

hn×=  and ihw nnp ×=  , and where n  and  are the 

numbers of neurons in the input and hidden layers of the network, 

respectively.  is the nonlinear activation function 

matrix 

i hn

1 1) vm p
k k R ×
− − ∈ˆ( ,wH xθ

1,1 1,2 1,

1 1 1,1 1,2 1,

1,1 1,2 1,

... 0... ...0
ˆ( , ) 0... ... ...0 ,

0... ..0.. ...

h

h

h

k k k n

w
k k k k k n

k k k n

h h h

H x h h h

h h h

θ
− − −

− − − − −

− − −

 
 

=  
 
  

 
where  is the nonlinear activation function ikh ,1−

1, 1 1,
1 1,

1ˆ( ) ˆ1 exp( 4 )
T w

k i k k i T w
k k i

h h x
x

θ
λ θ− − −

− −

= =
+ −

            (12) 

with 
1,

ˆ inw
k i Rθ − ∈ ,  and 

1 1,1 1,
ˆ ˆ ˆ[ ... ]

h

w wT wT
k k k nθ θ θ− − −= T 04 >λ , which is the gain 

parameter of the threshold function that is required to derive the sector 
condition of the hidden layer.  

Note however that the estimation error e  may not be directly 

measurable, so we should use the tracking error to generate it by using the 
closed-loop relationship via (1), (3) and (4), i.e. 

k

 1(1 ) .ke z k−= − v ks                                                                       (5)  
3. Conic sector condition for robustness analysis and learning laws  

 The loss function for SPSA is defined as L R , where 

 is the parameter vector of the neural network. Consider the problem of 
finding the optimal parameter of the gradient equation   

1( ) : p Rθ →
pR∈θ

The following theory is a necessary extension to the conic sector stability of 
Safanov [13] for discrete time control systems, like the one in Figure 1. 

 
0)()(

*

=
∂

∂
=

=θθθ
θθ Lg . Theorem 1: Consider the following error feedback system 

          *
k k ks e P= −    

for the differentiable loss function )(θL . 
          Φ =  1k kH s 

Now we can define the SPSA algorithm to update , which is an 

estimate of an optimal parameter vector  as 

p
k R∈θ̂

*θ

           
kk HP Φ= 2

with operators H , 
2H : L  and discrete time signal 

1 ee L22 → 2, ,k k k es P LΦ ∈  

and e .  
2

* Lk ∈
1 1

ˆ ˆ ˆˆ ( )k k k kagθ θ θ− −= − ,                     (6) If 
                                                                                       (a) 

kH s  satisfies  
1 : k →Φ

where α  is the learning rate and g   is the approximation of the 

gradient function with 
)ˆ(ˆ 1−kθ

1 1
1

ˆ ˆ( ) ( )ˆˆ ( )
2

k k k k k k k
k

k

L c L c ,kg r
c

θθ θθ − −
−

+ ∆ − − ∆ +
=

ε  (7) 

      
1
[ / 2

N
T T
k k k k

k
s s s ]σ γ

=

Φ + > −∑ ,  

  
(b)  satisfies 

kk PH →Φ:2

 

 2



              with ∆ , which can be viewed as the first  components 

of  defined in (7) and (8) for the SPSA, respectively. 

and vpv v
k kr R∈

kk rand
vp

∆

      2

1

[ / 2 ] ( , )
N

T T
k k k k k k N

k

P P P Pσ η
=

− Φ ≤ − Φ∑
0,, >

                                                        

for some ηγσ , then the above feedback system is stable with 

2,k ks LΦ ∈ .  
 

Proof: See Corollary 2.1 [11]. 
 
Note that operator H  represents the SPSA training algorithm, the input error 

signal is the tracking error s  defined in (2) and the output is 

1

k kΦ , which will 

be defined later and is related to the weight error vectors, and in turn, the 

estimation parameter error vector e  and tracking error  through (5).  

usually represents the mismatched linear model uncertainty in a typical adaptive 
linear control system and will be defined later in the next section [9]. 

k ks
2H

 
 

The first step to use the conic sector stability theorem 1 is to restructure 
the control system in Figure 1 into an equivalent error feedback system as shown 
in Figure 2. Then the parameter estimation error vector should be derived and 
referred to the output signal Φ . For this purpose, define the desired output of 

the neural network as the plant nonlinear function in (1), i.e. 
k

*
1 1 1

ˆ( , )w
k k kf H x *,vθ θ− − −=                                                            (13) 

where  is an ideal weight vector in the output layer of the neural 
network, 

vpv R∈*θ
* wpw Rθ ∈

w
k

w ∈−θθ ˆ

 is the desired weight vector of the hidden layer. Therefore, 

the parameter estimate error vectors can be defined as  and vpv
k

vv
k R∈−= θθθ ˆ~ *

wpw
k =θ R~ *  for the output and hidden layers, respectively. 

 
Assumptions: 

a) The system disturbance kε  defined in (1) is bounded; 

b) The ideal weight vectors *vθ  and *wθ  are bounded above. 

 
Now, we are ready to establish the relationship between the tracking error 

signal  and the parameter estimate vectors of the neural network, which is 

referred to as the operator H , in Theorem 1, i.e. the SPSA algorithm. 
According to equations (4) and (5) the error signals can be extended as  

ks
1

   

2 2 1 1

2 1 1 1 1

2 1 1 1

2

ˆ( )
1 1ˆ ˆ( ( ) ( ) )
2 2

ˆ( , )

,

k k k k k

v v
k k k k

w v v
k k k k

v v
k k

s H e H f f

H f f f f

H H x e

H e

ε

kε

θ θ

− −

+ −
− − − −

− − −

= = − +

= − + −

= +

= − Φ +

+  

(14) 
 

where the operator 
2 1

1
1 vk z−=
−

H , and 

1 1
ˆ( , )v w

k k kH x 1,
v
kθ θ− − −Φ = −                                                                     (15) 

*
2 1 1

ˆ( ( , , ) )v w w
k k ke H H x ,kθ θ− −=

* *w w w

ε+
*

                                             (16) 

1 1 1 1 1
ˆ ˆ( , , ) ( ( , ) ( ))w v
k k k k kH x H x H x ,θ θ θ θ− − − − −= − θ

v
k+ ∆

v
k− ∆

v
k

v
k

                          (17) 

Remark 1: There is an important implication in equation (14).  The 

tracking error signal s  is directly linked to the output signal Φ  in 

equation (15), and in turn, the parameter estimation error vector θ
k

~  of the 

output layer of the neural network, which implies that the training procedure 
of the output layer of the neural network should be treated separately from the 

hidden layer of the network to obtain a bounded disturbance term e  as 

defined in (16), i.e. 
2

~ L∈e  as required by Theorem 1 (defined as e ). 

Therefore, using equation (14), we are able to form an equivalent error 
feedback system Figure 2 as the one in Theorem 1. Note that H  usually 
represents the mismatched linear model uncertainty in a typical adaptive linear 
control system [9]. Since the neural network has powerful approximation 
ability to match the nonlinear function without the need to worry about the 

linear model mismatch, therefore, the operator 

v
k

*
k

2

2
1

1 vk z 1H −=
−

 represents 

only the fixed controller and is always stable as 1vk < . Furthermore, the 

condition (b) of Theorem 1 can be treated as positive real function, i.e. the plot 
of 2H  should be in the positive half of a complex plane as shown in [10].    

v
k

~

 
We define the operator H , which represents the SPSA training 

algorithm of the output layer, and the loss function as 

v
1

             
2

11
ˆ)ˆ,ˆ( kk

w
k

v
k ffL −=−− θθ ,                                                                           

and with definitions in equation (7), (18) and (19), we have a normalized 
gradient approximation using the simultaneous perturbation vector 

 to stimulate the weight of the output layer:         vpv
k R∈∆

 

1 1

1
1 1

ˆ ˆˆ ( , , )
ˆ(1 ) ( , )2 ,

w v v
k k k

T w
vk v k k k

kv
k

g

s z k H x r

θ θ

θ
ρ

− −

−
− −

∆ =

− ∆
−

v  

(20) 
 
where the bounded normalization factor, which is traditionally used in 
adaptive control system to bound the signals in learning algorithms [11], is  

          
1

2 2 2

1 1

max

ˆ2(1 ) ( , ) ,

v v
k k

v
v w v vk

k k k k
v v

a H x r
k p

ρ µρ

θ ρ

−

− −

= +

Φ
+ +Φ ∆ 

 

 
            

with )1,0(,0 ∈> µρ .  
v
kε  is the bounded measurement error and has a relationship with the overall 

system disturbance  in (1) as  kε
2

1 1 1 1

1 1
2

1 1

ˆ ˆ ˆ ˆ( )

ˆ( ( , ) ) ,
ˆ( , ) 2

v v v v
k k k k k k

w v v
k k k k

w v
k k k k

f f f f

H x

H x c

vε ε

θ ε

θ

−
+ − + −
− − − −

− −

− −

= − −

∆
=

∆

                                               (21) 

1 1 1 1
ˆ ˆ ˆ( , )( ),v w v
k k k k kf H x cθ θ+
− − − −=                             (18) 

1 1 1 1
ˆ ˆ ˆ( , )( ),v w v
k k k k kf H x cθ θ−
− − − −=                               (19) which is also bounded.       

 
 Note that the gradient approximation function in (20) can be used only 

for the output layer as justified in remark 1. Therefore, the parameter vector 
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v
kθ̂  can be estimated by the SPSA training algorithm in equation (6) with the 

gradient approximation g , i.e.  ),ˆ,ˆ(ˆ 11
v
k

v
k

w
k ∆−− θθ

   

Step 5: The tracking error s  is used directly to train the neural 

network and calculates the new weights 

k

ˆv
kθ  and ˆw

kθ  by 

using learning law in (22) and (23) for the output and 
hidden layers, respectively, of the next iteration;  

1 1

1
1 1

1

ˆ ˆ ˆ ˆˆ ( , , )
ˆ(1 ) ( , )2ˆ .

v v w v v
k k k k k k

T w
v vk v k k k
k k v

k

g

s z k H x r

θ θ α θ θ

θθ α
ρ

− −

−
− −

−

= − ∆

− ∆
= +

v

k

 

  
(22) 

Step 6:  Go back to Step 1 to continue the iteration. 
 
 

4. Simulation Results 
 

Consider a two-link direct drive robot model with an input-output 
discrete-time version obtained from Euler's rule as follows [15, 19]:        

 
Then stability analysis of the robust neural controller can be justified by 

the conic sector condition, which requires the feedback system in Figure 2 to 
meet certain dissipative condition as in Theorem 1 and can be justified as in the 
following theorem. 

              ,1
1 1 2 1

,2

( , )k
k k k k k

k

y
y f y y u

y kε− − − −

 
= = + 
 

+

ky

, 

where  are the joint velocities of the two links, respectively, T 

is the sampling period, u
,1 ,2andky

1k−  is the toque control signal, 
kε   is a normally 

distributed disturbance with a bound 2.0≤kε

1,1 1)[ (V y− −

, and the nonlinear function    

 

with 

1
2 1 2( , ) , )k k k k k ky y y y− − −+1 1 2( , )k k kf y y− − − 1 TM −

−= − (F y

v
ke

v
kΦ

ks
vH 1

2H

−
+

v
kΦ

ke
vH 1

−
+

1(1 ) v
v kk z e−−

1

(a)

(b)  

]

ky −1,1 1,1
1,1

1,1

3.32 0.32cos( ) 0.12 0.16cos( )
( )

0.12 0.16cos( ) 0.12
k

k
k

y
M y

y
−

−
−

+ + 
=  + 

 (configuration 

dependent inertia matrix), 
2

1,2 2,2 1,1 2,1 1,2 2,2 2,2
1 2 2 2

1,1 2,1 2,2

( )(2( ) )0.16sin( )
( , )

0.16( ) sin( ) /
k k k k k k k

k k
k k k

y y y y y y y T
V y y

y y y T
− − − − − − −

− −
− − −

/ − − − + −
=  − 

 (centrifugal and coriolis effect), 
Figure 2. The equivalant error feedback systems using the conic sector condition: 

(a) For the tracking  and the output ks 1 1
ˆ( , )v w

k k kH x v
kθ θ− −−

1 1
ˆ( , )v w v

k k k kH x

Φ = ; (b) For the 

estimate error  and the output ke θ θ− −−Φ = . 
1,1 2,1

1, 2
1,2 2,2

5.3sgn(( ) / )
( )

1.1sgn(( ) / )
k k

k k
k k

y y T
F y y

y y T
− −

− −
− −

− 
=  − 

 (coulomb friction).  

   
Theorem 2: The operator H s , which represents the SPSA 

learning algorithm of for the output layer (see Figure 2 (a)), satisfies the 
conditions (a) and (b) of Theorem 1, i.e. 

1 :v
k →Φ

, v
k k

v
k

2s LΦ ∈ .  

A three-layered neural network is used as defined in section 2 for this 
simulation study with 30 hidden layer neurons and two output neurons, which 
was trained by the standard back-propagation and SPSA training algorithm 
with the same control structure as shown in Figure 1. The desired joint velocity 
trajectory is selected as   

Proof:   (see [20]).          
*

,1*
*

,2

( / 4)sin( )
( / 4)cos( )

k
k

k

y
y k

π π
π π

  ⋅kT
y

T
 

= =   ⋅  

.      
Similar approach can be applied to the hidden layer for updating law and 
robustness analysis [20] to yield The sampling period is T = 0.002sec. The linear gain parameter of the fixed 

controller was given as 5.0=vk  and all the initial conditions are chosen to 

be zero.  

 
1

1 1
1 1 1

(1 )( )ˆ ˆ ˆ ˆ ˆˆ ( , , )
T w w

w w w v v w k v k k
k k k k k k k k kw

k k

s k z f f .wg r
c

θ θ α θ θ θ α
ρ

− + −
− −

− − −

− −
= − ∆ = +       (23) 

 
 Figures 3 and 4 show the outputs of the plant of the robust SPSA based neural 

controller, in which the tracking errors are relatively small as a result of the 
draft-free weight 

,1k̂θ , which is the first element of the weight vector k̂θ  as 

shown in Figure 5 (up to 50 seconds to highlight the trend). In contrast, the 
neural controller using the standard back-propagation algorithm performs 
poorer because there is parameter drift and relatively larger tracking errors are 
achieved (see Figures 6, 7 and 8). For the purpose of comparison, the outputs 
of the same plant under a finely tuned PID controller are also shown in Figure 
9 and 10. Again, the robust SPSA based neural controller performs better. 

The robust neural controller algorithm can be summarized as (refer to 
Figure 1): 

Step 1:  Form the new input vector  of the neural network defined 

in equation (10); 
1−kx

Step 2: Calculate the neural network output  by using the input state 

 and the existing or initial weights of the network in 

the first iteration;  

1
ˆ
−kf

1−kx

Step 3: The control input u  is calculated based on equation (3); 1k−
Step 4: The new measurement of the system dynamics is taken and the 

measurable tracking error signal s  is fed through a fixed 

filter to produce the implicit training error signal e  of the 

network according to equation (5);  

k

k

 4



  
Figure 3. Output  and reference signal  using the robust SPSA based 

neural controller. 
,1ky *

,1ky Figure 6. Output  and reference signal  using the standard back-

propagation algorithm.       
,1ky *

,1ky

  
Figure 4. Output  and reference signal  using the robust SPSA based 

algorithm. 
,2ky *

,2ky Figure 7. Output y  and reference signal  using the standard back-

propagation algorithm.       
,2k

*
,2ky

  
Figure 5. Estimated parameter ,1k̂θ  of the hidden layer using the robust SPSA 

based algorithm.       
Figure 8. Estimated parameter 

,1k̂θ  of the hidden layer using the standard 

back-propagation algorithm.       
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The robust neural controller based on the SPSA has been developed to 

obtain the guaranteed stability with a normalized learning algorithm. A complete 
stability analysis is performed for the closed loop control system. Simulation 
results show that the proposed robust neural controller performs better than both 
the neural controller based on the standard back-propagation algorithm and the 
PID controller.         
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